Homotopical algebraic quantum field theory

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Seminar Talk @ Séminaire de Physique Mathématique, Institut Camille Jordan, Lyon, 17 November 2017.

 $\label{eq:Based on works with different subsets of} Collaborators := \big\{ C. Becker, M. Benini, U. Schreiber, R. J. Szabo, L. Woike \big\}$

1. Explain why

AQFT is insufficient to describe gauge theories

2. Present ideas/observations indicating that the key to resolve this problem is homotopical AQFT := homotopical algebra + AQFT

3. Discuss our results and inform you about the state-of-the-art of our development of homotopical AQFT

AQFT vs Gauge Theory

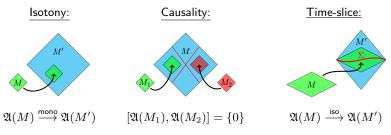
AQFT on Lorentzian manifolds

♦ Basic idea (Locally Covariant QFT) [Brunetti,Fedenhagen,Verch; ...]

 \rightsquigarrow "Coherent assignment of observable algebras to spacetimes"

- $\mathfrak{A}(M)=\operatorname{observables}$ we can measure in M
- $-\ \mathfrak{A}(f):\mathfrak{A}(M)\to\mathfrak{A}(M')=\text{embedding of observables along }f:M\to M'$

• **BFV** axioms (motivated from physics)



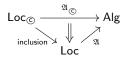
Local-to-global property

For every spacetime M, the global algebra $\mathfrak{A}(M)$ can be "recovered" from the algebras $\mathfrak{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

- O Different ways to formalize this property:
 - 1. Cosheaf property: $\mathfrak{A} : \mathsf{Loc} \to \mathsf{Alg}$ is cosheaf (w.r.t. suitable topology) \checkmark only true for extremely special covers \Rightarrow too strong condition
 - 2. Additivity: $\mathfrak{A}(M) \cong \bigvee_{\alpha} \mathfrak{A}(U_{\alpha})$ for suitable covers $\{U_{\alpha} \subseteq M\}$ [Fewster; ...] \checkmark true in examples \checkmark need to know $\mathfrak{A}(M)$
 - Universality: A(M) is isomorphic to Fredenhagen's universal algebra corresponding to {U ⊆ M : open, causally compatible and U ≃ ℝ^m}

 $\checkmark \ \mathfrak{A}$ determined by restriction $\mathfrak{A}_{\mathbb{C}}:\mathsf{Loc}_{\mathbb{C}}\to\mathsf{Alg}$ via left Kan extension

 \checkmark true in examples [Lang]



Does U(1)-Yang-Mills theory fit into AQFT?

◊ Differential cohomology groups = gauge orbit spaces

 $\widehat{H}^2(M) \cong \frac{\left\{ \text{ principal } U(1) \text{-bundles } P \to M \text{ with connection } A \right\}}{\left\{ \text{ gauge transformations } \right\}}$

 $\diamond~$ Solution spaces of $U(1)\mbox{-}Y\mbox{ang-Mills}$ theory

 $\mathcal{F}(M) := \left\{ \ h \in \widehat{H}^2(M) \ : \ \delta \operatorname{curv}(h) = 0 \ \right\}$

are Abelian Fréchet-Lie groups with natural presymplectic structure ω_M

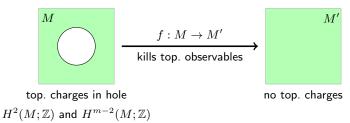
heorem [Becker, AS, Szabo:1406.1514]

Weyl quantization of smooth Pontryagin dual of $(\mathcal{F}(M), \omega_M)$ defines functor \mathfrak{A} : Loc \rightarrow Alg which satisfies causality and time-slice, but violates isotony and local-to-global properties.

NB: Similar results for *S*-duality invariant theory [Becker,Benini,AS,Szabo:1511.00316] and also for less complete approaches based on *A*-fields or *F*-fields [Sanders,Dappiaggi,Hack; Fewster,Lang; ...]

What is the source of these problems?

1. Isotony fails because gauge theories carry topological charges



2. Local-to-global property fails because we took gauge invariant observables

$$\widehat{H}^2(\mathbb{S}^1) \cong U(1) \quad \longleftarrow \qquad \bigcup \qquad \overset{\mathbb{I}_1}{\bigcup} \overset{\mathbb{I}_1}{\longrightarrow} \qquad \widehat{H}^2(\mathbb{I}_{1/2}) \cong 0$$

- 1. Violation of isotony is a physical feature, hence we have to accept that!
- 2. Violation of local-to-global property is an artifact of our description by gauge invariant observables, hence we can improve that!

Alexander Schenkel

Homotopical AQFT

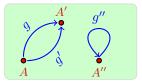
Groupoids vs Gauge Orbit Spaces

Groupoids of gauge fields

 $\diamond~$ Let's consider for the moment gauge theory on $M\cong \mathbb{R}^m$

- 1. Gauge fields $A \in \Omega^1(M, \mathfrak{g})$
- 2. Gauge transformations $g \in C^{\infty}(M,G)$ acting as $A \triangleleft g = g^{-1} A g + g^{-1} dg$
- \diamond **Groupoid** of gauge fields on M

$$\mathcal{G}(M) := \Omega^1(M, \mathfrak{g}) \big/ \big/ C^\infty(M, G) =$$



Two groupoids are "the same" not only when isomorphic, but also when **weakly** equivalent → model category/homotopical algebra (à la Quillen)

- $\diamond\,$ Non-redundant information encoded in the groupoid ${\cal G}(M)$
 - 1. Gauge orbit space $\pi_0(\mathcal{G}(M)) = \Omega^1(M, \mathfrak{g})/C^\infty(M, G)$
 - 2. Automorphism groups $\pi_1(\mathcal{G}(M), A) = \{g \in C^\infty(M, G) : A \triangleleft g = A\}$

! Gauge invariant observables ignore the π_1 's, hence are incomplete!

Groupoids and local-to-global properties

◊ Groupoids of gauge fields satisfy very strong local-to-global property

Homotopy sheaf property

For all manifolds M and all open covers $\{U_{\alpha}\subseteq M\}$, the canonical map

$$\mathcal{G}(M) \xrightarrow{\sim} \operatorname{holim}\left(\prod_{\alpha} \mathcal{G}(U_{\alpha}) \Longrightarrow \prod_{\alpha\beta} \mathcal{G}(U_{\alpha\beta}) \Longrightarrow \prod_{\alpha\beta\gamma} \mathcal{G}(U_{\alpha\beta\gamma}) \rightrightarrows \cdots\right)$$

is a weak equivalence in Grpd.

- Crucial Point: Taking into account the groupoids of gauge fields, rather than only the gauge orbit spaces, there are very strong homotopical local-to-global properties for classical gauge theories!

Alexander Schenkel

Homotopical AQFT

Cosimplicial observable algebras

What are "function algebras" on groupoids?

- $\diamond~{\sf QFT}$ needs quantized 'algebras' of functions on the 'spaces' of fields
 - \checkmark Space of fields $\mathcal{F}(M)$ is set (+ smooth structure)

 $\rightsquigarrow \quad \mathcal{O}(M) = C^\infty(\mathcal{F}(M))$ has the structure of an algebra

- ? Space of fields $\mathcal{G}(M)$ is groupoid (+ smooth structure) $\rightsquigarrow \mathcal{O}(M) = "C^{\infty}(\mathcal{G}(M))" = ?$ has which algebraic structure?
- $\diamond~{\sf Nerve}~{\sf construction}~N:{\sf Grpd}\to{\sf sSet}~{\sf assigns}$ the simplicial set

$$N(\mathcal{G}(M)) = \left(\ \Omega^1(M, \mathfrak{g}) \ \rightleftharpoons \ \Omega^1(M, \mathfrak{g}) \times C^{\infty}(M, G) \ \rightleftharpoons \ \cdots \right)$$

Taking level-wise smooth functions gives cosimplicial algebra

$$\mathcal{O}(M) = \left(C^{\infty} \left(\Omega^{1}(M, \mathfrak{g}) \right) \implies C^{\infty} \left(\Omega^{1}(M, \mathfrak{g}) \times C^{\infty}(M, G) \right) \implies \cdots \right)$$

NB: These constructions can be made mathematically precise! For algebraic geometry, see e.g. [Toën: Champs affines].

Alexander Schenkel

Relation to the BRST formalism and ghost fields

- $\diamond\,$ Dual Dold-Kan correspondence gives equivalence cAlg $\,\rightleftarrows\,$ dgAlg^{\geq 0}
- \Rightarrow Equivalent description of $\mathcal{O}(M)$ in terms of differential graded algebra

$$\mathcal{O}_{\rm dg}(M) = \left(C^{\infty} \left(\Omega^1(M, \mathfrak{g}) \right) \stackrel{\rm d}{\to} C^{\infty} \left(\Omega^1(M, \mathfrak{g}) \times C^{\infty}(M, G) \right) \stackrel{\rm d}{\to} \cdots \right)$$

 $\diamond~$ Considering only infinitesimal gauge transformations $C^\infty(M,\mathfrak{g})$

$$\mathcal{O}_{\rm dg}(M) \xrightarrow{\text{van Est map}} \underbrace{\mathcal{C}^{\infty}(\Omega^1(M,\mathfrak{g}))}_{\text{gauge field observables}} \otimes \underbrace{\wedge^{\bullet} \mathcal{C}^{\infty}(M,\mathfrak{g})^*}_{\text{ghost field observables}}$$

The cosimplicial algebra $\mathcal{O}(M)$ (or equivalently our dg-algebra $\mathcal{O}_{dg}(M)$) describes non-infinitesimal analogs $C^{\infty}(M, G)$ of ghost fields $C^{\infty}(M, \mathfrak{g})$

⇒ BRST formalism for **finite** gauge transformations

Working definition for homotopical AQFT

Working definition (intentionally imprecise)

A **homotopical AQFT** is a (weak) functor $\mathfrak{A} : Loc \to dgAlg$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:

1. Causality: Given causally disjoint $M_1 \xrightarrow{f_1} M \xleftarrow{f_2} M_2$, there exist a (coherent) cochain homotopy λ_{f_1,f_2} such that

 $[\cdot, \cdot]_{\mathfrak{A}(M)} \circ (\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2)) = \lambda_{f_1, f_2} \circ \mathrm{d} + \mathrm{d} \circ \lambda_{f_1, f_2}$

- 2. Time-slice: Given Cauchy morphism $f: M \to M'$, there exists a (coherent) homotopy inverse $\mathfrak{A}(f)^{-1}$ of $\mathfrak{A}(f)$.
- 3. Universality: $\mathfrak{A} : \mathsf{Loc} \to \mathsf{dgAlg}$ is the homotopy left Kan extension of its restriction $\mathfrak{A}_{\mathbb{C}} : \mathsf{Loc}_{\mathbb{C}} \to \mathsf{dgAlg}$.

Rem: 'Coherent' in e.g. 1.) means that the homotopies for different commutations of more than 2 observables (e.g. $a b c \rightarrow a c b \rightarrow c a b$ vs $a b c \rightarrow c a b$) coincide up to specified higher homotopies.

Precise definition requires operads [Benini,AS,Woike:1709.08657 & work in progress]

homotopical AQFT := AQFT $_{\infty}$ -algebra + operadic universality

Local-to-global property in Abelian gauge theory

Universal global gauge theory observables

 $\diamond~{\rm For}~G=U(1)~{\rm and}~M\cong \mathbb{R}^m,~\mathcal{G}(M)$ can be described by chain complex

$$\mathcal{G}_{\text{chain}}(M) = \left(\Omega^1(M) \xleftarrow{\frac{1}{2\pi i} \text{ d log}} C^{\infty}(M, U(1)) \right)$$

Smooth Pontryagin dual cochain complex of observables

$$\mathcal{O}_{\textcircled{C}}(M) := \left(\begin{array}{cc} \Omega^{m-1}_{\mathbf{c}}(M) \end{array} \right) \xrightarrow{\quad \mathbf{d} \quad} \Omega^{m}_{\mathbf{c}; \mathbb{Z}}(M) \end{array} \right)$$

 $\diamond\,$ Homotopy left Kan extension of $\mathcal{O}_{\mathbb{C}}:\mathsf{Loc}_{\mathbb{C}}\to\mathsf{Ch}^{\geq 0}$

$$\mathcal{O}(M) := \operatorname{hocolim} \left(\mathcal{O}_{\mathfrak{S}} : \operatorname{Loc}_{\mathfrak{S}} \downarrow M \longrightarrow \operatorname{Ch}^{\geq 0} \right)$$

Theorem [Benini,AS,Szabo:1503.08839]

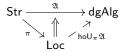
- 1. For $M \cong \mathbb{R}^m$, $\mathcal{O}_{\mathbb{C}}(M)$ and $\mathcal{O}(M)$ are naturally weakly equivalent.
- 2. For every M, $\mathcal{O}(M)$ weakly equivalent to dual Deligne complex on M.
- Crucial Point: Our homotopical version of "Fredenhagen's universal algebra" produces the correct global observables in Abelian gauge theory, in contrast to the non-homotopical version [Dappiaggi,Lang; Fewster,Lang]!

Alexander Schenkel

Toy-models of homotopical AQFT

AQFT on structured spacetimes

- ♦ Basic idea [Benini,AS:1610.06071]
 - Consider AQFT A : Str → Alg on category of spacetimes with extra geometric structures, i.e. category fibered in groupoids π : Str → Loc.
 (π⁻¹(M) is groupoid of structures over M, e.g. spin structures, gauge fields)
 - 2. Regard \mathfrak{A} as a trivial homotopical AQFT \mathfrak{A} : Str \rightarrow dgAlg via embedding Alg \rightarrow dgAlg of algebras into dg-algebras.
 - 3. Perform homotopy right Kan extension



to induce a nontrivial homotopical AQFT hoU $_{\pi}\mathfrak{A}$ on Loc.

♦ **Physical interpretation:** Homotopy right Kan extension turns the background fields described by $\pi^{-1}(M)$ into observables in hoU_{π}𝔅(M).

Properties of $hoU_{\pi}\mathfrak{A}$

 \diamond Explicit description of degree 0 of hoU $_{\pi}\mathfrak{A}(M)$

$$\mathsf{hoU}_{\pi}\mathfrak{A}(M)^{0} = \prod_{S \in \pi^{-1}(M)} \mathfrak{A}(S) \ni \left(a : \pi^{-1}(M) \ni S \longmapsto a(S) \in \mathfrak{A}(S)\right)$$

 Physical interpretation: Combination of classical gauge field observables and quantum matter field observables!

Theorem [Benini,AS:1610.06071]

Assume that π : Str \rightarrow Loc is strongly Cauchy flabby. Then the homotopy right Kan extension hoU $_{\pi}\mathfrak{A}$: Loc \rightarrow dgAlg satisfies the causality and time-slice axioms of homotopical AQFT. (Coherences just established in low orders.)

✓ First toy-models satisfying the new homotopical AQFT axioms!
 (Proving universality is hard: hocolim's in dgAlg are beyond our current technology.)

Stack of non-Abelian Yang-Mills fields

Yang-Mills stack

 Motivation: Prior to deformation quantization, we have to understand the geometry of the groupoid of Yang-Mills solutions and the Cauchy problem

 \rightsquigarrow Stacks \cong presheaves of groupoids X on Cart satisfying descent [Hollander]

- ♦ **Basic idea:** Smooth structure on X is encoded by specifying groupoid $X(\mathbb{R}^k)$ of *all* smooth maps $\mathbb{R}^k \to X$ for *all* \mathbb{R}^k in Cart (functor of points)
- \diamond ∃ abstract model categorical construction of the stack of non-Abelian Yang-Mills solutions $G\mathbf{Sol}(M)$ [Benini,AS,Schreiber:1704.01378]
- $\diamond~ {\rm Explicit}$ description of $G{\rm {\bf Sol}}(M)$ up to weak equivalence

 $G\mathbf{Sol}(M)(\mathbb{R}^k) = \begin{cases} \mathrm{obj}: & \text{smoothly } \mathbb{R}^k\text{-parametrized Yang-Mills solutions } (\mathbf{A}, \mathbf{P}) \\ \mathrm{mor}: & \text{smoothly } \mathbb{R}^k\text{-parametrized gauge transformations} \\ & \mathbf{h}: (\mathbf{A}, \mathbf{P}) \to (\mathbf{A'}, \mathbf{P'}) \end{cases}$

 $\label{eq:alpha} \begin{array}{l} \diamond \mbox{ For } M \cong \mathbb{R}^m \mbox{ even simpler in terms of vertical geometry on } M \times \mathbb{R}^k \to \mathbb{R}^k \\ (\mathbf{A}, \mathbf{P}) = A \in \Omega^{1,0}(M \times \mathbb{R}^k, \mathfrak{g}) \qquad \mbox{s.t.} \qquad \delta^{\rm vert}_A F^{\rm vert}(A) = 0 \end{array}$

Stacky Cauchy problem

♦ \exists map of stacks data_{Σ} : G**Sol**(M) → G**Data**(Σ) assigning to Yang-Mills solutions their initial data on Cauchy surface $\Sigma \subseteq M$

Def: The stacky Cauchy problem is well-posed if $data_{\Sigma}$ is a weak equivalence.

Theorem [Benini, AS, Schreiber: 1704.01378]

The stacky Yang-Mills Cauchy problem is well-posed if and only if the following hold true, for all \mathbb{R}^k in Cart:

- 1. For all $(\mathbf{A}^{\Sigma}, \mathbf{E}, \mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(\mathbb{R}^k)$, there exists (\mathbf{A}, \mathbf{P}) in $G\mathbf{Sol}(M)(\mathbb{R}^k)$ and iso $\mathbf{h}^{\Sigma} : \operatorname{data}_{\Sigma}(\mathbf{A}, \mathbf{P}) \to (\mathbf{A}^{\Sigma}, \mathbf{E}, \mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(\mathbb{R}^k)$.
- For any other iso h^{'Σ} : data_Σ(A', P') → (A^Σ, E, P^Σ) in GData(Σ)(ℝ^k), there exists unique iso h : (A, P) → (A', P') in GSol(M)(ℝ^k), such that h^{'Σ} ∘ data_Σ(h) = h^Σ.

! Note that this is stronger than Cauchy problem for gauge equivalence classes!

! Interesting smoothly \mathbb{R}^k -parametrized Cauchy problems! To the best of my knowledge, positive results only known for \mathbb{R}^0 [Chrusciel,Shatah; Choquet-Bruhat].

Alexander Schenkel

Summary and Outlook

Summary and Outlook

- ♦ Quantum gauge theories are **NOT** contained in the AQFT framework
- To capture crucial homotopical features of classical gauge theories, one needs "higher algebras" to formalize quantum gauge theories
 - ⇒ Homotopical AQFT
- Already very promising results:
 - ✓ Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
 - ✓ Toy-models of homotopical AQFT [Benini,AS:1610.06071]
 - ✓ Yang-Mills stack and stacky Cauchy problem [Benini,AS,Schreiber:1704.01378]
 - ✓ Operadic approach to AQFT [Benini,AS,Woike:1709.08657 & work in progress]
- ◊ Open problems/Work in progress:
 - 1. Construct proper examples of dynamical and quantized gauge theories
 - 2. What's the physics behind "higher algebras"?

Thanks for your attention.