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Outline

1. Explain why

AQFT is insufficient to describe gauge theories

2. Present ideas/observations indicating that the key to resolve this problem is

homotopical AQFT := homotopical algebra + AQFT

3. Discuss our results and inform you about the state-of-the-art of our
development of homotopical AQFT
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AQFT vs Gauge Theory
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AQFT on Lorentzian manifolds

� Basic idea (Locally Covariant QFT) [Brunetti,Fedenhagen,Verch; . . . ]

Loc
functor A // Alg

category of spacetimes category of algebras

 “Coherent assignment of observable algebras to spacetimes”

– A(M) = observables we can measure in M

– A(f) : A(M)→ A(M ′) = embedding of observables along f : M →M ′

� BFV axioms (motivated from physics)

Isotony: Causality: Time-slice:
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A(M)
mono−→ A(M ′) [A(M1),A(M2)] = {0} A(M)

iso−→ A(M ′)
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Local-to-global property

For every spacetime M , the global algebra A(M) can be “recovered” from the
algebras A(U) corresponding to suitable sub-spacetimes U ⊆M .

� Different ways to formalize this property:

1. Cosheaf property: A : Loc→ Alg is cosheaf (w.r.t. suitable topology)

� only true for extremely special covers ⇒ too strong condition

2. Additivity: A(M) ∼=
∨
α A(Uα) for suitable covers {Uα ⊆M} [Fewster; . . . ]

� true in examples � need to know A(M)

3. Universality: A(M) is isomorphic to Fredenhagen’s universal algebra
corresponding to {U ⊆M : open, causally compatible and U ∼= Rm}

� A determined by restriction A c© : Loc c© → Alg via left Kan extension

� true in examples [Lang] Loc c©

inclusion $$

A c©
//

��

Alg

Loc
A

<<
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Does U(1)-Yang-Mills theory fit into AQFT?

� Differential cohomology groups = gauge orbit spaces

Ĥ2(M) ∼=
{

principal U(1)-bundles P →M with connection A
}

{
gauge transformations

}

� Solution spaces of U(1)-Yang-Mills theory

F(M) :=
{
h ∈ Ĥ2(M) : δ curv(h) = 0

}

are Abelian Fréchet-Lie groups with natural presymplectic structure ωM

Theorem [Becker,AS,Szabo:1406.1514]

Weyl quantization of smooth Pontryagin dual of (F(M), ωM ) defines functor
A : Loc→ Alg which satisfies causality and time-slice, but violates isotony and
local-to-global properties.

NB: Similar results for S-duality invariant theory [Becker,Benini,AS,Szabo:1511.00316]

and also for less complete approaches based on A-fields or F -fields
[Sanders,Dappiaggi,Hack; Fewster,Lang; . . . ]
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What is the source of these problems?

1. Isotony fails because gauge theories carry topological charges

M M ′

top. charges in hole

H2(M ;Z) and Hm−2(M ;Z)

no top. charges

f : M →M ′

kills top. observables

2. Local-to-global property fails because we took gauge invariant observables

S1

I1

I2
Ĥ2(S1) ∼= U(1) Ĥ2(I1/2) ∼= 0

1. Violation of isotony is a physical feature, hence we have to accept that!

2. Violation of local-to-global property is an artifact of our description by gauge
invariant observables, hence we can improve that!
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Groupoids vs Gauge Orbit Spaces
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Groupoids of gauge fields

� Let’s consider for the moment gauge theory on M ∼= Rm

1. Gauge fields A ∈ Ω1(M, g)

2. Gauge transformations g ∈ C∞(M,G) acting as A / g = g−1Ag + g−1dg

� Groupoid of gauge fields on M

A

A′

A′′

g

g
′

g′′

G(M) := Ω1(M, g)
//
C∞(M,G) =

Two groupoids are “the same” not only when isomorphic, but also when weakly
equivalent  model category/homotopical algebra (à la Quillen)

� Non-redundant information encoded in the groupoid G(M)

1. Gauge orbit space π0(G(M)) = Ω1(M, g)
/
C∞(M,G)

2. Automorphism groups π1(G(M), A) = {g ∈ C∞(M,G) : A / g = A}

! Gauge invariant observables ignore the π1’s, hence are incomplete!
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Groupoids and local-to-global properties

� Groupoids of gauge fields satisfy very strong local-to-global property

Homotopy sheaf property

For all manifolds M and all open covers {Uα ⊆M}, the canonical map

G(M)
∼ // holim

(∏
α
G(Uα) //

//
∏
αβ

G(Uαβ)
//

//
//
∏
αβγ

G(Uαβγ) //
//

//

//
· · ·
)

is a weak equivalence in Grpd.

� Precise formulation of the familiar “gluing up to gauge transformation”
{(
{Aα}, {gαβ}

)
: Aβ |Uαβ = Aα|Uαβ / gαβ , gαβ gβγ = gαγ on Uαβγ

}

KS
1:1��{

gauge fields on M
}

� Crucial Point: Taking into account the groupoids of gauge fields, rather
than only the gauge orbit spaces, there are very strong homotopical
local-to-global properties for classical gauge theories!
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Cosimplicial observable algebras
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What are “function algebras” on groupoids?

� QFT needs quantized ‘algebras’ of functions on the ‘spaces’ of fields

� Space of fields F(M) is set (+ smooth structure)

 O(M) = C∞(F(M)) has the structure of an algebra

? Space of fields G(M) is groupoid (+ smooth structure)

 O(M) = “C∞(G(M))” = ? has which algebraic structure?

� Nerve construction N : Grpd→ sSet assigns the simplicial set

N(G(M)) =
(

Ω1(M, g) Ω1(M, g)× C∞(M,G)oo
oo · · ·oo

oo
oo

)

� Taking level-wise smooth functions gives cosimplicial algebra

O(M) =
(
C∞

(
Ω1(M, g)

) //
// C∞

(
Ω1(M, g)× C∞(M,G)

) //

//
// · · ·

)

NB: These constructions can be made mathematically precise!

For algebraic geometry, see e.g. [Toën: Champs affines].
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Relation to the BRST formalism and ghost fields

� Dual Dold-Kan correspondence gives equivalence cAlg � dgAlg≥0

⇒ Equivalent description of O(M) in terms of differential graded algebra

Odg(M) =
(
C∞

(
Ω1(M, g)

) d // C∞
(
Ω1(M, g)× C∞(M,G)

) d // · · ·
)

� Considering only infinitesimal gauge transformations C∞(M, g)

Odg(M)
van Est map

// C∞
(
Ω1(M, g)

)
︸ ︷︷ ︸

gauge field observables

⊗ ∧•C∞(M, g)∗︸ ︷︷ ︸
ghost field observables

The cosimplicial algebra O(M) (or equivalently our dg-algebra Odg(M)) describes
non-infinitesimal analogs C∞(M,G) of ghost fields C∞(M, g)

⇒ BRST formalism for finite gauge transformations
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Working definition for homotopical AQFT
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Working definition (intentionally imprecise)

A homotopical AQFT is a (weak) functor A : Loc→ dgAlg to the model
category of noncommutative dg-algebras, which satisfies the following axioms:

1. Causality: Given causally disjoint M1
f1−→M

f2←−M2, there exist a
(coherent) cochain homotopy λf1,f2 such that

[ · , · ]A(M) ◦
(
A(f1)⊗ A(f2)

)
= λf1,f2 ◦ d + d ◦ λf1,f2

2. Time-slice: Given Cauchy morphism f : M →M ′, there exists a (coherent)
homotopy inverse A(f)−1 of A(f).

3. Universality: A : Loc→ dgAlg is the homotopy left Kan extension of its
restriction A c© : Loc c© → dgAlg.

Rem: ‘Coherent’ in e.g. 1.) means that the homotopies for different commutations
of more than 2 observables (e.g. a b c→ a c b→ c a b vs a b c→ c a b)
coincide up to specified higher homotopies.

Precise definition requires operads [Benini,AS,Woike:1709.08657 & work in progress]

homotopical AQFT := AQFT∞-algebra + operadic universality
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Local-to-global property in Abelian gauge theory
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Universal global gauge theory observables

� For G = U(1) and M ∼= Rm, G(M) can be described by chain complex

Gchain(M) =
(

Ω1(M) C∞(M,U(1))
1

2πi d log
oo

)

� Smooth Pontryagin dual cochain complex of observables

O c©(M) :=
(

Ωm−1
c (M)

d // Ωmc;Z(M)
)

� Homotopy left Kan extension of O c© : Loc c© → Ch≥0

O(M) := hocolim
(
O c© : Loc c© ↓M −→ Ch≥0

)

Theorem [Benini,AS,Szabo:1503.08839]

1. For M ∼= Rm, O c©(M) and O(M) are naturally weakly equivalent.

2. For every M , O(M) weakly equivalent to dual Deligne complex on M .

� Crucial Point: Our homotopical version of “Fredenhagen’s universal
algebra” produces the correct global observables in Abelian gauge theory, in
contrast to the non-homotopical version [Dappiaggi,Lang; Fewster,Lang]!
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Toy-models of homotopical AQFT
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AQFT on structured spacetimes

� Basic idea [Benini,AS:1610.06071]

1. Consider AQFT A : Str→ Alg on category of spacetimes with extra geometric
structures, i.e. category fibered in groupoids π : Str→ Loc.

(π−1(M) is groupoid of structures over M , e.g. spin structures, gauge fields)

2. Regard A as a trivial homotopical AQFT A : Str→ dgAlg via embedding
Alg→ dgAlg of algebras into dg-algebras.

3. Perform homotopy right Kan extension

Str

π ""

A // dgAlg

Loc
hoUπA

::KS

to induce a nontrivial homotopical AQFT hoUπA on Loc.

� Physical interpretation: Homotopy right Kan extension turns the
background fields described by π−1(M) into observables in hoUπA(M).
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Properties of hoUπA

� Explicit description of degree 0 of hoUπA(M)

hoUπA(M)0 =
∏

S∈π−1(M)

A(S) 3
(
a : π−1(M) 3 S 7−→ a(S) ∈ A(S)

)

� Physical interpretation: Combination of classical gauge field observables
and quantum matter field observables!

Theorem [Benini,AS:1610.06071]

Assume that π : Str→ Loc is strongly Cauchy flabby. Then the homotopy right
Kan extension hoUπA : Loc→ dgAlg satisfies the causality and time-slice axioms
of homotopical AQFT. (Coherences just established in low orders.)

� First toy-models satisfying the new homotopical AQFT axioms!

(Proving universality is hard: hocolim’s in dgAlg are beyond our current technology.)
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Stack of non-Abelian Yang-Mills fields
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Yang-Mills stack

� Motivation: Prior to deformation quantization, we have to understand the
geometry of the groupoid of Yang-Mills solutions and the Cauchy problem

 Stacks ∼= presheaves of groupoids X on Cart satisfying descent [Hollander]

� Basic idea: Smooth structure on X is encoded by specifying groupoid
X(Rk) of all smooth maps Rk → X for all Rk in Cart (functor of points)

� ∃ abstract model categorical construction of the stack of non-Abelian
Yang-Mills solutions GSol(M) [Benini,AS,Schreiber:1704.01378]

� Explicit description of GSol(M) up to weak equivalence

GSol(M)(Rk) =





obj : smoothly Rk-parametrized Yang-Mills solutions (A,P)

mor : smoothly Rk-parametrized gauge transformations

h : (A,P) → (A′,P′)

� For M ∼= Rm even simpler in terms of vertical geometry on M × Rk → Rk

(A,P) = A ∈ Ω1,0(M × Rk, g) s.t. δvert
A F vert(A) = 0
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Stacky Cauchy problem

� ∃ map of stacks dataΣ : GSol(M)→ GData(Σ) assigning to Yang-Mills
solutions their initial data on Cauchy surface Σ ⊆M

Def: The stacky Cauchy problem is well-posed if dataΣ is a weak equivalence.

Theorem [Benini,AS,Schreiber:1704.01378]

The stacky Yang-Mills Cauchy problem is well-posed if and only if the following
hold true, for all Rk in Cart:

1. For all (AΣ,E,PΣ) in GData(Σ)(Rk), there exists (A,P) in GSol(M)(Rk)
and iso hΣ : dataΣ(A,P)→ (AΣ,E,PΣ) in GData(Σ)(Rk).

2. For any other iso h′Σ : dataΣ(A′,P′)→ (AΣ,E,PΣ) in GData(Σ)(Rk),
there exists unique iso h : (A,P)→ (A′,P′) in GSol(M)(Rk), such that
h′Σ ◦ dataΣ(h) = hΣ.

! Note that this is stronger than Cauchy problem for gauge equivalence classes!

! Interesting smoothly Rk-parametrized Cauchy problems! To the best of my
knowledge, positive results only known for R0 [Chrusciel,Shatah; Choquet-Bruhat].
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Summary and Outlook
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Summary and Outlook

� Quantum gauge theories are NOT contained in the AQFT framework

� To capture crucial homotopical features of classical gauge theories, one needs
“higher algebras” to formalize quantum gauge theories

⇒ Homotopical AQFT

� Already very promising results:

� Local-to-global property of observables [Benini,AS,Szabo:1503.08839]

� Toy-models of homotopical AQFT [Benini,AS:1610.06071]

� Yang-Mills stack and stacky Cauchy problem [Benini,AS,Schreiber:1704.01378]

� Operadic approach to AQFT [Benini,AS,Woike:1709.08657 & work in progress]

� Open problems/Work in progress:

1. Construct proper examples of dynamical and quantized gauge theories

2. What’s the physics behind “higher algebras”?

Thanks for your attention.
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