The tensor journal club goes vir tu al!

The Wigner semicircle law for tensors

Răzvan Gurău

1 Introduction

2 Tensors (real and symmetric)

3 The generalized Wigner law

4 Open problems

The resolvent of a matrix (operator on a Hilbert space) T is

$$\frac{1}{w-T}$$
, $w \in \mathbb{C}$

whenever it exists.

The resolvent of a matrix (operator on a Hilbert space) T is

$$\frac{1}{w-T}$$
, $w \in \mathbb{C}$

whenever it exists.

When does $(w - T)^{-1}$ not exist?

The resolvent of a matrix (operator on a Hilbert space) *T* is

$$\frac{1}{w-T}$$
, $w \in \mathbb{C}$

whenever it exists.

When does $(w - T)^{-1}$ not exist?

Finite dimension – (λ, v) eigenpair $Tv = \lambda v \Rightarrow v \in \text{Ker}(\lambda - T)$

The resolvent of a matrix (operator on a Hilbert space) *T* is

$$\frac{1}{w-T}$$
, $w \in \mathbb{C}$

whenever it exists.

When does $(w - T)^{-1}$ not exist?

Finite dimension – (λ, v) eigenpair $Tv = \lambda v \Rightarrow v \in \text{Ker}(\lambda - T)$

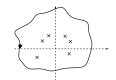
The singular locus of the resolvent is the *spectrum of T*

WHY IS THE RESOLVENT USEFUL?

Spectral theorem:

$$f(T) = \int_{\gamma} \frac{dw}{2\pi i} f(w) \frac{1}{w - T}$$

 $\boldsymbol{\gamma}$ simple curve encircling the spectrum.

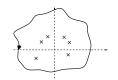


WHY IS THE RESOLVENT USEFUL?

Spectral theorem:

$$f(T) = \int_{\gamma} \frac{dw}{2\pi i} f(w) \frac{1}{w - T}$$

 γ simple curve encircling the spectrum.



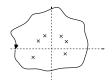
Single trace invariants
$$\frac{1}{N} \text{Tr} \big[f(T) \big] = \int_{\gamma} \frac{dw}{2\pi i} f(w) \underbrace{\frac{1}{N} \text{Tr} \left[\frac{1}{w - T} \right]}_{\omega(w; T) \text{ function}}$$

WHY IS THE RESOLVENT USEFUL?

Spectral theorem:

$$f(T) = \int_{\gamma} \frac{dw}{2\pi i} f(w) \frac{1}{w - T}$$

 γ simple curve encircling the spectrum.



Single trace invariants
$$\frac{1}{N} \text{Tr} \big[f(T) \big] = \int_{\gamma} \frac{dw}{2\pi \imath} f(w) \underbrace{\frac{1}{N} \text{Tr} \bigg[\frac{1}{w - T} \bigg]}_{\omega(w;T) \text{ function}}$$

Finite dimension – $\omega(w; T)$ has poles of order 1 at the eigenvalues of T with residues the multiplicities.

Take *T* a real symmetric random matrix, distributed on GOE

$$d
u(T) = \left(\prod_{a \le b} dT_{ab}\right) \exp\left\{-\frac{N}{4} \sum_{a,b} T_{ab}^2\right\}$$

Take T a real symmetric random matrix, distributed on GOE

$$\omega(w) = \lim_{N \to \infty} \int d\nu(T) \ \omega(w;T) = \frac{w}{2} \left(1 - \sqrt{1 - \frac{4}{w^2}} \right) \equiv w^{-1} \underbrace{T_2(w^{-2})}_{T_2 = 1 + \sigma(T)^2}.$$

Take T a real symmetric random matrix, distributed on GOE

$$\omega(w) = \lim_{N \to \infty} \int d\nu(T) \ \omega(w; T) = \frac{w}{2} \left(1 - \sqrt{1 - \frac{4}{w^2}} \right) \equiv w^{-1} \underbrace{T_2(w^{-2})}_{T_2 = 1 + \mu(T_2)^2}$$

Spectral representation: cut at [-2, 2] and

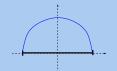
$$\omega(w) = \int_{-2}^{2} d\lambda \, \frac{\rho(\lambda)}{w - \lambda} \,, \qquad \rho(\lambda) = \frac{1}{2\pi} \sqrt{4 - \lambda^2}$$

Take T a real symmetric random matrix, distributed on GOE

$$\omega(w) = \lim_{N \to \infty} \int d\nu(T) \ \omega(w; T) = \frac{w}{2} \left(1 - \sqrt{1 - \frac{4}{w^2}} \right) \equiv w^{-1} \underbrace{T_2(w^{-2})}_{T_2 = 1 + u(T_2)^2}.$$

Spectral representation: cut at [-2, 2] and

$$\omega(w) = \int_{-2}^{2} d\lambda \, \frac{\rho(\lambda)}{w - \lambda} \,, \qquad \rho(\lambda) = \frac{1}{2\pi} \sqrt{4 - \lambda^2}$$



$$\lim_{N\to\infty}\int d\nu(T)\,\frac{1}{N}\mathrm{Tr}[f(T)]=\int d\lambda\,f(\lambda)\,\rho(\lambda)$$

THE GAUSSIAN 2-SPIN MODEL

For $\phi_a \in \mathbb{R}^N$ Gaussian field:

$$\mathcal{Z}(w;T) = \int [d\phi] \exp\left\{-\underbrace{\frac{1}{2}\phi_a\left(\delta_{ab} - \frac{T_{ab}}{w}\right)\phi_b}_{S(\phi)}\right\} = \frac{1}{\sqrt{\det\left(1 - \frac{T}{w}\right)}}$$

THE GAUSSIAN 2-SPIN MODEL

For $\phi_a \in \mathbb{R}^N$ Gaussian field:

$$\mathcal{Z}(w;T) = \int [d\phi] \exp\left\{-\underbrace{\frac{1}{2}\phi_a\left(\delta_{ab} - \frac{T_{ab}}{w}\right)\phi_b}_{S(\phi)}\right\} = \frac{1}{\sqrt{\det\left(1 - \frac{T}{w}\right)}}$$

The resolvent is the two point function of the Gaussian 2-spin model

$$\omega(w;T) = \frac{w^{-1}}{\mathcal{Z}(w;T)} \int [d\phi] \frac{\phi^2}{N} e^{-S(\phi)} \quad \omega(w;T) = \frac{1}{w} - \frac{2}{N} \frac{d}{dw} \ln \mathcal{Z}(w;T)$$

1 Introduction

2 Tensors (real and symmetric)

3 The generalized Wigner law

4 Open problems

TENSORS AND EIGENVALUES

T real symmetric tensor of order p has N^p real components

$$T_{a_1...a_p} = T_{a_{\sigma(1)}...a_{\sigma(p)}}, T_{b_1...b_p} = \sum_{a_1...a_p} O_{a_1b_1} \dots O_{a_pb_p} T_{a_1...a_p}$$
$$\left(Tx^p = \sum_{a_1...a_p} T_{a_1...a_p} x_{a_1} \dots x_{a_p}, Tx^{p-1} = \sum_{a_2...a_p} T_{a_1...a_p} x_{a_2} \dots x_{a_p}\right)$$

Tensors and Eigenvalues

T real symmetric tensor of order p has N^p real components

$$T_{a_1...a_p} = T_{a_{\sigma(1)}...a_{\sigma(p)}} , \qquad T_{b_1...b_p} = \sum_{a_1...a_p} O_{a_1b_1} \dots O_{a_pb_p} T_{a_1...a_p}$$

$$\left(Tx^p = \sum_{a_1...a_p} T_{a_1...a_p} x_{a_1} \dots x_{a_p}, \ Tx^{p-1} = \sum_{a_2...a_p} T_{a_1...a_p} x_{a_2} \dots x_{a_p} \right)$$

Eigenvectors x_i – critical points of $\{Tx^p|x^2=1\}$. Eigenvalues $\lambda_i=Tx_i^p$

TENSORS AND EIGENVALUES

T real symmetric tensor of order p has N^p real components

$$T_{a_1...a_p} = T_{a_{\sigma(1)}...a_{\sigma(p)}} , \qquad T_{b_1...b_p} = \sum_{a_1...a_p} O_{a_1b_1} \dots O_{a_pb_p} T_{a_1...a_p}$$

$$\left(Tx^p = \sum_{a_1...a_p} T_{a_1...a_p} x_{a_1} \dots x_{a_p}, \ Tx^{p-1} = \sum_{a_2...a_p} T_{a_1...a_p} x_{a_2} \dots x_{a_p} \right)$$

Eigenvectors
$$x_i$$
 – critical points of $\{Tx^p|x^2=1\}$. Eigenvalues $\lambda_i=Tx_i^p$

$$(\lambda, x)$$
 eigenpair of T iff $Tx^{p-1} = \lambda x$, $x^2 = 1$

Tensors and Eigenvalues

T real symmetric tensor of order p has N^p real components

$$T_{a_1...a_p} = T_{a_{\sigma(1)}...a_{\sigma(p)}}, \qquad T_{b_1...b_p} = \sum_{a_1...a_p} O_{a_1b_1} \dots O_{a_pb_p} T_{a_1...a_p}$$

$$\left(Tx^p = \sum_{a_1...a_p} T_{a_1...a_p} x_{a_1} \dots x_{a_p}, \ Tx^{p-1} = \sum_{a_2...a_p} T_{a_1...a_p} x_{a_2} \dots x_{a_p}\right)$$

Eigenvectors
$$x_i$$
 – critical points of $\{Tx^p|x^2=1\}$. Eigenvalues $\lambda_i=Tx_i^p$

$$(\lambda, x)$$
 eigenpair of T iff $Tx^{p-1} = \lambda x$, $x^2 = 1$

Real symmetric tensors have:

- at least two real eigenvalues (a continuous function on a compact set with no boundary attains its extrema which are critical points)
- at most $[(p-1)^N-1]/(p-2)$ complex eigenvalues

TRACE INVARIANTS

Invariants in correspondence with p valent graphs \mathcal{B} :

$$\mathsf{Tr}_{\mathcal{B}}(\mathit{T}) = \sum_{\{a\}} \prod_{\mathit{v} \ \mathsf{vertices}} \mathit{T}_{a_1^{\mathit{v}} \ldots a_p^{\mathit{v}}} \prod_{(\mathit{v},\mathit{w}) \ \mathsf{edges}} \delta_{a_i^{\mathit{v}} a_i^{\mathit{w}}}$$

Many graphs with *n* vertices...

TRACE INVARIANTS

Invariants in correspondence with p valent graphs \mathcal{B} :

$$\mathsf{Tr}_{\mathcal{B}}(T) = \sum_{\{a\}} \prod_{v \text{ vertices}} \mathcal{T}_{a_1^v \dots a_p^v} \prod_{(v,w) \text{ edges}} \delta_{a_i^v a_i^w}$$

Many graphs with *n* vertices...

Balanced trace invariant I_n – sum connected rooted maps with weight 1

TRACE INVARIANTS

Invariants in correspondence with p valent graphs \mathcal{B} :

$$\mathsf{Tr}_{\mathcal{B}}(T) = \sum_{\{a\}} \prod_{v \text{ vertices}} \mathcal{T}_{a_1^v \dots a_p^v} \prod_{(v,w) \text{ edges}} \delta_{a_i^v a_i^w}$$

Many graphs with *n* vertices...

Balanced trace invariant I_n – sum connected rooted maps with weight 1

$$p = 2$$
 balanced invariant $I_n = Tr(T^n)$

 $p \ge 3$ more complicated

$$I_2(T) = 3 \sum_{a,b} T_{aab} T_{aab} + 2 \sum_{a,b,c} T_{abc} T_{abc}$$

The p-spin model, $p \ge 3$

Partition function of the Gaussian *p*–spin model:

$$\mathcal{Z}(w,T) = \int [d\phi]e^{-S(\phi)}, \qquad S(\phi) = \frac{1}{2}\phi^2 - \frac{1}{p w} \underbrace{\sum_{\{a\}} T_{a_1...a_p}\phi_{a_1}\ldots\phi_{a_p}}$$

The p-spin model, $p \ge 3$

Partition function of the Gaussian *p*–spin model:

$$\mathcal{Z}(w,T) = \int [d\phi]e^{-S(\phi)}, \qquad S(\phi) = \frac{1}{2}\phi^2 - \frac{1}{p \ w} \underbrace{\sum_{\{a\}} T_{a_1...a_p}\phi_{a_1}\ldots\phi_{a_p}}_{T\phi^p}$$

Directional Borel Leroy sum of its perturbative series $w = |w|e^{i\psi}$:

$$\mathcal{Z}_{\pm}(w;T) = \int_{e^{\mathrm{i}\,\theta} \pm \,\mathbb{R}^N} [d\phi] \; e^{-S(\phi)} \;, \qquad \theta_{\pm} = \frac{1}{p} \left(\psi \mp \frac{\pi}{2}\right)$$

Cuts along \mathbb{R} , dominated by the largest and smallest real eigenvalues of T

$$\mathcal{Z}_+(y;T) - \mathcal{Z}_-(y;T) \sim egin{cases} e^{-rac{p-2}{2p}\left(rac{y}{\lambda_{\mathsf{max}}}
ight)^{rac{2}{p-2}}} + \dots \;, \qquad y > 0 \ e^{-rac{p-2}{2p}\left(rac{y}{\lambda_{\mathsf{min}}}
ight)^{rac{2}{p-2}}} + \dots \;, \qquad y < 0 \end{cases}.$$

THE TENSOR RESOLVENT

The tensor resolvent – two point function of the *p*–spin model

$$\omega(w;T) = \frac{w^{-1}}{\mathcal{Z}(w;T)} \int [d\phi] \frac{\phi^2}{N} e^{-S(\phi)} , \quad \omega(w;T) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \ln \mathcal{Z}(w;T)$$

THE TENSOR RESOLVENT

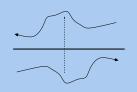
The tensor resolvent – two point function of the p–spin model

$$\omega(w;T) = \frac{w^{-1}}{\mathcal{Z}(w;T)} \int [d\phi] \frac{\phi^2}{N} e^{-S(\phi)} , \quad \omega(w;T) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \ln \mathcal{Z}(w;T)$$

Spectral theorem for balanced invariants:

$$I(T) = \sum a_n \frac{I_n(T)}{N} , \quad h_l(w) = \sum_n a_n w^n$$

$$I(T) = \int_{\gamma} \frac{dw}{2\pi i} h_l(w) \omega(w; T)$$



1 Introduction

2 Tensors (real and symmetric)

The generalized Wigner law

4 Open problems

Take T a real symmetric random tensor, distributed on GOE

$$d\nu(T) = \left(\prod_{a_1 \leq \dots \leq a_p} dT_{a_1 \dots a_p}\right) \exp\left\{-\frac{N^{p-1}}{2p} \sum_{a_i} T_{a_1 \dots a_p}^2\right\}$$

Take T a real symmetric random tensor, distributed on GOE

$$\omega(w) = \lim_{N \to \infty} \int d\nu(T) \ \omega(w; T) = w^{-1} \underbrace{T_p(w^{-2})}_{T_p = 1 + u(T_p)^p} \ .$$

Take T a real symmetric random tensor, distributed on GOE

$$\omega(w) = \lim_{N \to \infty} \int d\nu(T) \ \omega(w; T) = w^{-1} \underbrace{T_p(w^{-2})}_{T_p = 1 + u(T_p)^p} \ .$$

Spectral representation: cut at $[-p^{p/2}/(p-1)^{(p-1)/2}, p^{p/2}/(p-1)^{(p-1)/2}]$ and

$$\omega(w) = \int_{cut} d\lambda \; \frac{\rho(\lambda)}{w - \lambda} \; , \qquad \rho(\lambda) = |\lambda| P_{\rho}(\lambda^2)$$

$$P_p(x) = \sum_{k=1}^{p-1} \Lambda_{k,p} x^{\frac{k-p}{p}}_{p-1} F_{p-2} \left(\left\{ 1 - \frac{1+j}{p-1} + \frac{k}{p} \right\}_{j=1}^{p-1}, \left\{ 1 + \frac{k-j}{p} \right\}_{j=1}^{p-1}; \frac{(p-1)^{p-1}}{p^p} x \right),$$

$$\Lambda_{k,p} = \frac{1}{(p-1)^{3/2}} \sqrt{\frac{p}{2\pi}} \left(\frac{(p-1)^{p-1}}{p^p} \right)^{\frac{k}{p}} \frac{\prod_{j=1,\dots,p-1}^{j\neq k} \Gamma\left(\frac{j-k}{p}\right)}{\prod_{j=1}^{p-1} \Gamma\left(\frac{j+1}{p}-\frac{k}{p}\right)} \ .$$

Take *T* a real symmetric random tensor, distributed on GOE

$$\omega(w) = \lim_{N \to \infty} \int d\nu(T) \ \omega(w; T) = w^{-1} \underbrace{T_p(w^{-2})}_{T_p = 1 + u(T_p)^p} \ .$$

Spectral representation: cut at $[-p^{p/2}/(p-1)^{(p-1)/2}, p^{p/2}/(p-1)^{(p-1)/2}]$ and

$$\omega(w) = \int_{cut} d\lambda \, \frac{\rho(\lambda)}{w - \lambda} \,, \qquad \rho(\lambda) = |\lambda| P_{\rho}(\lambda^2)$$

$$P_p(x) = \sum_{k=1}^{p-1} \Lambda_{k,p} x^{\frac{k-p}{p}} {}_{p-1} F_{p-2} \left(\left\{ 1 - \frac{1+j}{p-1} + \frac{k}{p} \right\}_{j=1}^{p-1}, \left\{ 1 + \frac{k-j}{p} \right\}_{\substack{j=1 \ j \neq k}}^{p-1}; \frac{(p-1)^{p-1}}{p^p} x \right),$$

$$\Lambda_{k,p} = \frac{1}{(p-1)^{3/2}} \sqrt{\frac{p}{2\pi}} \left(\frac{(p-1)^{p-1}}{p^p} \right)^{\frac{k}{p}} \frac{\prod_{j=1}^{j\neq k} \dots p-1}{\prod_{i=1}^{p-1} \Gamma\left(\frac{j+1}{p-1} - \frac{k}{p}\right)}.$$

$$\lim_{N\to\infty}\int d\nu(T)\ I(T)=\int d\lambda\ h_I(\lambda)\ \rho(\lambda)$$

The p=3 case

$$\omega(w) = \frac{i}{3^{1/2}} \left[\left(\sqrt{1 - \frac{3^3/2^2}{w^2}} - i \frac{3^{3/2}/2}{w} \right)^{1/3} - \left(\sqrt{1 - \frac{3^3/2^2}{w^2}} + i \frac{3^{3/2}/2}{w} \right)^{1/3} \right],$$

$$\alpha(\lambda) = \frac{1}{3^{1/2}} \left[\left(\frac{3^3}{w^2} \right)^{1/6} \left[\left(\frac{1}{1 + \sqrt{1 - \frac{\lambda^2}{w^2}}} \right)^{1/3} - \left(\frac{1}{1 - \sqrt{1 - \frac{\lambda^2}{w^2}}} \right)^{1/3} \right]$$

$$\rho(\lambda) = \frac{1}{2\pi|\lambda|^{1/3}} \left(\frac{3^3}{2^2}\right)^{1/6} \left[\left(1 + \sqrt{1 - \frac{\lambda^2}{3^3/2^2}}\right)^{1/3} - \left(1 - \sqrt{1 - \frac{\lambda^2}{3^3/2^2}}\right)^{1/3} \right],$$

How it works

$$\int d\nu(T) \,\omega(w;T) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \int d\nu(T) \,\ln \mathcal{Z}(w;T)$$

How it works

$$\int d\nu(T) \,\omega(w;T) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \int d\nu(T) \,\ln \mathcal{Z}(w;T)$$

quenched \simeq annealed

$$\int d\nu(T) \ln \mathcal{Z}(w;T) = \ln \int d\nu(T) \, \mathcal{Z}(w;T)$$

How it works

$$\int d\nu(T) \,\omega(w;T) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \int d\nu(T) \,\ln \mathcal{Z}(w;T)$$

quenched \simeq annealed

$$\int d\nu(T) \, \ln \mathcal{Z}(w;T) = \ln \int d\nu(T) \, \mathcal{Z}(w;T)$$

Annealed is

$$\int [dT][d\phi] \exp \left\{ -\frac{N^{p-1}}{2p} \sum T_{a_1...a_p}^2 - \frac{1}{2}\phi^2 + \frac{1}{p \, w} T \phi^p \right\}$$

integrate out T

SADDLE POINT

$$\omega(w) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \ln \int d\nu(T) \mathcal{Z}(w; T)$$

$$\int d\nu(T)\mathcal{Z}(w;T) \sim \int d\rho \ e^{Nf(\rho)} \qquad f(\rho) = \ln \rho - \frac{1}{2}\rho^2 + \frac{1}{2\rho w}\rho^{2\rho}$$

Resolvent is $\omega(w)=w^{-1}\rho_0^2$ with ρ_0 dominant saddle point.

SADDLE POINT

$$\omega(w) = \frac{1}{w} - \frac{p}{N} \frac{d}{dw} \ln \int d\nu(T) \mathcal{Z}(w; T)$$

$$\int d\nu(T)\mathcal{Z}(w;T) \sim \int d\rho \ e^{Nf(\rho)} \qquad f(\rho) = \ln \rho - \frac{1}{2}\rho^2 + \frac{1}{2pw}\rho^{2p}$$

Resolvent is $\omega(w) = w^{-1}\rho_0^2$ with ρ_0 dominant saddle point.

Saddle point equations

$$f'(\rho) = \frac{1}{\rho} \left(1 - \rho^2 + \frac{1}{w^2} \rho^{2p} \right) \Rightarrow \rho_0^2 = T_p(w^{-2})$$

THE SPIKED MODEL AND THE DETECTION THRESHOLD

Signal + Gaussian noise:

$$A_{a_1...a_p} = \frac{b}{N^{\frac{p}{2}-1}} v_{a_1} ... v_{a_p} + T_{a_1...a_p} ,$$

with v a fixed vector in \mathbb{R}^N with $v^2 = 1$ and T GOE.

THE SPIKED MODEL AND THE DETECTION THRESHOLD

Signal + Gaussian noise:

$$A_{a_1...a_p} = \frac{b}{N^{\frac{p}{2}-1}} v_{a_1} \dots v_{a_p} + T_{a_1...a_p} ,$$

with v a fixed vector in \mathbb{R}^N with $v^2 = 1$ and T GOE.

For what value of *b* is the spike detectable?

THE SPIKED MODEL AND THE DETECTION THRESHOLD

Signal + Gaussian noise:

$$A_{a_1...a_p} = \frac{b}{N^{\frac{p}{2}-1}} v_{a_1} ... v_{a_p} + T_{a_1...a_p}$$
,

with v a fixed vector in \mathbb{R}^N with $v^2 = 1$ and T GOE.

For what value of *b* is the spike detectable?

$$b_t = \frac{(p-1)^{p/2}}{(p-2)^{(p-2)/2}}$$

at b_t the largest non removable singularity of the resolvent jumps from $p^{p/2}/(p-1)^{(p-1)/2}$ to $p^{p/2}$.

SADDLE POINT REVISITED

$$\begin{split} \omega(w) &= \frac{1}{w} - \frac{p}{N} \, \frac{d}{dw} \ln \int d\theta d\rho \; e^{N\!f(\theta,\rho)} \\ f(\theta,\rho) &= \ln(\sin\theta) + \ln\rho - \frac{1}{2}\rho^2 + \frac{b}{wp} \, \rho^p \cos^p\theta + \frac{1}{2pw^2}\rho^{2p} \; . \end{split}$$

Resolvent is $\omega(w) = \frac{1}{w} \rho_{\star}^2$ with \star the dominant saddle point

SADDLE POINT REVISITED

$$\begin{split} \omega(w) &= \frac{1}{w} - \frac{p}{N} \, \frac{d}{dw} \ln \int d\theta d\rho \; e^{N\!f(\theta,\rho)} \\ f(\theta,\rho) &= \ln(\sin\theta) + \ln\rho - \frac{1}{2}\rho^2 + \frac{b}{wp} \, \rho^p \cos^p\theta + \frac{1}{2pw^2} \rho^{2p} \; . \end{split}$$

Resolvent is $\omega(w) = \frac{1}{w}\rho_{\star}^2$ with \star the dominant saddle point

Saddle point equations:

$$\partial_{\theta} f = \frac{\cos \theta}{\sin \theta} - \frac{b}{w} \rho^{p} \cos^{p-1} \theta \sin \theta \; , \quad \partial_{\rho} f = \frac{1}{\rho} \left(1 - \rho^{2} + \frac{b}{w} \rho^{p} \cos^{p} \theta + \frac{1}{w^{2}} \rho^{2p} \right) \; ,$$

Two solutions $\theta_0 = \pi/2$, $\rho_0^2 = T_p(w^{-2})$ and (θ_1, ρ_1^2) with $\theta_1 \neq \pi/2$.

SADDLE POINT REVISITED

$$\begin{split} \omega(w) &= \frac{1}{w} - \frac{p}{N} \, \frac{d}{dw} \ln \int d\theta d\rho \; e^{N\!f(\theta,\rho)} \\ f(\theta,\rho) &= \ln(\sin\theta) + \ln\rho - \frac{1}{2}\rho^2 + \frac{b}{wp} \, \rho^p \cos^p\theta + \frac{1}{2pw^2} \rho^{2p} \; . \end{split}$$

Resolvent is $\omega(w) = \frac{1}{w} \rho_{\star}^2$ with \star the dominant saddle point

Saddle point equations:

$$\partial_{\theta} f = \frac{\cos \theta}{\sin \theta} - \frac{b}{w} \rho^{p} \cos^{p-1} \theta \sin \theta \; , \; \; \partial_{\rho} f = \frac{1}{\rho} \left(1 - \rho^{2} + \frac{b}{w} \rho^{p} \cos^{p} \theta + \frac{1}{w^{2}} \rho^{2p} \right) \; ,$$

Two solutions $\theta_0 = \pi/2$, $\rho_0^2 = T_p(w^{-2})$ and (θ_1, ρ_1^2) with $\theta_1 \neq \pi/2$.

At b_t the saddle point (θ_1, ρ_1^2) becomes dominant at the largest non removable singularity of $\omega(w)$.

1 Introduction

2 Tensors (real and symmetric)

3 The generalized Wigner law

4 Open problems

PROBLEM 1: SPIKED MELONS?

Quenched is

$$\int [dT] \exp\left\{-\frac{N^{p-1}}{2p}\sum T_{a_1...a_p}^2\right\} \ln\left(\int [d\phi] \exp\left\{-\frac{1}{2}\phi^2 + \frac{1}{p w}T\phi^p\right\}\right)$$

PROBLEM 1: SPIKED MELONS?

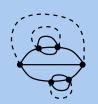
Quenched is

$$\int [dT] \exp\left\{-\frac{N^{p-1}}{2p}\sum T_{a_1...a_p}^2\right\} \ln\left(\int [d\phi] \exp\left\{-\frac{1}{2}\phi^2 + \frac{1}{p\,w}T\phi^p\right\}\right)$$

Feynman expand in $\phi \to \text{maps}$ Logarithm $\to \text{connected maps}.$

$$\int [dT], N \to \infty \to \text{melons}, \text{ each brings 1}.$$

$$\omega(w) \rightarrow$$
 generating function of rooted melons.



PROBLEM 1: SPIKED MELONS?

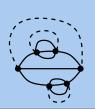
Quenched is

$$\int [dT] \exp\left\{-\frac{N^{p-1}}{2p}\sum T_{a_1...a_p}^2\right\} \ln\left(\int [d\phi] \exp\left\{-\frac{1}{2}\phi^2 + \frac{1}{p\,w}T\phi^p\right\}\right)$$

Feynman expand in $\phi \to \text{maps}$ Logarithm $\to \text{connected maps}.$

$$\int [dT], N \to \infty \to \text{melons}, \text{ each brings 1}.$$

 $\omega(w) \rightarrow$ generating function of rooted melons.



- build the graphical representation for the spiked model.
- what is b_t in this language?

Problem 2: Best rank 1 approximation

The real eigenpair with maximal eigenvalue yields the best rank one approximation of ${\cal T}$

$$\inf_{\alpha,x} \left\{ ||T - \alpha x^{\otimes p}||_F \middle| x^2 = 1 \right\}$$

Substituting $T \to \lambda v^{\otimes p}$ in any invariant \mathcal{B}_n with n vertices $\mathrm{Tr}_{\mathcal{B}_n}(T) = \lambda^n$

PROBLEM 2: BEST RANK 1 APPROXIMATION

The real eigenpair with maximal eigenvalue yields the best rank one approximation of ${\cal T}$

$$\inf_{\alpha,x} \left\{ ||T - \alpha x^{\otimes p}||_F \middle| x^2 = 1 \right\}$$

Substituting $T \to \lambda v^{\otimes p}$ in any invariant \mathcal{B}_n with n vertices $\mathrm{Tr}_{\mathcal{B}_n}(T) = \lambda^n$

For
$$p = 2$$

$$Tr(T^n) \sim \lambda^n + small$$

Is for $p \ge 3$

$$\operatorname{Tr}_{\mathcal{B}_n}(T) \sim \lambda^n + \operatorname{small}$$
?

PROBLEM 3: RECONSTRUCT THE SIGNAL

Identify the signal v in the spiked model

$$A_{a_1...a_p} = \frac{b}{N^{\frac{p}{2}-1}} v_{a_1} \dots v_{a_p} + T_{a_1...a_p} ,$$

for $b > b_t$