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Motivations

Matrix models → random surfaces.
large N expansion indexed by the genus g ;
planar sector → Brownian sphere / Liouville Quantum Gravity at criticality;
higher-genus contributions included in a double-scaling.

Tensor models → higher-dimensions.

large N expansion indexed by the Gurau degree ω;
ω = 0 sector → melon diagrams → continuous random tree / branched polymers at
criticality;
ω > 0 contributions included in a double-scaling.

Hybrid situation of large D multi-matrix models: [Ferrari ’17; Ferrari, Rivasseau, Valette ’17;...]

large collection of D N × N matrices, viewed as a D × N × N tensor;

generate decorated surfaces;

large N → genus expansion;

large D → planar sector dominated by melon diagrams → branched polymers.

How do higher genus contributions behave? Is it possible to escape the universality
class of branched polymers in a suitable multiple-scaling limit?
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1. The model and its double-scaling limit
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Model

[Ferrari ’17]

F(λ) = log

∫
[dX ] e−S[X ,X†]

S [X ,X †] = ND

(
Tr
[
X †µXµ

]
− λ

2
D Tr

[
X †µXνX

†
µXν

])

Xµ N × N complex matrix, µ ∈ {1, . . . ,D};
For all O ∈ O(D), and UL,UR ∈ U(N): Xµ → X ′µ = Oµµ′U(L)Xµ′U

†
(R)

Propagator and vertex:

Xµ1a1b1 Xµ3a3b3
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R

L

Feynman graphs → ribbon graphs / quadrangulations decorated by O(D)-loops.
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Double asymptotic expansion at large N and large D:

F(λ) =
∑
g∈N

N2−2g
∑
`∈N

D1+g− `
2Fg,`(λ)

where the grade ` ∈ N is defined by

`

2
= 1 + g +

v

2
− ϕ

Example. g = 1, v = 4, ϕ = 4 ⇒ ` = 0.

Relation to familiar combinatorial quantities in tensor models:

ω − g =
`

2
= gL + gR
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Double-scaling

F(λ) =
∑
g∈N

N2−2g
∑
`∈N

D1+g− `
2Fg,`(λ) = D2

∑
g∈N

(
N√
D

)2−2g ∑
`∈N

D−
`
2Fg,`(λ)

Introduce a new double-scaling parameter M := N√
D

:

F (0)(M, λ) := lim
N,D→∞
M<∞

1

D2
F(λ) =

∑
g≥0

M2−2gFg,0(λ)

1 Characterization of ` = 0 graphs?

2 Critical behaviour of Fg,0(λ)?

3 Triple-scaling by tuning simultaneously λ→ λc and M →∞?

For convenience, we will focus on the two-point function:

G(0)(λ) ≡ N

D

〈
Tr
[
X †µXµ

]〉
=
∑
g∈N

Gg (λ)M2−2g

with Gg (λ) = #{rooted ` = 0 graphs of genus g}.
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2. Recursive characterization of ` = 0 graphs
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Methodology

Same as in enumeration of Feynman graphs of fixed degree ω.
[Gurau, Schaeffer ’13; Fusy, Tanasa ’15]

Organize the Feynman diagrams into equivalent classes, modulo insertion/deletion
of infinite families of subgraphs that do not change `.

This defines the notion of scheme SG of a Feynman graph G .

Classify the schemes with ` = 0, order by order in the genus g .

The two relevant families of subgraphs in our context are: two-point melon subgraphs
and four-point ladder diagrams.

Interesting feature: in contrast to the construction of graphs of fixed degree ω, the
construction of ` = 0 graphs of fixed genus g will be entirely recursive.
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Melons

−→

If g(G) = 0 = `(G), then ω = g + `
2

= 0 and therefore G is melonic.

Moreover, melonic insertions/deletions preserve both ` and g → consider graphs up
to melonic insertions.

Generating function of two-point melonic graphs: [Bonzom, Gurau, Riello, Rivasseau ’11...]

T (λ) = 1 + λ2 T (λ)4

Develops a square-root singularity at the critical value λc = (33/44)1/2:

T (λ) ≈
λ→λ−c

1

3

(
4−

√
8

3

√
1− λ2

λ2
c

)
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Dipoles

L

R

N− dipole L− dipole R− dipole

Topological visualisation

N− dipole
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Ladders and ladder-vertices

· · ·

(even)

←→ Ne ←→

(odd)

←→ ←→No· · ·

· · · ←→ ←→L

· · · ←→ ←→R

←→ ←→B· · ·

N or B

` and g are invariant under addition/removal of rungs in a ladder of a given type.
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Schemes

Definition

The scheme SG of a (rooted, connected) graph G is the graph obtained by:

replacing any melonic 2-point function by a propagator;

replacing any maximal ladder by the ladder-vertex of the corresponding type.

Proposition

If SG1 = SG2 , then:
g(G1) = g(G2) and `(G1) = `(G2).

Theorem

Any ` = 0 scheme of genus g can be reconstructed from ` = 0 schemes of genus g ′ < g.

⇒ straightforward (though quickly impractical) algorithm to generate all ` = 0 schemes
of fixed genus. To be contrasted with classification of schemes of fixed degree ω.
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` = 0 scheme of genus 0

L R

L

R

Represents all melonic two-point functions.
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` = 0 schemes of genus 1

∃ two 2PI schemes

No

S2S1

Ne

∃ sixteen 2PR schemes

N or B or...
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` = 0 schemes of genus g ≥ 2

Generating 2PI schemes

N
g − 1 g

Generating 2PR schemes

N or B or ...
2PI

g g

g2 < g g = g1 + g2

N or B or ...

g1 < g
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3. Triple-scaling limit of the connected generating function
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Connected generating function

G(0)(λ) =
∑
g∈N

Gg (λ)M2−2g

with Gg (λ) = #{rooted ` = 0 graphs of genus g}.

Decompose Gg into a sum over a finite number of schemes:

Gg (λ) =
∑

`=0 scheme S

ĜS(λ)

Still too hard to resum all schemes of genus g .

Focus on the subclass of schemes that contribute to the dominant singularity of Gg
→ dominant schemes.

Singularities can only arise from the resummation of melon and ladder diagrams.
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Dominant schemes

←→ λ2T (λ)4 =: u←→ T (λ)

Ne ←→ u2

1−u2 ←→No
u3

1−u2 ←→L/R u2

1−u2

←→B
6u2

(1−3u)(1−u)

Dominant singularity: λc = (33/44)1/2 ⇔ uc = 1/3

The dominant schemes are those that maximize the number of B-vertices at fixed g .

Theorem

Dominant schemes of genus g have 2g − 1 B-vertices, and are in one-to-one
correspondence with decorated plane binary trees.
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B B

Ne

No

B

B B

No

B

B B

No
Ne

B

Dominant scheme of genus g = 5: there are 2g − 1 = 9 B-vertices.
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Idea of proof:

2PI

N
g − 1 g

2PR

B
2PI

g g

g2 < g g = g1 + g2g1 < g

B

Show that those B-vertices must be glued along specific six-point functions. �
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Resummation of dominant schemes

The trees can be enumerated exactly: for any g ≥ 1

Gg (λ) ∼
λ→λ−c

∑
dominant scheme S

ĜS(λ) ∼ 2

3

√
8

3
Tg
(

5

48

)g
(√

1− λ2

λ2
c

)1−2g

where Tg = 1
2g−1

(
2g−1
g−1

)
.

The critical exponent is linear in the genus

⇒ triple-scaling limit, with parameter: κ−1 := M
(

1− λ2

λ2
c

)1/2

D(κ) :=
κ

M

(
G(0)(λ)−M2T (λ)

)
∼ 2

3

√
8

3

∑
g≥1

Tg
(

5

48

)g

κ2g

=

(
2

3

) 3
2

(
1−

√
1− 5

12
κ2

)

Near κc =
√

12
5

, large random trees (representing surfaces with large g) dominate:

〈g〉 =
1

2
κ∂κ lnD(κ) ' 1

2
√

1− κ2/κ2
c
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4. Triple-scaling limit of the 2PI generating function
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Main idea

To avoid tree-like structures, one needs to:

avoid the λ = λc singularity of the melonic generating function;

avoid the u = 1/3 singularity of the B-ladder generating function.

Melon diagrams and B-ladders have a common feature: they generate two-edge cuts /
2PR components.

B

⇒ restricting the sum to 2PI graphs kills these contributions, while still allowing
N-ladders to proliferate.

⇒ this restriction allows to reach the u = 1 singularity of N-ladders, and tune them to
criticality.
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2PI generating function

Define theory with modified covariance:

S [X ,X †;m] = ND

(
(1−m)Tr

[
X †µXµ

]
− λ

2

√
D Tr

[
X †µXνX

†
µXν

])
〈
Tr
[
X †µXµ

]〉
m

=

∫
[dX ] e−S[X ,X†;m]Tr

[
X †µXµ

]∫
[dX ] e−S[X ,X†;m]

Define m(λ) as the solution of:〈
Tr
[
X †µXµ

]〉
m(λ)

= N , with m(0) = 0.

Claim: m(λ) is the generating function of rooted 2PI Feynman diagrams.

In the double-scaling limit:

G(0)
2PI(λ) = lim

N,D→∞
M<∞

N2

D
m(λ) =

∑
g∈N

G2PI
g (λ)M2−2g

with G2PI
g (λ) = #{rooted and 2PI ` = 0 graphs of genus g}.
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∃ only one way of increasing the genus of a ` = 0 2PI graph:

N
g − 1 g
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2PI-dominant schemes

←→←→ λ21

Ne ←→ λ4

1−λ4 ←→No
λ6

1−λ4

Dominant singularity: λ∗ = 1

The 2PI-dominant schemes are those that maximize the number of N-vertices at fixed g .

Theorem

2PI-dominant schemes of genus g have 3g − 2 N-vertices, and are in one-to-one
correspondence with decorated rooted, cubic and bridgeless (i.e. 1PI) planar maps.
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Ne No

No Ne

No No

Ne

2PI-dominant scheme of genus g = 3: there are 3g − 2 = 7 N-vertices. The N-ladders
encode non-separating cuffs in a pants decomposition of the manifold.

Claim. 2PI-dominant schemes are in one-to-one correspondence with Ising states on
rooted, cubic and bridgeless planar maps:

+

−

+

+ −

−

+

+

−

+ −

+
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Resummation of 2PI-dominant schemes

The combinatorial mapping to Ising yields: for any g ≥ 1

G(0)
2PI(λ) ∼

λ→λ−∗
M2/3

(
Z++(CNo(λ2)M−2/3, λ−2) + λ2Z+−(CNo(λ2)M−2/3, λ−2)

)
where

Z++(t, x) =
∑

T∈T++

tε(T )xm(T )

is the grand-canonical partition function for the Ising model on random, cubic and
bridgeless planar maps with boundary condition (++). (x = e2β , t = ze−2β)

Such Ising partition functions are explicitly solvable in general:
by matrix-integral methods (effective two-matrix model);

[Kazakov ’86; Boulatov, Kazakov ’87]
by bijective methods (Tutte equations with 2 catalytic variables).

[Bernardi, Bousquet-Mélou ’11]

Here, we are only interested in the high-temperature limit:

λ→ λ∗ = 1 ⇔ β → 0 ⇔ x → 1

⇒ the evaluation reduces to an enumeration problem, solvable by a one-matrix
model or a Tutte equation with one catalytic variable.
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One finds:

D̃(κ) := (1− λ)G(0)
2PI(λ) ∼

λ→λ−∗

1

2

∑
n∈N

(
κ2

16

)n

Mn

where the triple-scaling parameter κ−1 = M (1− λ)3/2 is kept fixed, and

Mn = #{rooted, bridgeless and planar cubic maps with 2n vertices} (OEIS A000309)

Well-known enumeration: [Tutte ’62]

Mn =
2n(3n)!

(n + 1)!(2n + 1)!
∼ 1

4

√
3

π

(
27

2

)n

n−5/2

Singularity at κc = 8

3
√

6
:

D̃(κ) ∼
κ→κ−c

1

2
√

3

(
1− κ2

κ2
c

)3/2

Near κc =
√

12
5

, large random planar maps (representing surfaces with large g)

dominate:

〈g〉 = 〈n + 1〉 <∞ , 〈g 2〉 ∼
κ→κ−c

K

(
1− κ2

κ2
c

)−1/2
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5. Summary and discussion
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Summary

Multi-matrix model generating random surfaces decorated by loops.

The large N parameter controls the genus of the surfaces. The large D parameter
controls the loops.

Double-scaling M = N/
√
D → retains non-trivial contributions at arbitrary genus,

on top of the melonic genus 0 sector.

Result 1: combinatorial characterization of all graphs contributing to the
double-scaling limit.

Result 2: the connected partition function admits a triple-scaling limit dominated by
surfaces of large genus proliferating like random trees.

Result 2: the 2PI partition function admits a triple-scaling limit dominated by
surfaces of large genus proliferating like random planar maps.
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Outlook

Arbitrary n-point functions: loop equations and topological recursion?

SYK-like models and QFT: tractable higher-genus corrections to the melonic
behaviour?

Connection to recent works on Euclidean wormholes and the Page curve in 2d
quantum gravity?

[Saad, Shenker, Stanford, Witten, Penington, Almheiri, Engelhardt, Maxfield, Marolf,...]
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