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@ Matrix models — random surfaces.

o large N expansion indexed by the genus g;
o planar sector — Brownian sphere / Liouville Quantum Gravity at criticality;
o higher-genus contributions included in a double-scaling.

@ Tensor models — higher-dimensions.
o large N expansion indexed by the Gurau degree w;
o w = 0 sector — melon diagrams — continuous random tree / branched polymers at
criticality;
e w > 0 contributions included in a double-scaling.
Hybrid situation of large D multi-matrix models: [Ferrari '17; Ferrari, Rivasseau, Valette '17;...]
o large collection of D N x N matrices, viewed as a D x N x N tensor;
o generate decorated surfaces;
@ large N — genus expansion;
@ large D — planar sector dominated by melon diagrams — branched polymers.

How do higher genus contributions behave? Is it possible to escape the universality
class of branched polymers in a suitable multiple-scaling limit?
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© The model and its double-scaling limit

@ Recursive characterization of all contributing graphs

@ Triple-scaling limit of the connected generating function: more random trees
@ Triple-scaling limit of the 2PI generating function: random planar maps

© Summary and discussion
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1. The model and its double-scaling limit
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Model

[Ferrari '17]
F(\) = log / [dX] e 1]
S[X, x'] = ND (Tr [Xix.] - %DTr [XJXVXJXVD
o X, N x N complex matrix, u € {1,...,D};

e Forall O € O(D), and U, Ur € U(N): X, — X/, = O, U U(R)

@ Propagator and vertex:
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o Feynman graphs — ribbon graphs / quadrangulations decorated by O(D)-loops.
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Double asymptotic expansion at large N and large D:

FO) =Y NTEY DY R ()

geN LeN

where the grade ¢ € N is defined by

£
2
=

Example. g =1, v=4, p=4 ! =0.

Relation to familiar combinatorial quantities in tensor models:

/
W*gZEZEL+gR
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Double-scaling

FO = N2 Db g () =02 Y ( f) > D5 Fpu())

gEeN £eN geN
N .

Introduce a new double-scaling parameter M := 75

=S MPEFR ()

g>0

. 1
M) = im 570N

M<oo

@ Characterization of ¢ = 0 graphs?

@ Critical behaviour of F o(A)?
© Triple-scaling by tuning simultaneously A\ — Ac and M — oc0?

For convenience, we will focus on the two-point function

GO\ = D<Tr Xixa]) = > Gaom

gEN

with Gz (\) = #{rooted £ = 0 graphs of genus g}.
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2. Recursive characterization of ¢ = 0 graphs
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Methodology

Same as in enumeration of Feynman graphs of fixed degree w.
[Gurau, Schaeffer '13; Fusy, Tanasa '15]

o Organize the Feynman diagrams into equivalent classes, modulo insertion/deletion
of infinite families of subgraphs that do not change /.

@ This defines the notion of scheme Sg of a Feynman graph G.

o Classify the schemes with ¢ = 0, order by order in the genus g.

The two relevant families of subgraphs in our context are: two-point melon subgraphs
and four-point ladder diagrams.

Interesting feature: in contrast to the construction of graphs of fixed degree w, the
construction of ¢ = 0 graphs of fixed genus g will be entirely recursive.
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Melons
o If g(G) =0=¢(G), then w = g + £ = 0 and therefore G is melonic.

@ Moreover, melonic insertions/deletions preserve both ¢ and g — consider graphs up
to melonic insertions.

@ Generating function of two-point melonic graphs: [Bonzom, Gurau, Riello, Rivasseau '11.. ]
T =1+XT0N)*

Develops a square-root singularity at the critical value A\c = (33/44)1/2:

1 \/§/ A2
TA) = Z[4—-4/z/1- =
())\H)\C?’( 3 A%)
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Topological visualisation

N — dipole
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Ladders and ladder-vertices

(even)

-2

(odd)

00~

I
L

(O - D) N(@

¢ and g are invariant under addition/removal of rungs in a ladder of a given type.

K

H
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Schemes

Definition
The scheme S of a (rooted, connected) graph G is the graph obtained by:

@ replacing any melonic 2-point function by a propagator;

@ replacing any maximal ladder by the ladder-vertex of the corresponding type.

Proposition
/f-SG1 = 5@2, then:

g(G1) = g(Gz) and ((Gi) ={(G2).

Any £ = 0 scheme of genus g can be reconstructed from £ = O schemes of genus g’ < g.

= straightforward (though quickly impractical) algorithm to generate all £ = 0 schemes
of fixed genus. To be contrasted with classification of schemes of fixed degree w.
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¢ = 0 scheme of genus 0

Represents all melonic two-point functions.
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¢ = 0 schemes of genus 1

d sixteen 2PR schemes
IR
y

\\/\\
%

3 two 2P| schemes U
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¢ = 0 schemes of genus g > 2

Generating 2P| schemes

2P1
g

P
-— > Y

g2 <yg
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3. Triple-scaling limit of the connected generating function
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Connected generating function

GO = Gs (M

geN

with Gg(\) = #{rooted £ = 0 graphs of genus g}.

@ Decompose G, into a sum over a finite number of schemes:
gg(/\) = Z gs()‘)
£=0scheme S
o Still too hard to resum all schemes of genus g.

o Focus on the subclass of schemes that contribute to the dominant singularity of G,

— dominant schemes.

Singularities can only arise from the resummation of melon and ladder diagrams.
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Dominant schemes

— — T(}) — AQT(/\)4::u
] — G N~ e -
6u?
. 7 03u)(1—u)

Dominant singularity: A\ = (3*/4*)'/2 & u. =1/3

The dominant schemes are those that maximize the number of B-vertices at fixed g.

Dominant schemes of genus g have 2g — 1 B-vertices, and are in one-to-one
correspondence with decorated plane binary trees.

U(N)* X O(D) multi-matrix models Tensor Journal Club 19/33



Dominant scheme of genus g = 5: there are 2g — 1 = 9 B-vertices.
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Idea of proof:

G <g g2<g g=aq+ 92

Show that those B-vertices must be glued along specific six-point functions. O
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Resummation of dominant schemes

@ The trees can be enumerated exactly: for any g >'1

96 AAT Z Gs(\) ~ g\/gﬁ <%)g ( e ;\\2>1_2g

¢ dominant scheme S

where T, = #(25'_1).

2g—1\g—1

@ The critical exponent is linear in the genus

1/2
= triple-scaling limit, with parameter: k% := M (1 — i—i)
D(k) := ad (g(o)( ) — M? T()\) \/*Z
M 48
2\ ? 5
=z 1—4/1— —=kK?
(3) ( 12" >

o Near k. = % large random trees (representing surfaces with large g) dominate:

1

2y/1— Kk?/K?2

(g) = %/ﬂ?n InD(k) ~
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4. Triple-scaling limit of the 2PI generating function
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Main idea

To avoid tree-like structures, one needs to:

@ avoid the A = . singularity of the melonic generating function;

@ avoid the u = 1/3 singularity of the B-ladder generating function.

Melon diagrams and B-ladders have a common feature: they generate two-edge cuts /

2PR components.
OO T

= restricting the sum to 2P| graphs kills these contributions, while still allowing
N-ladders to proliferate.

= this restriction allows to reach the u = 1 singularity of N-ladders, and tune them to
criticality.
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2P| generating function

@ Define theory with modified covariance:

SIX, X' m] = ND ((1 — m)Tr [XJXH] - %\/BTr [ij,,xjxy])

efs[x,xf;m] t ;
(Tr [xix.]) = J [dX]f[dX] efs[x,Tfo;[:](”X ]

@ Define m()\) as the solution of:
<Tr [XJXMD W =N with  m(0)=o0.
m(A
o Claim: m()) is the generating function of rooted 2P| Feynman diagrams.
@ In the double-scaling limit:

. N _
() = lim o) =3 G ()M
M< oo geN

with GZPT(X) = #{rooted and 2P| £ = 0 graphs of genus g}.
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3 only one way of increasing the genus of a £ = 0 2Pl graph:
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2Pl-dominant schemes

. A A6
A e . 1

Dominant singularity: A, =1

The 2PI-dominant schemes are those that maximize the number of N-vertices at fixed g.

2PI-dominant schemes of genus g have 3g — 2 N-vertices, and are in one-to-one
correspondence with decorated rooted, cubic and bridgeless (i.e. 1PI) planar maps.
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2Pl-dominant scheme of genus g = 3: there are 3g — 2 = 7 N-vertices. The N-ladders
encode non-separating cuffs in a pants decomposition of the manifold.

Claim. 2Pl-dominant schemes are in one-to-one correspondence with Ising states on
rooted, cubic and bridgeless planar maps:

+ +
+ - + -
+ —
+ —
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Resummation of 2Pl-dominant schemes

@ The combinatorial mapping to Ising yields: for any g >'1

GIAO) ~ M (Ze (G (WIM 2N £ 0020 (Cx (V)M 072))

— A
where
Z++(t X Z te(T m(
TETH+
is the grand-canonical partition function for the Ising model on random, cubic and
bridgeless planar maps with boundary condition (++). (x=e¥ ,t = ze™%%)

@ Such Ising partition functions are explicitly solvable in general:
o by matrix-integral methods (effective two-matrix model);
[Kazakov '86; Boulatov, Kazakov '87]
o by bijective methods (Tutte equations with 2 catalytic variables).
[Bernardi, Bousquet-Mélou

11]
@ Here, we are only interested in the high-temperature limit:
A=A =1 & 6—0 & x—1

= the evaluation reduces to an enumeration problem, solvable by a one-matrix
model or a Tutte equation with one catalytic variable.
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@ One finds:

U Ry
D(k) := (1 — A)Gopr(N) N 2’162'\‘(16) Mo

where the triple-scaling parameter k' = M (1- )\)3/2 is kept fixed, and
M, = #{rooted, bridgeless and planar cubic maps with 2n vertices} (OEIS A000309)

@ Well-known enumeration: [Tutte '62]

n | n
2 (3") 1 3 <§> n,5/2

n

T rD@nr1 T2V a\ 2
o Singularity at ke = %:
. 1 I€2>3/2
D) ~ ——(1-%
( );@—H@C_ 2\/§ ( K/%
o Near ke = %2 large random planar maps (representing surfaces with large g)

dominate:
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5. Summary and discussion
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Summary
Multi-matrix model generating random surfaces decorated by loops.

The large N parameter controls the genus of the surfaces. The large D parameter
controls the loops.

Double-scaling M = N/v/D — retains non-trivial contributions at arbitrary genus,
on top of the melonic genus 0 sector.

Result 1: combinatorial characterization of all graphs contributing to the
double-scaling limit.

Result 2: the connected partition function admits a triple-scaling limit dominated by
surfaces of large genus proliferating like random trees.

Result 2: the 2PI partition function admits a triple-scaling limit dominated by
surfaces of large genus proliferating like random planar maps.

X O(D) multi-matrix models Tensor Journal Club



Outlook

@ Arbitrary n-point functions: loop equations and topological recursion?

@ SYK-like models and QFT: tractable higher-genus corrections to the melonic
behaviour?

o Connection to recent works on Euclidean wormholes and the Page curve in 2d
quantum gravity?

[Saad, Shenker, Stanford, Witten, Penington, Almheiri, Engelhardt, Maxfield, Marolf,...]
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