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1	–	Planar	maps,	etc	
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Combinatorial	maps:	
	
Drawing	on	a	surface	without	crossings	
	
	
	
Gluings	of	polygons	
TriangulaOons,	quadrangulaOons,	no	restricOons…	
	
	
	
Gluings	of	verOces		
combinatorial	encoding	using	permutaOons	

à Planar	maps:		spherical	topology	V-E+F=2	

à Plane	trees:	V=E+1;	F=1	

à We	consider	all	maps	rooted	(no	symmetries).		

à  ``size’’	=	number	of	edges,	or	verOces,	or	faces…	
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Random	maps:	
	
Choose	a	distribuOon	for	a	given	set	of	maps	of	the	same	size,		
	
à	Uniform	distribuOon	on	binary	trees	with	n	edges	
à	Uniform	distribuOon	on	all	trees	with	n	edges.		
	
à Uniform	distribuOon	on	planar	maps	made	of	n	squares	(quadrangulaOons)	
à Same	but	for	all	planar	maps	with	n	faces	

à Other	kinds	of	distribuOons…	
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Random	maps:	
à Uniform	distribuOon	on	planar	maps	made	of	n	squares	(quadrangulaOons)	

	
	
	

Picture	
	T.	Budd	

à	What	does	it	
typically	look	like??	
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Random	maps:	
à Uniform	distribuOon	on	planar	maps	made	of	n	squares	(quadrangulaOons)	
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	T.	Budd	

à	What	does	it	
typically	look	like??	
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Random	maps:	
à Uniform	distribuOon	on	planar	maps	made	of	n	squares	(quadrangulaOons)	

	
	
	

Picture	
	T.	Budd	
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	T.	Budd	
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3	Picture	T.	Budd	
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Random	maps	of	large	size	exhibit	common	features	à	Universality	classes	
	

AsymptoOc	enumeraOon	 Typical	diameter	

Rooted	plane	trees	 NT(n)	~		kT	rT-n	n-3/2	 n1/2						à					dH=2	

Rooted	planar	maps		 NM(n)	~		kM	rM-n	n-5/2	 n1/4						à					dH=4	

Picture	
	T.	Budd	



1	
Triangles		
by	Budzinski	

Squares		
by	Budd	



2	–	NoOon	of	scaling	limit	
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Random	walks	and	excursions:	Donsker’s	theorem	
	

à	

à	

Picture	O.	Safsari	

1/n1/2		

n	

n	

Random	walk	Sn=Σi	Xi,	where	X1,	…,	Xn	are	i.i.d.	random	variables	with	mean	0	and	variance	1	

Wn(t)	=	S[nt]	/	n1/2									t	in	[0,1]		

à	Wn	converges	in	distribuOon	to	a	standard	Brownian	moOon	as	n	à	∞	
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Scaling	limit:	
	
Take	a	random	map	of	size	n	
+	A	noOon	of	distance	d	on	the	maps	(e.g.	graph	distance	but	not	necessarily)	
à Random	metric	space	Gn	

	
Suppose	that	the	diameter	behaves	asymptoOcally	as			d(Gn)	~n	à	∞	dn			(e.g.	dn=	nα),	and	
normalize	the	distances	in	the	map	by	dn.	
	
à	Limit	of	the	random	metric	space	(Gn,	d/dn)	is	a	random	compact	conJnuum	metric	
space	

Two	levels:	
	
-	DefiniOon	of	the	limit	using	limits	of	random	walks	+	gluing	procedure	
	
-	Limit	for	the	Gromov-Hausdorff	distance,	in	the	space	of	metric	spaces	



à	Example:	trees				



Scaling	limit	of	uniform	trees:	Aldous’	conJnuum	random	tree	(CRT)		
	
	
	
	
	
	
	
	

Picture:		
L.	Ménard	
100000	edges	
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To	define	the	scaling	limit	of	random	rooted	plane	trees,	we	need	contour	processes	+	
real	trees.	
	
	
Contour	process:	
	
	
	
	
	
	
	
Real	trees:	noOon	of	tree	for	any	conOnuous	posiOve	funcOon	f	on	[0,1]	with	f(0)=f(1)=0	

1

0 1a b c d

x ∼g y ⇔ g(x) = g(y) = min[x,y]g

Distance:	

VerOces:	

Df (x, y) = f(x) + f(y)− 2min[x,y]f
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Scaling	limit	of	random	trees:	the	conJnuum	random	tree	(CRT)	
	
	
Consider	a	uniform	random	rooted	plane	tree	Tn	with	n	edges,	cn	its	contour	process	
	
	
Two	levels:	
	
1.  CV	(in	law)	of	the	normalized	contour	process	to	the	Brownian	excursion	e	(Donsker)	

	cn(2nt)/n1/2	à	2e(t)	

à DefiniOon	of	the	CRT	as	real	tree	with	contour	2e,	and	CV	of	(uniform)	discrete	random	
trees	to	the	CRT	in	the	space	of	real	trees.	[Aldous	97]	

	
	

2.  CV	in	law	of	(Tn,	d/n1/2)	to	the	CRT	in	the	space	of	metric-spaces	for	the	Gromov	
Hausdorff	distance	[Aldous	97,	Le	Gall	10]	
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Other	scaling	limits	of	``non-uniform’’	random	trees		
	
e.g.	α-stable	trees.	
For	α	in	(1,	2),	consider	Galton-Watson	trees	with	offspring	distribuOon	η(k)	of	mean	1	and	
such	that	η(k)	�	Ck−1−α	as	k	→	∞.	Normalizing	the	graph	distance	by		n1-1/α,	they	converge	
towards	a	compact	random	metric	space	called	the	α-stable	tree,	of	Hausdorff	dimension		
dH=α/α-1	in	(2,∞).		
		
	
	

ΑpproximaOons	of	α-stable	
trees	for	α=1.1,	1.5,	1.9,	and	
2.	The	α=2	case	corresponds	
to	the	CRT.	
Pictures:	Kortchemski.	



à	Example:	planar	maps	



Scaling	limit	of	uniform	random	maps:	the	Brownian	map	

Movies	by	Benedikt	Stufler	
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Scaling	limit	of	uniform	random	maps:	the	Brownian	map	

	
Two	levels:	
	

1.  Random	planar	maps	ó	pairs	of	random	trees	+	gluing	procedure	+	distance		
(details	later).	
	

à	DefiniOon	of	the	Brownian	map	as	random	real	trees	+	limit	of	gluing	procedure	+	limit	
of	distance.	[Marckert,	Mokkadem	2006]	

	
	
2.  CV	in	the	space	of	metric-spaces	in	the	Gromov-Hausdorff	sense:	
	
	
[Le	Gall	13;	Beznelli	et	al.	14;	Abraham	16;	Addario-Berry	&	Albenque	19]	
	

Consider	a	uniform	random	rooted	planar	map	Mn	with	n	faces	and	the	graph	distance	
d	normalized	by	n1/4.	Then		(Mn,	cd/n1/4)	converges	in	law	to	the	the	Brownian	map	for	
the	Gromov-Hausdorff	distance.			
	

The	same	is	true	(for	a	different	c	but	the	same	distance	on	the	Brownian	map)	for	
any	p-angulaOon	and	for	biparOte	maps.	

13	

[Le Gall 13; Miermont 13; Bettinelli et al. 14; Abraham 16; Addario-Berry & Albenque 19]



Scaling	limit	of	uniform	random	maps:	the	Brownian	map	
	
	
Different	noOons	of	dimensions…	
	
	
•  Hausdorff	dimension	4	(a.s.)	[Kawai	et	al.	93;	Ambjørn	&	Watabiki	95;	Le	Gall	07]	

•  Homeomorphic	to	the	2-sphere		(a.s.)	[Le	Gall	&	Paulin	08;	Miermont	08]	
	

•  Spectral	dimension	2:	[Ambjørn	et	al.	98;	Rhodes	&	Vargas	13,	Gwynne	&	Miller	17]		
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Without	entering	into	details:		
	
-  Stable	spheres	[Le	Gall,	Miermont	09].	Scaling	limits	of	random	planar	maps	with	large	

faces.	Distances	~n1/2α	for	α	in	(1,2),	Hausdorff	dimension	2α.	

-  StaOsOcal	physics	models	on	random	planar	maps	(Ising,	tree-decorated,	bipolar	
orientaOons…)	

	

	
	
	
Maps	selected	according	to	number	of	spanning	trees	for	γ=√2,	Ising	for	γ=√3,	uniform	
for	γ=√8/3…	
	

-  Liouville	quantum	gravity	measures	on	the	unit	sphere,	equivalent	to	the	previous	
kind.	

	

Pic.	T.	
Budd	
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Other	universality	classes	of	``non-uniform’’	random	spheres		



3	–	The	problem	in	higher	dimensions	
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We	want	to	build	a	compact	random	uniform	conJnuum	volume.		
	
à Natural	to	start	from	random	gluings	of	n	``polytopes’’	(tetrahedra…)	with	uniform	

distribuOon	and	topology	of	the	3-sphere:	
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We	want	to	build	a	compact	random	uniform	conJnuum	volume.		
	
à Natural	to	start	from	random	gluings	of	n	``polytopes’’	(tetrahedra…)	with	uniform	

distribuOon	and	topology	of	the	3-sphere.		
	
					But	no	scaling	limit	can	be	defined	this	way	(diameter	is	asymptoOcally	constant)			
						[numerical:	Ambjørn,	Jurkiewicz	95]	
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We	want	to	build	a	compact	random	uniform	conJnuum	volume.		
	
à Natural	to	start	from	random	gluings	of	n	``polytopes’’	(tetrahedra…)	with	uniform	

distribuOon	and	topology	of	the	3-sphere.		
	
					But	no	scaling	limit	can	be	defined	this	way	(diameter	is	asymptoOcally	constant)			
						[numerical:	Ambjørn,	Jurkiewicz	95]	

à  In	theoreOcal	physics	(quantum	gravity),	natural	to	consider	D-dimensional	triangulaOons	
with	n	tetrahedra,	of	maximal	Regge	curvature,	with	uniform	distribuOon.	

	
					But	this	leads	to	the	conOnuum	random	tree	as	a	scaling	limit	(dimensional	reducOon)	
						[numerical:	Ambjørn,	Jurkiewicz	95	;	proof	for	colored:	Gurau,	Ryan	14]	
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We	want	to	build	a	compact	random	uniform	conJnuum	volume.		
	
à Natural	to	start	from	random	gluings	of	n	``polytopes’’	(tetrahedra…)	with	uniform	

distribuOon	and	topology	of	the	3-sphere.		
	
					But	no	scaling	limit	can	be	defined	this	way	(diameter	is	asymptoOcally	constant)			
						[numerical:	Ambjørn,	Jurkiewicz	95]	

à  In	theoreOcal	physics	(quantum	gravity),	natural	to	consider	D-dimensional	triangulaOons	
with	n	tetrahedra,	of	maximal	Regge	curvature,	with	uniform	distribuOon.	

	
					But	this	leads	to	the	conOnuum	random	tree	as	a	scaling	limit	(dimensional	reducOon)	
						[numerical:	Ambjørn,	Jurkiewicz	95	;	proof	for	colored:	Gurau,	Ryan	14]	

	
	

In	2D,	spherical	topology	and	maximizing	the	curvature	is	
equivalent	(Gauss-Bonet)	but	not	in	higher	D	
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We	want	to	build	a	compact	random	uniform	conJnuum	volume.		
	
à Natural	to	start	from	random	gluings	of	n	``polytopes’’	(tetrahedra…)	with	uniform	

distribuOon	and	topology	of	the	3-sphere.		
	
					But	no	scaling	limit	can	be	defined	this	way	(diameter	is	asymptoOcally	constant)			
						[numerical:	Ambjørn,	Jurkiewicz	95]	

à  In	theoreOcal	physics	(quantum	gravity),	natural	to	consider	D-dimensional	triangulaOons	
with	n	tetrahedra,	of	maximal	Regge	curvature,	with	uniform	distribuOon.	

	
					But	this	leads	to	the	conOnuum	random	tree	as	a	scaling	limit	(dimensional	reducOon)	
						[numerical:	Ambjørn,	Jurkiewicz	95	;	proof	for	colored:	Gurau,	Ryan	14]	

	
à No	known	way	of	producing	anything	else	than	random	conOnuum	trees	or	surfaces	

from	random	gluings	of	building	blocks.		

à We	can	try	to	explore	new	universality	classes	of	random	geometry	by	taking	limits	of	
well-moJvated	more	general	random	graphs.	

à We	then	face	the	difficult	quesOon	of	characterizing	what	we	want… 	



What	are	we	looking	for?	

18	

	
•  Ability	to	define	a	scaling	limit	(diameter	grows	as	a	power	law)?	
•  Typical	diameter	smaller	than	n1/4?	
•  Finite	Haus.	dim.,	larger	than	4?	(we	have	2	for	trees,	4	for	planar	maps)	
	
•  Spectral	dimension,	larger	than	2?	(we	have	4/3	for	trees,	2	for	planar	maps)	
	
•  Scaling	limit:	not	a	tree,	not	a	surface… 
•  Locally looks like a 3-ball	
•  Well	defined	topology	(topological	dimension	3)?	
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•  Ability	to	define	a	scaling	limit	(diameter	grows	as	a	power	law)?	
•  Typical	diameter	smaller	than	n1/4?	
•  Finite	Haus.	dim.,	larger	than	4?	(we	have	2	for	trees,	4	for	planar	maps)	
	
•  Spectral	dimension,	larger	than	2?	(we	have	4/3	for	trees,	2	for	planar	maps)	
	
•  Scaling	limit:	not	a	tree,	not	a	surface… 
•  Locally looks like a 3-ball 
•  Well	defined	topology	(topological	dimension	3)?	
	
	
	
A	proposal:	we	built	a	family	of	random	graphs	obtained	by	idenOfying	many	points	
on	some	random	discrete	2-spheres	[L.	&	Marckert	19].	

What	are	we	looking	for?	
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There	are	different	ways	of	encoding	maps:	
	
Drawing	on	a	surface	
à Renders	the	fact	that	you	have	surfaces	obvious	
	
Gluings	of	polygons	
à Same,	and	uniformity	

Gluings	of	verOces		
à Nice	combinatorial	encoding	using	permutaOons	

	
A	tree	+	some	corner	idenOficaOons	
	ó	a	map	+	splizng	some	verOces	
		
à Nice	bijecOons:	enumeraOon	but	also	distances	in	some	cases	
à But:	more	difficult	to	see	that	it’s	a	surface,	to	track	the	topology	
à Some	other	things	are	also	less	obvious	e.g.	invariance	by	change	of	root	

No	known	way	of	producing	new	
scaling	limits	in	higher	dimensions	



	
4	-	The	Cori-Vauquelin-Schaeffer	bijecOon:	

	
Distances	in	planar	maps	and	construcOon	of	the	Brownian	map	
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Cori-Vauquelin-Schaeffer’s	bijecJon	between	labeled	trees	and	(rooted	pointed)	
planar	quadrangulaOons:	

The	CVS	bijecOon	is	a	powerful	tool	giving	control	on	the	distances	in	planar	maps:	
it	allows	proving	that	the	diameter	of	random	planar	quadrangulaOons	is	~n1/4.		
	
It	also	allows	construcOng	the	Brownian	map.		

1
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Cori-Vauquelin-Schaeffer’s	bijecJon	between	labeled	trees	and	(rooted	pointed)	
planar	quadrangulaOons.	

	
à	It	can	be	reformulated	in	terms	of	idenOficaOons	on	a	second	tree:		
[Marckert,	Mokkadem	2006]	
	
ν

Q̃

ν

T
(2)
5

T
(1)
5
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Cori-Vauquelin-Schaeffer’s	bijecJon	between	labeled	trees	and	(rooted	pointed)	
planar	quadrangulaOons.	

	
à	It	can	be	reformulated	in	terms	of	idenOficaOons	on	a	second	tree:		
[Marckert,	Mokkadem	2006]	
	
ν
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ν
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Gluing	the	verOces	of	T2	using	T1	preserves	the	
distances	to	the	pointed	vertex:	
	
Distances	to	ν	in	this	second	tree	are	the	distances	
to	ν	in	the	quadrangulaOon	
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A	Uniform	random	planar	quadrangulaOon	(root.	point.)	is	
•  A	uniform	tree	T1,	verOces	give	the	verOces	of	the	map		
•  A	non-uniform	tree	T2,	diameter	~n1/4,	edges	give	the	edges	of	the	map	
•  Distance:	distance	in	T2	+	free	jumps	on	the	verOces	of	T1	

	
Distances:	typical	diameter	of	the	quadrangulaOon	is	that	of	T2	:				~n1/4	
	
	
ConstrucJon	of	the	Brownian	map:		Random	trees	à	random	walks	
-  Gluing	procedure	defined	on	the	walks	
-  Distances	defined	on	the	walks	
à	The	Brownian	map	defined	by	taking	their	limits,	using	the	limiOng	gluing	procedure		
(T2	quoOented	by	the	verOces	of	T1),	and	using	the	limiOng	distance.	
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4	– Random	feuilletages	



23	

Iterate	this	construcOon:	label	the	second	tree,	build	a	third	tree,	quoOented	by	
the	verOces	of	the	two	first	trees!	
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Iterate	this	construcOon:	label	the	second	tree,	build	a	third	tree,	quoOented	by	
the	verOces	of	the	two	first	trees!	
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Iterate	this	construcOon:	label	the	second	tree,	build	a	third	tree,	quoOented	by	
the	verOces	of	the	two	first	trees!	
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“La	pâte	feuilletée,	ou	feuilletage,	est	un	type	de	
pâte	obtenue	par	abaissage	et	pliages	successifs	
de	couches	alternant	une	pâte	basique	(farine,	
eau	et	sel)	et	du	beurre.”	
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“La	pâte	feuilletée,	ou	feuilletage,	est	un	type	de	
pâte	obtenue	par	abaissage	et	pliages	successifs	
de	couches	alternant	une	pâte	basique	(farine,	
eau	et	sel)	et	du	beurre.”	

Beurre	non	passé	

Pâte	basique	
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à Sequence	of	random	graphs	with	
asymptoOc	diameter	O(n1/8)	

à AsymptoOcally	not	going	to	give	random	
trees	or	surfaces	of	any	genus	
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à	IteraOon	



D-Random	feuilletages:	

27	

à  IteraOve	construcOon	to	obtain	a	family	indexed	by	a	parameter	D		

	
•  D=1:	discrete	objects	are	uniform	rooted	plane	trees	with	n+1	verOces.		
						CV	to	the	conOnuum	random	tree	in	terms	of	Gromov-Hausdorff.		
						Typical	diameter	~	n1/2	(Hausdorff	dimension	2).		

•  D=2:	discrete	objects	are	uniform	root.	point.	planar	quadrangulaOons	with	n+2	verOces.		
						CV	to	the	Brownian	map	in	terms	of	Gromov-Hausdorff.	
						Typical	diameter	~	n1/4	(Hausdorff	dimension	4).			

•  D=3:	discrete	objects	obtained	by	a	series	of	foldings	of	a	discrete	2-sphere	with	n+3	
verOces,	rooted	and	pointed	2	Omes.		

						CV	to	a	conOnuum	space	with	typical	diameter	O(n1/8)	(Hausdorff	dimension	8	or	more).		
					
•  D:	discrete	objects	obtained	by	D-2	series	of	foldings	of	a	discrete	2-sphere	with	n+D	

verOces,	rooted	and	pointed	D-1	Omes.		
					CV	to	a	conOnuum	space	with	Hausdorff	dimension	2D	or	more).		





AsymptoOc	enumeraOon:	

39	

Not	enOrely	clear	for	instance	how	the	feuilletages	are	pointed,	but	in	any	case,	this	
factor	is	asymptoOcally	of	order	nD-1,	so	that	we	have	asymptoOcally:	

m
•(2)
n

= 2× 3nCn and (n+ 2)m(2)
n

= 2× 3nCn

m
•(2)
n ∼ 2π

−1/2
· 12

n
· n

γ2−1
and m

(2)
n ∼ 2π

−1/2
· 12

n
· n

γ2−2

From	the	CVS	bijecOon,	for	rooted	pointed	and	non-pointed	planar	quadrangulaOons:	

γ2 = −1/2

m
•(D)
n ∼ cD · λ

n
D · n

γD+D−3
and m

(D)
n ∼ cD · λ

n
D · n

γD−2

γD =
3

2
−D

γ2,g =
5

2
g −

1

2
γ2,L =

3

2
L+

1

2

This	generalizes	the	γ1=1/2	for	trees	and	γ2=	-1/2	for	planar	maps	
and	more	generally:	

∝ 4× 3

∑D−2

j=0
2
j
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CN = {0 < 1 < . . . < N − 1}

FN [D] =
(

CN ,σ(D), . . . ,σ(1)
)

σ
(j) nested	non-crossing	parOOons	on	CN		

	+		parity	gives	a	tree	( 				of	scale										,	for	the	right	distribuOons)	
	

	 	+	parity	gives	a	planar	map	(random	planar	quad.	of	scale 										for	the	right	dist.		

σ
(j) T

(j)
n n

1/2j

(σ(j)
,σ

(j−1)) n
1/2j

A	combinatorial	encoding:	



QuesOons…	

	
à We	conjecture	that	the	asymptoOc	diameter	is	of	order														(we	know	it	is	≤)	

and	that	the	Hausdorff	dimension	is	2D	(we	know	it	is	≥)	… needs	to	be	proven.	
	
à Convergence	in	the	sense	of	Gromov-Hausdorff	(second	level)?	

à What	can	we	say	about	the	topology?	(hard)	

à Can	we	obtain	the	same	scaling	limit	from	a	model	of	random	D-dimensional	
triangulaOons?	(Universality	class?)	

	
à Spectral	dimension?	
	

n
1/2D
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Thank	you!	


