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A Bit of History (with apologies)

• 1950s – 60s Hamiltonian of a complex quantum 
system, e.g. a large nucleus, as a large random 
Hermitian matrix. The “Wigner semicircle law,” 
the “Dyson gas,” etc. Wigner, Mehta, Dyson, …

• 1973 – QCD as the theory of strong interactions. 
Gross, Wilczek; Politzer; Fritzsch, Gell-Mann, Leutwyler; …   

• 1974 – the ‘t Hooft large N limit; planar Feynman 
diagrams as discretized random surfaces.

• 1978 – solution of the large N non-Gaussian 
matrix models. Brezin, Parisi, Itsykson, Zuber



• 1981 -- Sum over continuous surfaces. Non-
critical (super)string theory. Quantum 
(super)Liouville Theory. Polyakov

• 1984-88 -- Matrix Models give ways of solving 
models of discretized random surfaces in the 
continuum limit. Kazakov, Kostov, Migdal; David; Ambjorn, 
Durhuus, Frohlich; Kazakov, Migdal; … 



• Late 80s -- First precise connections between Matrix 
Models and Liouville theory: the KPZ-DDK scaling. 
Knizhnik, Polyakov, Zamolodhikov; David, Distler, Kawai

• 1989 – The double-scaling limit gives a solution of 
some matrix models to all orders in the genus 
expansion. Brezin, Kazakov; Gross, Migdal; Douglas, Shenker; Gross, Miljkovic; 
Brezin, Kazakov, Zamolodchikov; …

• 1989-94 -- MMMania (Matrix Model Mania) is in full 
swing. 

• 1991-92 – first large N tensor models and Group Field 
Theory. Ambjorn, Durhuus, Jonsson; Sasakura; Gross; Boulatov; …  

• Precise comparisons between Matrix Models and 
Liouville theory. 

• 1994 – Exact 3-point functions in Liouville theory.
Dorn, Otto; Zamolodchikov, Zamolodchikov



Non-Critical String Theory 

• Sum over surfaces embedded in D dimension

• Two-dimensional Quantum Gravity coupled to 
c massless scalar fields.

• The world sheet cosmological constant is 
conjugate to the area. 



Continuum Approach
• In the conformal gauge                      the 

Liouville field acquires induced dynamics and 
becomes a “large extra dimension.” Polyakov

• The DDK approach to Liouville theory

• Dilaton linear in the Liouville direction. 
• Non-critical string in c dimensions is like 

critical in c+1. But no full Poincare invariance. 



• The complete gauge fixed action includes matter 
CFT of central charge c, Liouville, and ghosts:

• Since the total central charge has to vanish, must 
choose

• Marginality of the “dressed identity operator” 
requires

• Requiring the operator to be non-normalizable
requires choosing the bigger root (the Seiberg
bound).



Scaling with Area

• Partition function at fixed area

• Using a shift of integration variable, find

• The “string susceptibility” is
• Agrees with solutions of single-trace Matrix 

Models where the susceptibility is always 
negative.



c=1 Barrier

• The dressing exponent becomes complex for c>1.
• The center of mass mode                        is 

tachyonic

• Corresponding problems are observed in  
discretized formulations (the dominance of 
branched polymer phase). Weingarten; Eguchi, Kawai; 
Durhuus, Frohlich, Jonsson;…

• In a sense, AdS/CFT has allowed us to reach 
above the barrier. 



Double-Trace Matrix Models

• Double-trace terms add touching interactions 
(world sheet wormholes)

• At leading order in N, find trees of touching 
spheres.

• For small g, the model is in the same universality 
class as single-trace. For large g, dominated by 
double-trace and is in the branched polymer 
phase with γ=1/2.

• At a special value of g, the susceptibility changes. 
Das, Dhar, Sengupta, Wadia; Korchemsky; Alvarez-Gaume, Barbon, 
Crnkovic



• The new susceptibility in general explained 
“phenomenologically” by assuming the other 
Liouville dressing IRK

• The double-trace model solved non-
perturbatively using the Hubbard-Stratonovich
trick IRK, Hashimoto

• At leading order related by Legendre 
transform. Meaning of all this in DOZZ?



Three Large N Limits
• O(N) Vector: solvable because the “cactus” 

diagrams can be summed.
• Matrix (‘t Hooft) Limit: planar diagrams. 

Solvable only in special cases.
• Tensor of rank three and higher. When 

interactions are specially chosen, dominated 
by the “melonic” diagrams. Bonzom, Gurau, Riello,
Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky



O(N) x O(N) Matrix Model

• Theory of real matrices φab with distinguishable 
indices, i.e. in the bi-fundamental 
representation of O(N)axO(N)b symmetry. 

• The interaction is at least quartic: g tr φφTφφT

• Propagators are represented by colored double 
lines, and the interaction vertex is

• In d=0 or 1 special limits describe two-
dimensional quantum gravity.



• In the large N limit 
where gN is held fixed 
we find planar Feynman 
graphs, and each index 
loop may be red or 
green.

• The dual graphs shown 
in black may be thought 
of as random surfaces 
tiled with squares whose 
vertices have alternating  
colors (red, green, red, 
green).



• For a 3-tensor with distinguishable indices the 
propagator has index structure

• It may be represented graphically by 3 colored 
wires 

• Tetrahedral interaction with 
O(N)axO(N)bxO(N)c symmetry                        
Carrozza, Tanasa; IK, Tarnopolsky

From Bi- to Tri-Fundamentals

The picture can't be displayed.



• Leading correction to the propagator has 3 
index loops

• Requiring that this “melon” insertion is of 
order 1 means that                         must be held 
fixed in the large N limit.  

• Melonic graphs obtained by iterating   



Cables and Wires
• The Feynman graphs of the quartic field 

theory may be resolved in terms of the 
colored wires (triple lines)



• Most Feynman graphs in the quartic field theory 
are not melonic are therefore subdominant in the 
new large N limit, e.g.

• Scales as
• None of the graphs with an odd number of 

vertices are melonic.

Non-Melonic Graphs



Bosonic Symmetric Traceless Tensors
• Consider a symmetric traceless bosonic tensor           

of O(N) with tetrahedron interaction:  IK, 
Tarnopolsky

• Similar to the models considered in the early 
90’s but the tracelessness condition is crucial. 
IK, Tarnopolsky; Azeyanagi, Ferrari, Gregori, Leduc, Valette

• Explicit checks of combinatorial factors up to 
8th order show that they do dominate. There 
are 177 diagrams without “snails.”





• The propagator has the more complicated 
index structure IK, Tarnopolsky

• Similarly, the theory of antisymmetric tensor 
of O(N) with propagator

is also dominated by the melonic diagrams.
• Combinatorial proof.   Benedetti, Carrozza, Tanasa, Kolanowski



The Sachdev-Ye-Kitaev Model
• Quantum mechanics of a large number NSYK of 

anti-commuting variables with action

• Random couplings j  have a Gaussian 
distribution with zero mean. 

• The model flows to strong coupling and 
becomes nearly conformal.  Sachdev, Ye; Georges, 
Parcollet, Sachdev; Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; 
Jevicki, Suzuki, Yoon; Kitaev, Suh 



• The simplest dynamical case is q=4.
• Exactly solvable in the large NSYK limit because 

only the melonic Feynman diagrams contribute

• Solid lines are fermion propagators, while 
dashed lines mean disorder average.

• The exact solution shows resemblance with 
physics of certain two-dimensional black holes. 
Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; Engelsoy, Mertens, 

Verlinde; Jensen; Kitaev, Suh; …



Spectrum of the SYK model
• Energy levels for N=32 Majorana q=4 SYK model: 65536 energy levels

• is zero temperature entropy



• Quantum Mechanics of N3 Majorana fermions 
IK, Tarnopolsky

• Has O(N)axO(N)bxO(N)c symmetry under

• The SO(N) symmetry charges are

O(N)3 Tensor QM 



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron. 

• This is equivalent to

• The triple-line Feynman 
graphs are produced 
using the propagator



• The tetrahedral term is the unique dynamical 
quartic interaction with O(N)3 symmetry.

• The other possible terms are quadratic 
Casimirs of the three SO(N) groups.

• In the model where SO(N)3 is gauged, they 
vanish.



O(N)3 vs. SYK Model
• Using composite indices

The couplings take values 

• The number of distinct terms is

• Much smaller than in SYK model with 



Gauged Model
• To eliminate large degeneracies, focus on the 

states invariant under  SO(N)3.
• Their number can be found by gauging the 

free theory IK, Milekhin, Popov, Tarnopolsky



• There are no singlets for odd N due to a QM 
anomaly for odd numbers of flavors.

• The number grows very rapidly for even N

• The large low-temperature entropy suggests 
tiny gaps for singlet excitations ~ 



Qubit Hamiltonian
• Convenient to introduce operator basis which 

breaks the third O(N) to U(N/2)

• Operators                      correspond to qubit 
number

• The Hamiltonian couples N/2 sets of N2 qubits



• The Cartan generators of U(N/2) are

• For the oscillator vaccuum

• The gauge singlet states appear in the sector 
where all these charges vanish: each set of N2 

qubits is at half filling. 
• This reduces the number of states but it still 

grows rapidly. For N=4 there are 165636900, 
while for N=6 over 7.47 * 10^29



Spectrum of the Gauged N=4 Model
• Studied the system of 32=16+16 qubits 

K. Pakrouski, IK, F. Popov and G. Tarnopolsky

• Needed to isolate the 36 states invariant 
under SO(4)3 out of the 165080390 “half-half-
filled” states.

• Diagonalize 4H/g + 100 C where C is the sum 
of three Casimir operators.

• A Lanczos type algorithm is well suited for this 
sparse operator.



Discrete Symmetries
• Act within the SO(N)3 invariant sector and can 

lead to small degeneracies.
• Z2 parity transformation within each group like

• Interchanges of the groups flip the energy

• Z3 symmetry generated by                    ,



• At non-zero energy the gauge singlet states 
transform under the discrete group A4 x Z2.

• Spectrum for N=4. Pakrouski, IK, Popov, Tarnopolsky



Energy Distribution for N=4

• For N=6 there will be over 595 million states 
packed into energy interval <1932. So, the 
gaps should be tiny.



Gauge Invariant Operators
• Bilinear operators                              
• Related by the EOM to some of the higher 

particle “single-sum” operators. 

• All the 6-particle operators vanish by the Fermi 
statistics in the theory of one Majorana tensor.

• For higher number of fields, the number of 
invariants exhibits rapid, factorial growth. Ben 
Geloun, Ramgoolam



• The bubbles come from O(N) charges and 
vanish in the gauged model:

• The 17 single-sum 8-particle operators which 
do not include bubble insertions are 



Factorial Growth

• There are 24 bubble-free 10-particle; 617 12-
particle; 4887 14-particle; 82466 16-particle 
operators; etc. 

• The number of (2k)-particle operators grows 
asymptotically as k! 2k. Bulycheva, IK, Milekhin, Tarnopolsky

• The Hagedorn temperature of the large N 
theory vanishes as 1/log N.

• The tensor models seem to lie “beyond string 
theory.”

• Are they related to M-theory?



Tetrahedral Bosonic Tensor Model 
• Action with a potential that is not positive 

definite IK, Tarnopolsky; Giombi, IK, Tarnopolsky

• Schwinger-Dyson equation for 2pt function 
Patashinsky, Pokrovsky

• Has solution



Spectrum of two-particle spin zero 
operators

• Schwinger-Dyson equation

• In d<4 the first solution is complex 



Complex Fixed Point in 4-ε Dimensions
• The tetrahedron 

mixes at finite N with the pillow and double-sum 
operators

• The renormalizable action is



• The large N scaling is

• The 2-loop beta functions and fixed points: 

• The scaling dimension of                  is



• Spectrum in d=1 again includes scaling 
dimension h=2, suggesting the existence of a 
gravity dual.

• However, the leading solution is complex, 
which suggests that the large N  CFT is 
unstable Giombi, IK, Tarnopolsky

• It corresponds to the operator

• The dual scalar field in AdS violates the 
Breitenlohner-Freedman bound.   



A Richer Set of Tensor Models
• The tetrahedral interaction is the simplest 

possibility of obtaining a solvable large N 
tensor model.

• There are many others!
• For the interaction of order 2n the maximal 

tensor rank is 2n-1. When it is lower, the 
theory may be called “subchromatic.” Prakash, Sinha

• It is helpful to chose the dominant interaction 
to be Maximally Single Trace (MST). Ferrari, Rivasseau, 
Valette; IK, Pallegar, Popov



Prismatic Bosonic QFT
• Large N limit dominated by the positive sextic

“prism” interaction Giombi, IK, Popov, Prakash, Tarnopolsky

• It is subchromatic and MST (erasing any color 
leaves the diagram connected).

• To obtain the large N solution                             
it is convenient to rewrite 



• Tensor counterpart of a bosonic SYK-like model.
Murugan, Stanford, Witten

• The IR solution in general dimension:

• In

• For d=2.9 find numerically



• Dimensions of bilinear operators in d=2.9 and 2.75

• The first root has expansion

• For              becomes complex 



Finite N
• The 3-ε expansion at finite N may be generated 

using standard perturbation theory.
• Need to include 7 more O(N)3 invariant operators.

• The 8 beta functions have a “prismatic” fixed 
point” for N>53. At large N the scaling 
dimensions there agree with the Schwinger-
Dyson results, including 4-loop corrections to 
beta functions (in preparation with C. Jepsen and 
F. Popov).



Many Questions Remaining

• What is the precise holographic setting of tensor 
models in view of the factorial growth of the number 
of gauge invariant operators. 

• What is the list of “stable” melonic or generalized 
melonic large N theories in d>1.

• Coupled tensor or SYK models can exhibit interesting 
dynamical phenomena, such as symmetry breaking. 
Applications to 2-d wormholes. Maldacena, Qi; Kim, IRK, 
Tarnopolsky, Zhao; IRK, Milekhin, Tarnopolsky, Zhao

• Applications of melonic models to condensed matter 
physics? 

• Applications to quantum information theory? Milekhin
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