Long-range multi-scalar models at three loops.

Sabine Harribey

Based on arXiv:2007:04603 with D.Benedetti, R.Gurau and K.Suzuki

October 21st 2020

Long-range models

- Kinetic term of the form $\phi(\partial^2)^\zeta \phi$ with $0 < \zeta < 1$
- Vast array of applications [Campa, Dauxois, Ruffo, 2009]
- Admit phase transition [Dyson]
- One-parameter families of universality classes: ζ
- Study transition between short-range and long-range universality classes [Angelini et al., Brezin et al.,...]
- Rigorous renormalization group in d = 3 [Brydges et al., Abdesselam,...]

Long-range models

- Kinetic term of the form $\phi(\partial^2)^\zeta \phi$ with $0 < \zeta < 1$
- Vast array of applications [Campa, Dauxois, Ruffo, 2009]
- Admit phase transition [Dyson]
- One-parameter families of universality classes: ζ
- Study transition between short-range and long-range universality classes [Angelini et al., Brezin et al.,...]
- Rigorous renormalization group in d = 3 [Brydges et al., Abdesselam,...]

Challenges

- No local energy momentum tensor: conformal invariance ? [Paulos, Rychkov, van Rees, Zan]
- Analytic evaluation of Feynman integrals: only up to two loops

Long-range models

- Kinetic term of the form $\phi(\partial^2)^{\zeta}\phi$ with $0<\zeta<1$
- Vast array of applications [Campa, Dauxois, Ruffo, 2009]
- Admit phase transition [Dyson]
- One-parameter families of universality classes: ζ
- Study transition between short-range and long-range universality classes [Angelini et al., Brezin et al.,...]
- Rigorous renormalization group in d = 3 [Brydges et al., Abdesselam,...]

Challenges

- No local energy momentum tensor: conformal invariance ? [Paulos, Rychkov, van Rees, Zan]
- Analytic evaluation of Feynman integrals: only up to two loops

\Rightarrow Here up to three loops

The long-range multi-scalar model

- Two and four-point functions
- Beta functions up to three loops

2 Applications

- Long-range Ising model
- Long-range O(N) vector model
- Long-range cubic model
- Long-range $O(M) \times O(N)$ bi-fundamental model

3 Conclusion and further work

$$S[\phi] = \int d^d x \left[\frac{1}{2} \phi_{\mathbf{a}}(x) (-\partial^2)^{\zeta} \phi_{\mathbf{a}}(x) + \frac{1}{2} \kappa_{\mathbf{a}\mathbf{b}} \phi_{\mathbf{a}}(x) \phi_{\mathbf{b}}(x) + \frac{1}{4!} \lambda_{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{d}} \phi_{\mathbf{a}}(x) \phi_{\mathbf{b}}(x) \phi_{\mathbf{c}}(x) \phi_{\mathbf{d}}(x) \right]$$

- $\bullet\,$ Indices take values from 1 to ${\cal N}\,$
- Mass parameter κ treated as a perturbation
- *d* < 4 fixed

$$S[\phi] = \int d^d x \left[\frac{1}{2} \phi_{\mathbf{a}}(x) (-\partial^2)^{\zeta} \phi_{\mathbf{a}}(x) + \frac{1}{2} \kappa_{\mathbf{a}\mathbf{b}} \phi_{\mathbf{a}}(x) \phi_{\mathbf{b}}(x) + \frac{1}{4!} \lambda_{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{d}} \phi_{\mathbf{a}}(x) \phi_{\mathbf{b}}(x) \phi_{\mathbf{c}}(x) \phi_{\mathbf{d}}(x) \right]$$

- $\bullet\,$ Indices take values from 1 to ${\cal N}\,$
- Mass parameter κ treated as a perturbation
- *d* < 4 fixed
- Canonical dimension of the field: $\Delta_{\phi} = \frac{d-2\zeta}{2}$
- Weakly relevant case: $\zeta = \frac{d+\epsilon}{4}$ with small ϵ

• UV dimension of the field $\Delta_{\phi} = \frac{d-\epsilon}{4}$

Sabine Harribey

Theory at $\epsilon = 0$:

- With only λ vertices: 2-point graphs power divergent, 4-point graphs log divergent, higher orders convergent
- Local power divergence subtracted: convergent 2-point graphs
- No wave function renormalization
- κ vertices: ϕ^2 insertions \Rightarrow quartic vertices with two external half-edges

Theory at $\epsilon = 0$:

- With only λ vertices: 2-point graphs power divergent, 4-point graphs log divergent, higher orders convergent
- Local power divergence subtracted: convergent 2-point graphs
- No wave function renormalization
- κ vertices: ϕ^2 insertions \Rightarrow quartic vertices with two external half-edges

With power counting, the only superficially divergent graphs are:

- Four-point graphs with only λ vertices
- Two-point graphs with exactly one κ vertex

Logarithmically divergent \Rightarrow need both UV and IR regularization:

- UV regularization: $\epsilon > 0$
- IR regularization: mass regulator $\mu > 0$ with modified covariance

$$\mathcal{C}_{\mu}(p) = rac{1}{(p^2+\mu^2)^{\zeta}} = rac{1}{\Gamma(\zeta)} \int_{0}^{\infty} \, da \, a^{\zeta-1} e^{-ap^2-a\mu^2}$$

• Zero momentum BPHZ subtraction scheme

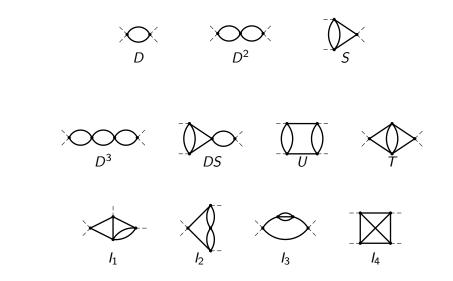
 $\Gamma^{(2)}_{ab}$ and $\Gamma^{(4)}_{abcd}$: one-particle irreducible two and four-point functions at zero external momentum

Amplitude of a Feynman graph G in Schwinger parametrization:

$$\begin{aligned} \mathcal{A}(G) &= \mu^{(d-4\zeta)(V-1)} \, \hat{\mathcal{A}}(G) \,, \\ \hat{\mathcal{A}}(G) &= \frac{1}{\left[(4\pi)^{d/2} \Gamma(\zeta)^2 \right]^{V-1}} \int_0^\infty \prod_{e \in G} da_e \; \frac{\prod_{e \in G} a_e^{\zeta-1} \; e^{-\sum_{e \in G} a_e}}{\left(\sum_{\mathcal{T} \in G} \prod_{e \notin \mathcal{T}} a_e \right)^{d/2}} \end{aligned}$$

- *V*: number of vertices
- e runs over the edges of G
- \mathcal{T} : spanning trees in G

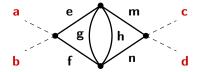
Four-point function: contributions up to three loops



$$\Gamma^{(4)}_{abcd} = \lambda_{abcd}$$
 + one-loop term + two-loop terms + three-loop terms

For example, the three-loop diagram T contributes to:

$$-\frac{1}{4} \left(\lambda_{\text{abef}} \lambda_{\text{eghm}} \lambda_{\text{fghn}} \lambda_{\text{mncd}} + 2 \text{ terms} \right) \mu^{-3\epsilon} \mathcal{T}$$



• Why "+ 2 terms "? To conserve the permutation symmetry

 $\Gamma^{(2)}_{\mathbf{cd}} = \kappa_{\mathbf{cd}} + \text{one-loop term} + \text{two-loop terms} + \text{three-loop terms}$

- Contributions from diagrams having at least one vertex with two external half-edges
- $\bullet\,$ Substitute one of this vertices by a $\kappa\,$ vertex
- Broken symmetry: only one term for each contribution

 $\Gamma^{(2)}_{\mathbf{cd}} = \kappa_{\mathbf{cd}} + \text{one-loop term} + \text{two-loop terms} + \text{three-loop terms}$

- Contributions from diagrams having at least one vertex with two external half-edges
- $\bullet\,$ Substitute one of this vertices by a $\kappa\,$ vertex
- Broken symmetry: only one term for each contribution
- Only interested in fixed points with $\kappa = 0$: means to obtain the scaling dimension of quadratic operators at the fixed points
- No diagrams with more insertions of κ vertices in $\Gamma_{cd}^{(2)}$
- No κ contributions to $\Gamma^{(4)}_{abcd}$

Beta functions

The dimensionless four-point function at zero external momenta is identified with the running coupling:

$$g_{\mathbf{abcd}} = \mu^{-\epsilon} \, \Gamma^{(4)}_{\mathbf{abcd}} \,, \qquad r_{\mathbf{cd}} = \mu^{-(d-2\Delta_{\phi})} \, \Gamma^{(2)}_{\mathbf{cd}} \,.$$

Beta functions: scale derivatives of the running coupling at fixed bare couplings

$$\beta_{abcd}^{(4)} = \mu \partial_{\mu} g_{abcd} , \qquad \beta_{cd}^{(2)} = \mu \partial_{\mu} r_{cd} .$$

Beta functions

The dimensionless four-point function at zero external momenta is identified with the running coupling:

$$g_{\mathbf{abcd}} = \mu^{-\epsilon} \, \Gamma^{(4)}_{\mathbf{abcd}}, \qquad r_{\mathbf{cd}} = \mu^{-(d-2\Delta_{\phi})} \, \Gamma^{(2)}_{\mathbf{cd}}.$$

Beta functions: scale derivatives of the running coupling at fixed bare couplings

$$eta^{(4)}_{abcd} = \mu \partial_{\mu} g_{abcd} \,, \qquad eta^{(2)}_{cd} = \mu \partial_{\mu} r_{cd} \,.$$

Method:

- $\bullet\,$ Derive the bare expansion with respect to $\mu\,$
- Invert the bare expansion to obtain the renormalized series
- Substitute the bare coupling by its expression in terms of the running coupling

Three-loop beta function

$$\beta_{abcd}^{(4)} = -\epsilon \tilde{g}_{abcd} + \alpha_D \left(\tilde{g}_{abef} \tilde{g}_{efcd} + 2 \text{ terms} \right) \\ + \alpha_S \left(\tilde{g}_{abef} \tilde{g}_{eghc} \tilde{g}_{fghd} + 5 \text{ terms} \right) \\ + \alpha_U \left(\tilde{g}_{aefg} \tilde{g}_{befh} \tilde{g}_{gmnc} \tilde{g}_{hmnd} + 5 \text{ terms} \right) \\ + \alpha_T \left(\tilde{g}_{abef} \tilde{g}_{eghm} \tilde{g}_{fghn} \tilde{g}_{mncd} + 2 \text{ terms} \right) \\ + \alpha_{I_1} \left(\tilde{g}_{abef} \tilde{g}_{eghm} \tilde{g}_{fgnc} \tilde{g}_{hmnd} + 11 \text{ terms} \right) \\ + \alpha_{I_2} \left(\tilde{g}_{abef} \tilde{g}_{eghc} \tilde{g}_{fmnd} \tilde{g}_{ghmn} + 5 \text{ terms} \right) \\ + \alpha_{I_3} \left(\tilde{g}_{abef} \tilde{g}_{hmnf} \tilde{g}_{hmng} \tilde{g}_{gecd} + 2 \text{ terms} \right) \\ + \alpha_{I_4} \left(\tilde{g}_{aemh} \tilde{g}_{befn} \tilde{g}_{cfmg} \tilde{g}_{dgnh} \right)$$

where we rescaled the couplings as $g_{abcd} = (4\pi)^{d/2} \Gamma(d/2) \tilde{g}_{abcd}$ and $r_{ab} = (4\pi)^{d/2} \Gamma(d/2) \tilde{r}_{ab}$

Alpha coefficients

Finite quantities thanks to counterterms from the renormalized series

$$\begin{split} \alpha_{D} &= \epsilon Q \frac{D}{2} , \qquad \qquad \alpha_{S} = \epsilon Q^{2} \frac{(D^{2} - 2S)}{2} , \\ \alpha_{U} &= \epsilon Q^{3} \frac{(D^{3} - 4DS + 3U)}{4} , \qquad \alpha_{T} = \epsilon Q^{3} \frac{(3T - 2DS)}{4} , \\ \alpha_{I_{1}} &= \epsilon Q^{3} \frac{(D^{3} - 3DS + 3I_{1})}{2} , \qquad \alpha_{I_{2}} = \epsilon Q^{3} \frac{(D^{3} - 4DS + 3I_{2})}{4} , \\ \alpha_{I_{3}} &= \epsilon Q^{3} \frac{I_{3}}{2} , \qquad \qquad \alpha_{I_{4}} = \epsilon Q^{3} 3I_{4} . \end{split}$$

with $Q=(4\pi)^{d/2}\,\Gamma(rac{d}{2})$

Finite quantities thanks to counterterms from the renormalized series

$$\begin{split} \alpha_D &= \epsilon Q \frac{D}{2} \,, & \alpha_S &= \epsilon Q^2 \, \frac{(D^2 - 2S)}{2} \,, \\ \alpha_U &= \epsilon Q^3 \, \frac{(D^3 - 4DS + 3U)}{4} \,, & \alpha_T &= \epsilon Q^3 \, \frac{(3T - 2DS)}{4} \,, \\ \alpha_{I_1} &= \epsilon Q^3 \, \frac{(D^3 - 3DS + 3I_1)}{2} \,, & \alpha_{I_2} &= \epsilon Q^3 \frac{(D^3 - 4DS + 3I_2)}{4} \,, \\ \alpha_{I_3} &= \epsilon Q^3 \, \frac{I_3}{2} \,, & \alpha_{I_4} &= \epsilon Q^3 \, 3I_4 \,. \end{split}$$

with $Q=(4\pi)^{d/2}\,\Gamma(rac{d}{2})$

Method:

- Schwinger parameters and Mellin-Barnes integrals
- $\bullet\,$ Computation only up to the needed powers in $\epsilon\,$

Amplitude T:

$$T = \frac{1}{(4\pi)^{3d/2} \Gamma(\zeta)^6} \int_0^\infty \prod_{i=1}^2 da_i db_i dc_i$$
$$\frac{(a_1 a_2 b_1 b_2 c_1 c_2)^{\zeta - 1} e^{-(a_1 + a_2 + b_1 + b_2 + c_1 + c_2)}}{\left[(a_1 + a_2)(b_1 + b_2)(c_1 + c_2) + b_1 b_2(a_1 + a_2 + c_1 + c_2)\right]^{d/2}}$$

Amplitude T:

$$T = \frac{1}{(4\pi)^{3d/2} \Gamma(\zeta)^6} \int_0^\infty \prod_{i=1}^2 da_i db_i dc_i$$
$$\frac{(a_1 a_2 b_1 b_2 c_1 c_2)^{\zeta - 1} e^{-(a_1 + a_2 + b_1 + b_2 + c_1 + c_2)}}{\left[(a_1 + a_2)(b_1 + b_2)(c_1 + c_2) + b_1 b_2(a_1 + a_2 + c_1 + c_2)\right]^{d/2}}$$

Introducing Mellin-parameters:

$$\begin{split} \mathcal{T} = & \frac{1}{(4\pi)^{3d/2} \Gamma(\zeta)^2 \Gamma(2\zeta)^2 \Gamma(\frac{d}{2})} \int_{0^-} [dz_1] \int_{0^-} [dz_2] \, \Gamma(\frac{d}{2} + z_1 + z_2) \\ & \frac{\Gamma(\zeta + z_1 + z_2)^2}{\Gamma(2\zeta + 2z_1 + 2z_2)} \Gamma(\frac{\epsilon}{2} + z_1 + z_2) \Gamma(-z_1) \Gamma(-z_2) \Gamma(\frac{\epsilon}{2} - z_2) \Gamma(\frac{\epsilon}{2} - z_1) \,. \end{split}$$

- Move both contours to the right
- Poles in z_1 and z_2 are independent
- Only four poles give singular contributions: (0,0), (0, $\epsilon/2$), ($\epsilon/2,0)$ and ($\epsilon/2,\epsilon/2$)
- Expand the contribution of each pole in ϵ
- Remaining integrals of order $\mathcal{O}(\epsilon^0)$

- Move both contours to the right
- Poles in z_1 and z_2 are independent
- Only four poles give singular contributions: (0,0), (0, $\epsilon/2$), ($\epsilon/2$, 0) and ($\epsilon/2, \epsilon/2$)
- Expand the contribution of each pole in ϵ
- Remaining integrals of order $\mathcal{O}(\epsilon^0)$

$$T = \frac{1}{3(4\pi)^{3d/2} \Gamma(d/2)^3} \left[\frac{8}{\epsilon^3} + \frac{8}{\epsilon^2} \left(2\psi(1) - \psi(\frac{d}{4}) - \psi(\frac{d}{2}) \right) \right. \\ \left. + \frac{1}{3\epsilon} \left(\pi^2 + 12 \left(2\psi(1) - \psi(\frac{d}{4}) - \psi(\frac{d}{2}) \right)^2 - 6\psi_1(\frac{d}{2}) \right) \right] + \mathcal{O}(\epsilon^0) \,.$$

One and two-loop coefficients:

$$\begin{split} \alpha_D &= 1 + \frac{\epsilon}{2} \left[\psi(1) - \psi(\frac{d}{2}) \right] + \frac{\epsilon^2}{8} \left[\left(\psi(1) - \psi(\frac{d}{2}) \right)^2 + \psi_1(1) - \psi_1(\frac{d}{2}) \right] \,, \\ \alpha_S &= 2\psi(\frac{d}{4}) - \psi(\frac{d}{2}) - \psi(1) \\ &+ \frac{\epsilon}{4} \left[\left[2\psi(\frac{d}{4}) - \psi(\frac{d}{2}) - \psi(1) \right] \left[3\psi(1) - 5\psi(\frac{d}{2}) + 2\psi(\frac{d}{4}) \right] \\ &+ 3\psi_1(1) + 4\psi_1(\frac{d}{4}) - 7\psi_1(\frac{d}{2}) - 4J_0(\frac{d}{4}) \right] \end{split}$$

with ψ_i the polygamma functions of order *i* and J_0 an indefinite sum.

Three-loop coefficients:

$$\begin{split} \alpha_{U} &= \alpha_{I_{2}} = -\psi_{1}(1) - \psi_{1}(\frac{d}{4}) + 2\psi_{1}(\frac{d}{2}) + J_{0}(\frac{d}{4}), \\ \alpha_{T} &= \frac{1}{2} \Big[2\psi(\frac{d}{4}) - \psi(\frac{d}{2}) - \psi(1) \Big]^{2} + \frac{1}{2}\psi_{1}(1) + \psi_{1}(\frac{d}{4}) - \frac{3}{2}\psi_{1}(\frac{d}{2}) - J_{0}(\frac{d}{4}), \\ \alpha_{I_{1}} &= \frac{3}{2} \Big[2\psi(\frac{d}{4}) - \psi(\frac{d}{2}) - \psi(1) \Big]^{2} + \frac{1}{2}\psi_{1}(1) - \frac{1}{2}\psi_{1}(\frac{d}{2}) \\ \alpha_{I_{3}} &= \frac{\Gamma(-\frac{d}{4})\Gamma(\frac{d}{2})^{2}}{3\Gamma(\frac{3d}{4})}, \\ \alpha_{I_{4}} &= \frac{\Gamma(1 + \frac{d}{4})^{3}\Gamma(-\frac{d}{4})}{\Gamma(\frac{d}{2})} \ 6 \left[\psi_{1}(1) - \psi_{1}(\frac{d}{4}) \right]. \end{split}$$

Long-range Ising Model

 $\mathcal{N} = 1$, $\tilde{g}_{abcd} = \tilde{g}$ and $\tilde{r}_{ab} = \tilde{r}$ Perturbative fixed point in ϵ :

$$\begin{split} \tilde{g}_{\star} &= \frac{\epsilon}{3} - \left(\frac{3\alpha_{D,1} + 2\alpha_{S,0}}{9}\right) \epsilon^2 - \frac{\epsilon^3}{81} \bigg[27\alpha_{D,2} - 24\alpha_{S,0}^2 \\ &+ 9(2\alpha_{S,1} - 3\alpha_{D,1}^2) - 54\alpha_{D,1}\alpha_{S,0} + 3\alpha_T + 6\alpha_U \\ &+ 12\alpha_{I_1} + 6\alpha_{I_2} + 3\alpha_{I_3} + \alpha_{I_4} \bigg] + \mathcal{O}(\epsilon^4) \,. \end{split}$$

with

$$\begin{aligned} \alpha_D &= 1 + \alpha_{D,1} \epsilon + \alpha_{D,2} \epsilon^2 + \mathcal{O}(\epsilon^3), \\ \alpha_S &= \alpha_{5,0} + \alpha_{5,1} \epsilon + \mathcal{O}(\epsilon^2). \end{aligned}$$

Critical exponents

- Stability exponents: $\partial_{\tilde{r}}\beta^{(2)}(\tilde{g}_{\star})$ and $\partial_{\tilde{g}}\beta^{(4)}(\tilde{g}_{\star})$
- $\bullet\,$ Critical exponents: anomalous dimension $\eta,$ susceptibility exponent γ and correlation length ν

• Related by:
$$\gamma = (2-\eta)
u$$

Enough to consider:

$$u^{-1} = -\partial_{\tilde{r}}\beta^{(2)}(\tilde{g}_{\star})$$

and the correction to scaling exponent:

$$\omega = \partial_{\tilde{g}} \beta^{(4)}(\tilde{g}_{\star})$$

Comparison with numerical result from the literature: good consistency

Transition between short-range and long-range:

- Happens at $2\zeta = 2 \eta_{SR}$
- In 2d consider ϵ up to 1.5
- Find consistent value with $\nu_{SR} = 1$

Transition between short-range and long-range:

• Happens at
$$2\zeta = 2 - \eta_{SR}$$

- In 2d consider ϵ up to 1.5
- Find consistent value with $\nu_{SR} = 1$

Conjectured relation between short and long range Ising models:

$$\frac{2\zeta}{d} = \frac{2 - \eta_{SR}(d_{SR})}{d_{SR}}$$

[Angelini et al., Defenu et al., Banos et al.]

- True at order ϵ_{SR}
- Fail already at order ϵ_{SR}^2

Long-range O(N) vector model

 $\mathcal{N} = \mathcal{N}$, $\mathbf{a} = a = 1, \dots, \mathcal{N}$, and so on and:

$$\tilde{g}_{abcd} = rac{\tilde{g}}{3} \left(\delta_{ab} \delta_{cd} + \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc}
ight), \qquad \tilde{r}_{ab} = \tilde{r} \, \delta_{ab} \,.$$

Long-range O(N) vector model

 $\mathcal{N} = \mathcal{N}$, $\mathbf{a} = a = 1, \dots, \mathcal{N}$, and so on and:

$$\widetilde{g}_{abcd} = \frac{\widetilde{g}}{3} \left(\delta_{ab} \delta_{cd} + \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} \right), \qquad \widetilde{r}_{ab} = \widetilde{r} \, \delta_{ab} \, .$$

Long-range version of the Wilson-Fisher fixed point:

$$\begin{split} \tilde{g}_{\star} &= \frac{3\epsilon}{N+8} - \frac{3\epsilon^2}{(N+8)^3} \left[(N+8)^2 \alpha_{D,1} + 2(5N+22)\alpha_{5,0} \right] \\ &+ \frac{3\epsilon^3}{(N+8)^5} \left[(N+8)^2 \left(2(5N+22)(3\alpha_{5,0}\alpha_{D,1} - \alpha_{5,1}) - 3(N+2)\alpha_{I_3} \right) \\ &+ (N+8)^4 (\alpha_{D,1}^2 - \alpha_{D,2}) + 8(5N+22)^2 \alpha_{5,0}^2 \\ &- (N+8) \left((3N^2 + 22N + 56)(2\alpha_{I_2} + \alpha_T) + (5N+22)\alpha_{I_4} \right) \\ &+ 2(N^2 + 20N + 60)(2\alpha_{I_1} + \alpha_U) \right] + \mathcal{O}(\epsilon^4) \end{split}$$

Critical exponents:

- One and two-loop results agree with literature [Fisher,Ma, Nickel; Yamazaki, Suzuki]
- Three-loop contributions are new
- N_c: critical value at which ω vanishes and the WF fixed-point becomes marginal

$$N_c = -8 \pm 6\sqrt{2|lpha_{5,0}|}\epsilon^{1/2} + \mathcal{O}(\epsilon)$$

Critical exponents:

- One and two-loop results agree with literature [Fisher,Ma, Nickel; Yamazaki, Suzuki]
- Three-loop contributions are new
- N_c: critical value at which ω vanishes and the WF fixed-point becomes marginal

$$N_c = -8 \pm 6\sqrt{2|lpha_{5,0}|}\epsilon^{1/2} + \mathcal{O}(\epsilon)$$

- Negative at small ϵ
- Quartic operator never becomes relevant for bosonic models
- Can cross marginality for symplectic fermions [Giuliani, Mastropietro, Rychkov]

Large N

Critical exponents up to order N^{-2} after rescaling $\tilde{g} = \bar{g}/N$:

$$\begin{split} \nu^{-1} &= 2\Delta_{\phi} + \frac{\epsilon}{N} \left[6 + 7\alpha_{5,0}\epsilon + \left(2\alpha_{U} + 2\alpha_{I_{1}} + 5\alpha_{I_{2}} \right. \\ &+ 7(\alpha_{5,1} - 2\alpha_{D,1}\alpha_{5,0})) \epsilon^{2} \right] \\ &- \frac{\epsilon}{N^{2}} \left[48 + 134\alpha_{5,0}\epsilon + \left(12\alpha_{I_{1}} + 122\alpha_{I_{2}} - 5\alpha_{I_{4}} \right. \\ &+ 134(\alpha_{5,1} - 2\alpha_{D,1}\alpha_{5,0}) + 140\alpha_{5,0}^{2} + 8\alpha_{T} + 20\alpha_{U}) \epsilon^{2} \right] + \mathcal{O}(N^{-3}, \epsilon^{4}) \end{split}$$

- Leading-order: spherical model result $\gamma = 2\zeta \nu = 2\zeta/(d-2\zeta)$ [Joyce]
- Order N^{-1} already computed to all orders in ϵ : reproduce it to three-loops [Fisher, Ma, Nickel]
- Order N^{-2} new

Explicit breaking of the O(N) symmetry with an interaction of the form $\sum_{\mathbf{a}} \phi_{\mathbf{a}}^4$. Setting:

$$\widetilde{g}_{abcd} = rac{\widetilde{g}_d}{3} \left(\delta_{ab} \delta_{cd} + \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} \right) + \widetilde{g}_c \delta_{ab} \delta_{ac} \delta_{ad} \,.$$

Explicit breaking of the O(N) symmetry with an interaction of the form $\sum_{\mathbf{a}} \phi_{\mathbf{a}}^4$. Setting:

$$\tilde{g}_{abcd} = \frac{\tilde{g}_d}{3} \left(\delta_{ab} \delta_{cd} + \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} \right) + \tilde{g}_c \delta_{ab} \delta_{ac} \delta_{ad} \,.$$

Four types of fixed points:

- Gaussian fixed point
- Heisenberg fixed point: $\tilde{g}_c^{\star} = 0$ and $\tilde{g}_d^{\star} \neq 0$
- Ising fixed point: ${\widetilde g}_c^\star
 eq 0$ and ${\widetilde g}_d^\star = 0$
- Cubic fixed point: both couplings are non-zero

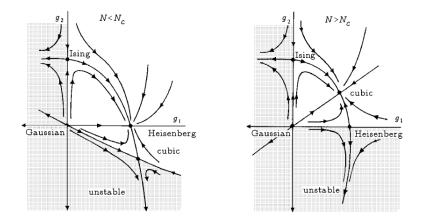
Computation up to ϵ^3 , two-loop terms agree with [Yamazaki,Holz;Chen,Li]

Stability

- Gaussian fixed point: doubly unstable
- Ising fixed point: one stable and one unstable direction
- N_c: critical value at which Heisenberg and cubic fixed points exchange stability
- $N < N_c$: Heisenberg fixed point is stable
- $N > N_c$: Cubic fixed point is stable

$$N_{c} = 4 + 2\epsilon\alpha_{5,0} + \frac{\epsilon^{2}}{6} \left(8\alpha_{I_{1}} + 4\alpha_{I_{2}} + \frac{5}{4}\alpha_{I_{4}} + 12(\alpha_{5,1} - 2\alpha_{D,1}\alpha_{5,0}) - 13\alpha_{5,0}^{2} - \alpha_{T} + 7\alpha_{U} \right).$$

Flow for $N < N_c$ and $N > N_c$



Taken from Kleinert, Schulte and Frohlinde, *Critical properties of* ϕ^4 *theories.*

Sabine Harribey

Long-range multi-scalar

 N_c at d = 3:

ϵ	one-loop	three-loop	PB [1/1]
0.2	4	3.5712	3.500(5)
0.4	4	3.5897	3.171(13)
0.6	4	4.0553	2.926(21)

- $N_c \sim$ 3: for N=3 ν_H and ν_C lie very close to each other
- Heisenberg and cubic critical behavior are practically indistinguishable

 $\mathcal{N}=\textit{MN}$ and

$$\begin{split} \tilde{g}_{abcd} &= \frac{\tilde{g}_{s}}{6} \left(\delta_{a_{1}b_{1}} \delta_{c_{1}d_{1}} (\delta_{a_{2}c_{2}} \delta_{b_{2}d_{2}} + \delta_{a_{2}d_{2}} \delta_{b_{2}c_{2}}) \right. \\ &+ \delta_{a_{1}c_{1}} \delta_{b_{1}d_{1}} (\delta_{a_{2}b_{2}} \delta_{c_{2}d_{2}} + \delta_{a_{2}d_{2}} \delta_{c_{2}b_{2}}) \\ &+ \delta_{a_{1}d_{1}} \delta_{c_{1}b_{1}} (\delta_{a_{2}c_{2}} \delta_{b_{2}d_{2}} + \delta_{a_{2}b_{2}} \delta_{d_{2}c_{2}})) \\ &+ \frac{\tilde{g}_{d}}{3} \left(\delta_{a_{1}b_{1}} \delta_{a_{2}b_{2}} \delta_{c_{1}d_{1}} \delta_{c_{2}d_{2}} + \delta_{a_{1}c_{1}} \delta_{a_{2}c_{2}} \delta_{b_{1}d_{1}} \delta_{b_{2}d_{2}} \right. \\ &+ \delta_{a_{1}d_{1}} \delta_{a_{2}d_{2}} \delta_{c_{1}b_{1}} \delta_{c_{2}b_{2}} \,, \end{split}$$

where $a_1 = 1, \ldots, M$ and $a_2 = 1, \ldots, N$ and so on.

Four fixed points:

- Gaussian fixed point
- Heisenberg fixed point: $\tilde{g}_s^{\star} = 0$ and $\tilde{g}_d^{\star} = rac{3\epsilon}{MN+8}$
- Chiral and anti-chiral fixed points: both couplings non zero:

$$\widetilde{g}_{s}^{\star} = rac{(12-3MN)\epsilon}{4+10(M+N)-MN(M+N+4)\pm 6\sqrt{Q}}$$

 $\tilde{g}_{d}^{\star} = \frac{-3(-80+2M+2N+M^{2}+N^{2}+2MN\mp4(M+N+4)\sqrt{Q})\epsilon}{2(464-56(M+N)-16(M^{2}+N^{2}+MN)+8MN(M+N)+MN(M+N)^{2})}$

where $Q = 52 - 4(M + N) + (M^2 - 10MN + N^2)$

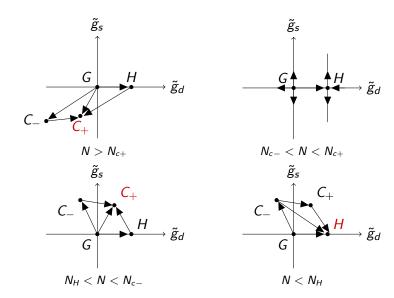
Four regimes of criticality at fixed M:

- $N > N_{c+}$: four real fixed points, and the chiral one is stable
- $N_{c-} < N < N_{c+}$: only the Gaussian and the Heisenberg fixed points are real, both unstable
- $N_H < N < N_{c-}$: four real fixed points, and the chiral one is stable

• $N < N_H$: four real fixed points, but the Heisenberg one is stable Found by solving:

$$\det \left| \frac{\partial(\beta_s, \beta_d)}{\partial(\tilde{g}_s, \tilde{g}_d)} \right|_{\tilde{g} = \tilde{g}^{\star}} = 0.$$

Flows for the four regimes of stability



Numerical values

Critical N's at d = 3 and M = 2:

ϵ		one-loop	three-loop	PB [1/1]
0.2	N_{c+}	21.8	16.36	15.7(12)
	N_{c-}	2.202	2.120	2.076(35)
	N _H	2	1.806	1.759(12)
0.4	N_{c+}	21.8	15.35	11.6(29)
	N_{c-}	2.202	2.245	2.01(9)
	N _H	2	1.875	1.608(29)
0.6	N_{c+}	21.8	18.76	8(4)
	N_{c-}	2.202	2.578	1.96(14)
	N _H	2	2.207	1.50(5)

• N = 2: chiral fixed point might exist

• N = 3: chiral fixed point not present and Heisenberg fixed point unstable

Sabine Harribey

Conclusion

- Long-range models: great interest for statistical physics methods
- Less explored than short-range counterparts: only up to two loops

Conclusion

- Long-range models: great interest for statistical physics methods
- Less explored than short-range counterparts: only up to two loops

Our work:

- Renormalization group beta functions for the general multi-scalar model up to three loops
- Provide higher order results for specific models: Ising, O(N), cubic and O(M) × O(N)

- Long-range models: great interest for statistical physics methods
- Less explored than short-range counterparts: only up to two loops

Our work:

- Renormalization group beta functions for the general multi-scalar model up to three loops
- Provide higher order results for specific models: Ising, O(N), cubic and $O(M) \times O(N)$

Perspective:

- Long-range studies with other methods: Monte-Carlo simulations, bootstrap or functional RG
- Crossover from long-range to short-range for general multi-scalar models

 $O(N)^3$ tensor model:

- Complex unstable fixed points in the short-range case [Giombi, Klebanov, Tarnopolsky]
- Real IR attractive fixed points in the long-range case [Benedetti, Gurau,SH]
- What happens at sub-leading order ?

 $O(N)^3$ tensor model:

- Complex unstable fixed points in the short-range case [Giombi, Klebanov, Tarnopolsky]
- Real IR attractive fixed points in the long-range case [Benedetti, Gurau,SH]
- What happens at sub-leading order ?

Idea: use beta functions of general multi-scalar model to study the 1/N corrections. Even more general setting: $O(N_1) \times O(N_2) \times O(N_3)$ tri-fundamental model