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Long-range models

Kinetic term of the form φ(∂2)ζφ with 0 < ζ < 1

Vast array of applications [Campa, Dauxois, Ruffo, 2009]

Admit phase transition [Dyson]

One-parameter families of universality classes: ζ

Study transition between short-range and long-range universality
classes [Angelini et al., Brezin et al.,...]

Rigorous renormalization group in d = 3 [Brydges et al., Abdesselam,...]

Challenges
No local energy momentum tensor: conformal invariance ? [Paulos,

Rychkov, van Rees, Zan]

Analytic evaluation of Feynman integrals: only up to two loops

⇒ Here up to three loops
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Long-range multi-scalar model

S [φ] =

∫
ddx

[
1
2
φa(x)(−∂2)ζφa(x) +

1
2
κabφa(x)φb(x)

+
1
4!
λabcdφa(x)φb(x)φc(x)φd(x)

]

Indices take values from 1 to N

Mass parameter κ treated as a perturbation

d < 4 fixed

Canonical dimension of the field: ∆φ = d−2ζ
2

Weakly relevant case: ζ = d+ε
4 with small ε

UV dimension of the field ∆φ = d−ε
4
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Divergences and regularization

Theory at ε = 0:
With only λ vertices: 2-point graphs power divergent, 4-point graphs
log divergent, higher orders convergent

Local power divergence subtracted: convergent 2-point graphs

No wave function renormalization

κ vertices: φ2 insertions ⇒ quartic vertices with two external
half-edges

With power counting, the only superficially divergent graphs are:
Four-point graphs with only λ vertices

Two-point graphs with exactly one κ vertex
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Choice of scheme

Logarithmically divergent ⇒ need both UV and IR regularization:
UV regularization: ε > 0

IR regularization: mass regulator µ > 0 with modified covariance

Cµ(p) =
1

(p2 + µ2)ζ
=

1
Γ(ζ)

∫ ∞
0

da aζ−1e−ap
2−aµ2

Zero momentum BPHZ subtraction scheme
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Two and four point functions: amplitude

Γ
(2)
ab and Γ

(4)
abcd: one-particle irreducible two and four-point functions at

zero external momentum

Amplitude of a Feynman graph G in Schwinger parametrization:

A(G ) = µ(d−4ζ)(V−1) Â(G ) ,

Â(G ) =
1[

(4π)d/2Γ(ζ)2
]V−1 ∫ ∞

0

∏
e∈G

dae

∏
e∈G aζ−1e e−

∑
e∈G ae(∑

T ∈G
∏

e /∈T ae
)d/2

V : number of vertices
e runs over the edges of G
T : spanning trees in G
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Four-point function: contributions up to three loops

D D2 S

D3 DS U T

I1 I2 I3 I4
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Four-point function: bare expansion

Γ
(4)
abcd = λabcd + one-loop term + two-loop terms + three-loop terms

For example, the three-loop diagram T contributes to:

− 1
4
(
λabefλeghmλfghnλmncd + 2 terms

)
µ−3εT

m

n

e

f

a

b

c

d

g h

Why "+ 2 terms " ? To conserve the permutation symmetry
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Two-point function: bare expansion

Γ
(2)
cd = κcd + one-loop term + two-loop terms + three-loop terms

Contributions from diagrams having at least one vertex with two
external half-edges

Substitute one of this vertices by a κ vertex

Broken symmetry: only one term for each contribution

Only interested in fixed points with κ = 0: means to obtain the
scaling dimension of quadratic operators at the fixed points

No diagrams with more insertions of κ vertices in Γ
(2)
cd

No κ contributions to Γ
(4)
abcd
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Beta functions

The dimensionless four-point function at zero external momenta is
identified with the running coupling:

gabcd = µ−ε Γ
(4)
abcd , rcd = µ−(d−2∆φ) Γ

(2)
cd .

Beta functions: scale derivatives of the running coupling at fixed bare
couplings

β
(4)
abcd = µ∂µgabcd , β

(2)
cd = µ∂µrcd .

Method:
Derive the bare expansion with respect to µ
Invert the bare expansion to obtain the renormalized series
Substitute the bare coupling by its expression in terms of the running
coupling
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Three-loop beta function

β
(4)
abcd = −εg̃abcd + αD (g̃abef g̃efcd + 2 terms)

+ αS

(
g̃abef g̃eghcg̃fghd + 5 terms

)
+ αU(g̃aefgg̃befhg̃gmncg̃hmnd + 5 terms)

+ αT (g̃abef g̃eghmg̃fghng̃mncd + 2 terms)

+ αI1(g̃abef g̃eghmg̃fgncg̃hmnd + 11 terms)

+ αI2(g̃abef g̃eghcg̃fmndg̃ghmn + 5 terms)

+ αI3(g̃abef g̃hmnf g̃hmngg̃gecd + 2 terms)

+ αI4(g̃aemhg̃befng̃cfmgg̃dgnh)

where we rescaled the couplings as gabcd = (4π)d/2 Γ(d/2) g̃abcd and
rab = (4π)d/2 Γ(d/2) r̃ab
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Alpha coefficients

Finite quantities thanks to counterterms from the renormalized series

αD = εQ
D

2
, αS = εQ2 (D2 − 2S)

2
,

αU = εQ3 (D3 − 4DS + 3U)

4
, αT = εQ3 (3T − 2DS)

4
,

αI1 = εQ3 (D3 − 3DS + 3I1)

2
, αI2 = εQ3 (D3 − 4DS + 3I2)

4
,

αI3 = εQ3 I3
2
, αI4 = εQ3 3I4 .

with Q = (4π)d/2 Γ(d2 )

Method:
Schwinger parameters and Mellin-Barnes integrals
Computation only up to the needed powers in ε
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Example: computation of T integral

Amplitude T :

T =
1

(4π)3d/2Γ(ζ)6

∫ ∞
0

2∏
i=1

daidbidci

(a1a2b1b2c1c2)ζ−1e−(a1+a2+b1+b2+c1+c2)[
(a1 + a2)(b1 + b2)(c1 + c2) + b1b2(a1 + a2 + c1 + c2)

]d/2

Introducing Mellin-parameters:

T =
1

(4π)3d/2Γ(ζ)2Γ(2ζ)2Γ(d2 )

∫
0−

[dz1]

∫
0−

[dz2] Γ(d2 + z1 + z2)

Γ(ζ + z1 + z2)2

Γ(2ζ + 2z1 + 2z2)
Γ( ε2 + z1 + z2)Γ(−z1)Γ(−z2)Γ( ε2 − z2)Γ( ε2 − z1) .
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Example: computation of T integral

Move both contours to the right
Poles in z1 and z2 are independent
Only four poles give singular contributions: (0, 0), (0, ε/2), (ε/2, 0)
and (ε/2, ε/2)

Expand the contribution of each pole in ε
Remaining integrals of order O(ε0)

T =
1

3(4π)3d/2Γ(d/2)3

[
8
ε3

+
8
ε2
(
2ψ(1)− ψ(d4 )− ψ(d2 )

)
+

1
3ε

(
π2 + 12

(
2ψ(1)− ψ(d4 )− ψ(d2 )

)2 − 6ψ1(d2 )
)]

+O(ε0) .

Sabine Harribey Long-range multi-scalar Tensor Journal Club 15 / 34



Example: computation of T integral

Move both contours to the right
Poles in z1 and z2 are independent
Only four poles give singular contributions: (0, 0), (0, ε/2), (ε/2, 0)
and (ε/2, ε/2)

Expand the contribution of each pole in ε
Remaining integrals of order O(ε0)

T =
1

3(4π)3d/2Γ(d/2)3

[
8
ε3

+
8
ε2
(
2ψ(1)− ψ(d4 )− ψ(d2 )

)
+

1
3ε

(
π2 + 12

(
2ψ(1)− ψ(d4 )− ψ(d2 )

)2 − 6ψ1(d2 )
)]

+O(ε0) .

Sabine Harribey Long-range multi-scalar Tensor Journal Club 15 / 34



Main result: computation of the alpha coefficients (1)

One and two-loop coefficients:

αD = 1 +
ε

2
[
ψ(1)− ψ(d2 )

]
+
ε2

8

[(
ψ(1)− ψ(d2 )

)2
+ ψ1(1)− ψ1(d2 )

]
,

αS = 2ψ(d4 )− ψ(d2 )− ψ(1)

+
ε

4

[ [
2ψ(d4 )− ψ(d2 )− ψ(1)

] [
3ψ(1)− 5ψ(d2 ) + 2ψ(d4 )

]
+ 3ψ1(1) + 4ψ1(d4 )− 7ψ1(d2 )− 4J0(d4 )

]
with ψi the polygamma functions of order i and J0 an indefinite sum.
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Main results: computation of the alpha coefficients (2)

Three-loop coefficients:

αU = αI2 = −ψ1(1)− ψ1(d4 ) + 2ψ1(d2 ) + J0(d4 ) ,

αT =
1
2

[
2ψ(d4 )− ψ(d2 )− ψ(1)

]2
+

1
2
ψ1(1) + ψ1(d4 )− 3

2
ψ1(d2 )− J0(d4 ) ,

αI1 =
3
2
[
2ψ(d4 )− ψ(d2 )− ψ(1)

]2
+

1
2
ψ1(1)− 1

2
ψ1(d2 )

αI3 =
Γ(−d

4 )Γ(d2 )2

3 Γ(3d4 )
,

αI4 =
Γ(1 + d

4 )3Γ(−d
4 )

Γ(d2 )
6
[
ψ1(1)− ψ1(d4 )

]
.

Sabine Harribey Long-range multi-scalar Tensor Journal Club 17 / 34



Long-range Ising Model

N = 1, g̃abcd = g̃ and r̃ab = r̃
Perturbative fixed point in ε:

g̃? =
ε

3
−
(
3αD,1 + 2αS ,0

9

)
ε2 − ε3

81

[
27αD,2 − 24α2S ,0

+ 9(2αS ,1 − 3α2D,1)− 54αD,1αS,0 + 3αT + 6αU

+ 12αI1 + 6αI2 + 3αI3 + αI4

]
+ O(ε4) .

with

αD = 1 + αD,1 ε + αD,2 ε
2 + O(ε3) ,

αS = αS,0 + αS ,1 ε + O(ε2) .
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Critical exponents

Stability exponents: ∂r̃β(2)(g̃?) and ∂g̃β(4)(g̃?)

Critical exponents: anomalous dimension η, susceptibility exponent γ
and correlation length ν

Related by: γ = (2− η)ν

Enough to consider:
ν−1 = − ∂r̃β(2)(g̃?)

and the correction to scaling exponent:

ω = ∂g̃β
(4)(g̃?)

Comparison with numerical result from the literature: good consistency
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Link between short and long-range Ising model

Transition between short-range and long-range:
Happens at 2ζ = 2− ηSR
In 2d consider ε up to 1.5
Find consistent value with νSR = 1

Conjectured relation between short and long range Ising models:

2ζ
d

=
2− ηSR(dSR)

dSR

[Angelini et al., Defenu et al., Banos et al.]

True at order εSR
Fail already at order ε2SR
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Long-range O(N) vector model

N = N, a = a = 1, . . . ,N, and so on and:

g̃abcd =
g̃

3
(
δabδcd + δacδbd + δadδbc

)
, r̃ab = r̃ δab .

Long-range version of the Wilson-Fisher fixed point:

g̃? =
3ε

N + 8
− 3ε2

(N + 8)3

[
(N + 8)2αD,1 + 2(5N + 22)αS ,0

]
+

3ε3

(N + 8)5

[
(N + 8)2

(
2(5N + 22)(3αS,0αD,1 − αS ,1)− 3(N + 2)αI3

)
+ (N + 8)4(α2D,1 − αD,2) + 8(5N + 22)2α2S,0

− (N + 8)
(

(3N2 + 22N + 56)(2αI2 + αT ) + (5N + 22)αI4

+ 2(N2 + 20N + 60)(2αI1 + αU)
)]

+ O(ε4)
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Long-range O(N) vector model

Critical exponents:
One and two-loop results agree with literature [Fisher,Ma, Nickel;

Yamazaki, Suzuki]

Three-loop contributions are new
Nc : critical value at which ω vanishes and the WF fixed-point
becomes marginal

Nc = −8± 6
√

2|αS ,0|ε1/2 +O(ε)

Negative at small ε
Quartic operator never becomes relevant for bosonic models
Can cross marginality for symplectic fermions [Giuliani, Mastropietro,

Rychkov]
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Large N

Critical exponents up to order N−2 after rescaling g̃ = ḡ/N:

ν−1 = 2∆φ +
ε

N

[
6 + 7αS ,0ε+

(
2αU + 2αI1 + 5αI2

+ 7(αS ,1 − 2αD,1αS ,0)
)
ε2
]

− ε

N2

[
48 + 134αS ,0ε+

(
12αI1 + 122αI2 − 5αI4

+ 134(αS,1 − 2αD,1αS,0) + 140α2S ,0 + 8αT + 20αU

)
ε2
]

+ O(N−3, ε4)

Leading-order: spherical model result γ = 2ζν = 2ζ/(d − 2ζ) [Joyce]

Order N−1 already computed to all orders in ε: reproduce it to
three-loops [Fisher, Ma, Nickel]

Order N−2 new
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Long-range cubic model

Explicit breaking of the O(N) symmetry with an interaction of the form∑
a φ

4
a. Setting:

g̃abcd =
g̃d
3

(δabδcd + δacδbd + δadδbc) + g̃cδabδacδad .

Four types of fixed points:
Gaussian fixed point
Heisenberg fixed point: g̃?c = 0 and g̃?d 6= 0
Ising fixed point: g̃?c 6= 0 and g̃?d = 0
Cubic fixed point: both couplings are non-zero

Computation up to ε3, two-loop terms agree with [Yamazaki,Holz;Chen,Li]
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Stability

Gaussian fixed point: doubly unstable
Ising fixed point: one stable and one unstable direction
Nc : critical value at which Heisenberg and cubic fixed points
exchange stability
N < Nc : Heisenberg fixed point is stable
N > Nc : Cubic fixed point is stable

Nc = 4 + 2εαS,0 +
ε2

6

(
8αI1 + 4αI2 +

5
4
αI4 + 12(αS,1 − 2αD,1αS ,0)

− 13α2S ,0 − αT + 7αU

)
.
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Flow for N < Nc and N > Nc

Taken from Kleinert, Schulte and Frohlinde, Critical properties of φ4

theories.
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Numerical values

Nc at d = 3:

ε one-loop three-loop PB [1/1]

0.2 4 3.5712 3.500(5)
0.4 4 3.5897 3.171(13)
0.6 4 4.0553 2.926(21)

Nc ∼ 3: for N = 3 νH and νC lie very close to each other

Heisenberg and cubic critical behavior are practically indistinguishable
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O(M)× O(N) bi-fundamental model

N = MN and

g̃abcd =
g̃s
6
(
δa1b1δc1d1(δa2c2δb2d2 + δa2d2δb2c2)

+ δa1c1δb1d1(δa2b2δc2d2 + δa2d2δc2b2)

+ δa1d1δc1b1(δa2c2δb2d2 + δa2b2δd2c2)
)

+
g̃d
3
(
δa1b1δa2b2δc1d1δc2d2 + δa1c1δa2c2δb1d1δb2d2

+ δa1d1δa2d2δc1b1δc2b2

)
,

r̃ab = r̃ δa1b1δa2b2 ,

where a1 = 1, . . . ,M and a2 = 1, . . . ,N and so on.

Sabine Harribey Long-range multi-scalar Tensor Journal Club 28 / 34



Fixed points

Four fixed points:
Gaussian fixed point

Heisenberg fixed point: g̃?s = 0 and g̃?d = 3ε
MN+8

Chiral and anti-chiral fixed points: both couplings non zero:

g̃?s = (12−3MN)ε

4+10(M+N)−MN(M+N+4)±6
√
Q

g̃?d = −3(−80+2M+2N+M2+N2+2MN∓4(M+N+4)
√
Q)ε

2(464−56(M+N)−16(M2+N2+MN)+8MN(M+N)+MN(M+N)2)

where Q = 52− 4(M + N) + (M2 − 10MN + N2)
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Stability

Four regimes of criticality at fixed M:
N > Nc+: four real fixed points, and the chiral one is stable

Nc− < N < Nc+: only the Gaussian and the Heisenberg fixed points
are real, both unstable

NH < N < Nc−: four real fixed points, and the chiral one is stable

N < NH : four real fixed points, but the Heisenberg one is stable
Found by solving:

det
∣∣∣∣∂(βs , βd)

∂(g̃s , g̃d)

∣∣∣∣
g̃=g̃?

= 0 .
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Flows for the four regimes of stability

G H

C+
C−

g̃d

g̃s

N > Nc+

G H
g̃d

g̃s

Nc− < N < Nc+

G

H

C+

C−

C−
g̃d

g̃s

NH < N < Nc−

G

H

C+

C−
g̃d

g̃s

N < NH
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Numerical values

Critical N’s at d = 3 and M = 2:

ε one-loop three-loop PB [1/1]

0.2
Nc+ 21.8 16.36 15.7(12)
Nc− 2.202 2.120 2.076(35)
NH 2 1.806 1.759(12)

0.4
Nc+ 21.8 15.35 11.6(29)
Nc− 2.202 2.245 2.01(9)
NH 2 1.875 1.608(29)

0.6
Nc+ 21.8 18.76 8(4)
Nc− 2.202 2.578 1.96(14)
NH 2 2.207 1.50(5)

N = 2: chiral fixed point might exist
N = 3: chiral fixed point not present and Heisenberg fixed point
unstable
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Conclusion

Long-range models: great interest for statistical physics methods
Less explored than short-range counterparts: only up to two loops

Our work:
Renormalization group beta functions for the general multi-scalar
model up to three loops
Provide higher order results for specific models: Ising, O(N), cubic
and O(M)× O(N)

Perspective:
Long-range studies with other methods: Monte-Carlo simulations,
bootstrap or functional RG
Crossover from long-range to short-range for general multi-scalar
models
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Work in progress: tri-fundamental model

O(N)3 tensor model:
Complex unstable fixed points in the short-range case [Giombi, Klebanov,

Tarnopolsky]

Real IR attractive fixed points in the long-range case [Benedetti,

Gurau,SH]

What happens at sub-leading order ?

Idea: use beta functions of general multi-scalar model to study the 1/N
corrections. Even more general setting: O(N1)× O(N2)× O(N3)
tri-fundamental model
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