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Overview

Partly based on joint work with Razvan Gurau and Luca Lionni
Plan:

1. Motivations

2. Classical Weingarten calculus.

3. Variants: real, quantum, centered, etc.

4. Asymptotics.

5. Some results



Motivation

A little bit of down-to-earth free probability

I Let A,B be two selfadjoint matrices in Mn(C). Their
eigenvectors are unknown but their eigenvalues
(λ1 ≥ . . . ≥ λn, resp. µ1 ≥ . . . ≥ µn) are known.

I What are all possible eigenvalues of A + B? (say
ν1 ≥ . . . ≥ νn)



Motivation

I This is Horn’s problem.

I Some equalities and inequalities are easy to prove. Horn
conjectured it to be a polytope that he described

I The prof that it is a polytope was obtained through the help
of symplectic geometry (Guillemin, Kirwan, Sternberg)

I The full description of the polytope was solved by Knutson,
Tao, etc. (after Klyachko proved an equivalence with a
problem in representation theory – the saturation conjecture).



Motivation

I The above is not probabilistic but the eigenvalues follow a
distribution (and in principle the problem boils down to
describing its support)

I This is a problem about convolution of orbits.

I Therefore, it can in principle be done with the Harish Chandra
Itzyson Zuber HCIZ integral

∫
U∈U(n) exp(Tr(AUBU∗))dU.

I There exists nice formulas for HCIZ.



Motivation

I If we take sequences An, Bn and assume the histogram of the
spectrum has a limiting shape (technically: the ESD
converges), then the same holds true (with high probability)
for An + UBnU

∗.

I Technically, n−1Tr(Ak
n)→ ak and n−1Tr(Bk

n )→ bk for all
integers.

I This is a concentration phenomenon and it is a possible
definition of free probability (or at least, free additive
convolution)



Motivation

I How about tensors, then? One concrete example: if
A,B ∈ Mn(C)⊗2, what can be said about

A + U ⊗ V · B · U∗ ⊗ V ∗

I Motivation: bipartite Hamiltonian or states that evolve
according to local reversible dynamics (or the typical behavior
under this setup). And generalize free probability.

I Remark: we are also interested in (and deal with) D-partite

I Difficulty: the eigenvalues are not enough to describe the
orbits (they are described by diagrams). The situation is
slightly simpler for rang 1 matrices in the bipartite case (pure
states, classified by Schmidt coefficients)



Motivation

I This involves matrix integrals over tensors. Typically:∫
U∈U(n),V∈U(n)

exp(Tr(AU ⊗ VBU∗ ⊗ V ∗))dUdV .

and the logarithm thereof.

I Problem: there is no HCIZ integral.

I Gaussian variants have been studied for Gaussian vectors. In
this case one relies on the Wick theorem, which is simpler.
But we are limited on the orbits.

I In our case, we need to extend to unitary integrals and
therefore calculate unitary integrals.



Weingarten calculus

I We want to calculate∫
ui1j1 . . . uik jkui ′1j ′1 . . . ui ′k j

′
k
.

I Answer (Weingarten theorem): This is∑
σ,τ∈Sk

δi ,i ′,σδj ,j ′,τWg(στ−1, n)

where Wg will be defined @next slides.

I Compare with real and GOE, GUE.



Weingarten calculus: formula

I Set Wg(σ, τ, n) = Wg(στ−1, n). Wg is defined as follows:
take a k!× k! matrix indexed by permutations (or pairings).

Wg = (Wg(σ, τ, n))σ,τ

I Set G = (n#loops(στ−1
))σ,τ . This is a positive (Gram matrix,

see later). Wg is characterized by

Wg = G−1

(pseudo-inverse if needs be)



Weingarten calculus: proof

I Why is this true? Consider the unitary matrix

Z = U⊗k ⊗ U
⊗k

.

I Fact: P = E (Z ) is an orthogonal projection onto fixed points
of Z .

I Schur-Weyl duality (black box): the fixed points are generated
by permutations.



Weingarten calculus: proof

I The canonical matrix coefficients of P are exactly∫
ui1j1 . . . uik jkui ′1j ′1 . . . ui ′k j

′
k
.

I G is the gram matrix of the canonical fixed point basis, and
δi ,i ′,σ is the scalar product of a canonical matrix
Ei1i ′1
⊗ . . .⊗ Eik i

′
k

with the canonical element σ.

I Conclude with formula for a projection when the basis is not
orthogonal (remark: that’s one key difference with Wick
calculus).



Weingarten calculus: expansion

I How to calculate Wg? (the theorem itself is already a formula)

I

Wg(σ, n) = n−k
∑
path

(−n)l(path)

where a path is a solution (i1j1) . . . (il jl) = σ satisying
im < jm, jm−1 ≤ jm, and l(path) = l

I This follows either from Jucys-Murphy theory
(Novak-Matsumoto) or from orthogonality relations
(Weingarten, C-Matsumoto)

I There is a relation in terms of monotone Hurwitz number.

I Remark: there is also a signed formula in terms of
permutation paths.



Weingarten calculus, asymptotics

I First order asymptotics Wg in dimension.

I

Wg(σ1 t σ2, n) = Wg(σ1, n)Wg(σ2, n)(1 + O(n−2))

I

Wg((1, . . . , k), n) =
(−1)k−1Ck−1

(n − k + 1) . . . (n + k − 1)

I These two facts combined basically yield Speicher’s
non-crossing Moebius function.

I Uniform bounds are achievable (C, Matsumoto)



Weingarten calculus, orthogonal version

I Complex conjugate not needed in the orthogonal case:∫
ui1j1 . . . uik jk

with k even, and permutations become pair partitions.

I The proof is the same (with projections) and leading
estimates are the same.

I No more explicit formula or genus expansion.

I Uniform bounds similar to the uniform case.



Centered Weingarten calculus

I For a random variable X , we define [X ] = X − E (X ) (its
centering).

I For a symbol ε ∈ {·,−} and z ∈ C, we take the notation that
zε = z if ε = · and zε = z if ε = −. We want to to compute
for U = (Uij) Haar distributed on Un, expresssions of the form

E
T∏
t=1

[
kt∏
l=1

Uεtl
xtlytl

]

in a meaningful way.

I Needed for estimates for tensors (Bordenave, C). .



Centered Weingarten calculus

I We can write a Weingarten formula

E
T∏
t=1

[
kt∏
l=1

Uεtl
xtlytl

] =
∑

σ,τ∈P2(k1+...+kT )

δσ,xδτ,yWgcentered(σ, τ, part)

I The function Wg depends on the pairings and the partition.

Theorem
Wg decays as n−k where
k = (k1 + . . .+ kT )/2 + d(σ, τ) + 2#lonesome blocks.

I This estimate is uniform on k ∼ Poly(n).



Connected Weingarten calculus

I Next, we consider the classical cumulants CT . These are
symmetric T -linear forms polarizing the expansion

log E (expX ) =
∑
T≥1

CT (X )/T !.

For example C1(X ) = X ,C2(X1,X2) = E (X1X2)−
E (X1)E (X2),C (X1,X2,X3) = E (X1X2X3)− E (X1)E (X2X3)−
E (X2)E (X3X1)− E (X3)E (X1X2) + 2E (X1)E (X2)E (X3), etc.

I We want to to compute for U = (Uij) Haar distributed on Un,
expressions of the form

CT ([
kt∏
l=1

Uεtl
xtlytl

]t)

in a meaningful way.



Connected Weingarten calculus

I We can write a Weingarten formula

E
T∏
t=1

[
kt∏
l=1

Uεtl
xtlytl

] =
∑

σ,τ∈P2(k1+...+kT )

δσ,xδτ,yWgconnected(σ, τ, part)

I The function Wg depends on the pairings and the partition.

Theorem
Wgconnected decays as n−k where
k = (k1 + . . .+ kT )/2 + d(σ, τ) + 2(#blocks(part, σ, τ)− 1).



Centered and connected leading orders

I In the centered case, we do not know how to interpret leading
orders (Bordenave C). Unlikely to have a conceptual
formulation

I In the connected case, we have a combinatorial interpretation
(following C-03, Zuber O’Brien 81, Bousquet-Melou
Schaeffer, etc, with consellations) – left to a further
presentation of Luca/Razvan?



Tensor connected Weingarten calculus: expansion and
asymptotics

I Problem: compute Cn(Tr(AUBU∗)) where A,B ∈ Mn(C)⊗C

and U = U1 ⊗ . . .⊗ UD .

I Thm 4.1 p15



Thank you!


