

Quantum error correction and large N

Alexey Milekhin

Princeton University → UC Santa Barbara

Based on:
e-Print: arXiv:2008.12869

- Quantum error correction seem to be tightly related with holography

Almheiri, Dong, Harlow'14

- Quantum error correction seem to be tightly related with holography

Almheiri, Dong, Harlow'14

- Error correction generally implies redundancy

- Quantum error correction seem to be tightly related with holography

Almheiri, Dong, Harlow'14

- Error correction generally implies redundancy
- Examples of AdS/CFT include large gauge groups: singlet states!

Mintun, Polchinski, Rosenhaus' 15

- Quantum error correction seem to be tightly related with holography

Almheiri, Dong, Harlow'14

- Error correction generally implies redundancy
- Examples of AdS/CFT include large gauge groups: singlet states!

Mintun, Polchinski, Rosenhaus' 15

- Charged states are not present in the IR gravity description of D0-brane QM.

Maldacena, AM'17

- Quantum error correction seem to be tightly related with holography

Almheiri, Dong, Harlow'14

- Error correction generally implies redundancy
- Examples of AdS/CFT include large gauge groups: singlet states!

Mintun, Polchinski, Rosenhaus' 15

- Charged states are not present in the IR gravity description of D0-brane QM.

Maldacena, AM'17

- Scar states from singlets

Pakrouski, Pallegar, Popov, Klebanov'20

- I would like to emphasize the importance of large N limit.

- I would like to emphasize the importance of large N limit.
- Namely, large N automatically implies a version of quantum error correction in the gauge-singlet sector, regardless of the Hamiltonian

- I would like to emphasize the importance of large N limit.
- Namely, large N automatically implies a version of quantum error correction in the gauge-singlet sector, regardless of the Hamiltonian
- I will discuss matrix models(think reduction of Yang–Mills to QM) and tensor-models(think Gurau–Witten or Carrozza–Tanasa–Klebanov–Tarnopolsky)

- I would like to emphasize the importance of large N limit.
- Namely, large N automatically implies a version of quantum error correction in the gauge-singlet sector, regardless of the Hamiltonian
- I will discuss matrix models(think reduction of Yang–Mills to QM) and tensor-models(think Gurau–Witten or Carrozza–Tanasa–Klebanov–Tarnopolsky)

Numerous disclaimers:

- I would like to emphasize the importance of large N limit.
- Namely, large N automatically implies a version of quantum error correction in the gauge-singlet sector, regardless of the Hamiltonian
- I will discuss matrix models(think reduction of Yang–Mills to QM) and tensor-models(think Gurau–Witten or Carrozza–Tanasa–Klebanov–Tarnopolsky)

Numerous disclaimers:

- Boundary perspective: quantum mechanics of fermions

- I would like to emphasize the importance of large N limit.
- Namely, large N automatically implies a version of quantum error correction in the gauge-singlet sector, regardless of the Hamiltonian
- I will discuss matrix models (think reduction of Yang–Mills to QM) and tensor-models (think Gurau–Witten or Carrozza–Tanasa–Klebanov–Tarnopolsky)

Numerous disclaimers:

- Boundary perspective: quantum mechanics of fermions
- No locality: stringy geometry

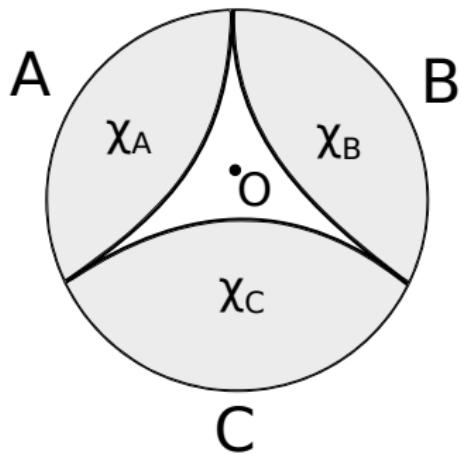
Berenestein'04; Itzhaki, McGreevy'04; ...

How robust are singlet states in these models against errors, such as erasures?

- 1 Motivation: Holographic error correction
- 2 An illustration
- 3 Erasure of a subsystem and quantum operations
- 4 Matrix models
- 5 Tensor models
- 6 Conclusion

Consider HKLL and causal wedge reconstruction.

Almheiri, Dong, Harlow '15



Consider HKLL and causal wedge reconstruction.

Almheiri, Dong, Harlow '15



Reconstruction of O requires AB or AC or BC. No need for the whole ABC.

Interpretation: quantum error correction.

Holographic states are robust: loss of A does not prevent us from reconstructing O .

Interpretation: quantum error correction.

Holographic states are robust: loss of A does not prevent us from reconstructing O .

Quantum mechanical models have no geometry but we can still study the robustness against erasures.

Interpretation: quantum error correction.

Holographic states are robust: loss of A does not prevent us from reconstructing O .

Quantum mechanical models have no geometry but we can still study the robustness against erasures.

Comment: Gauge symmetry vs global symmetry: singlet errors vs arbitrary errors?

An illustration: $U(N)$ matrix model

An illustration: $U(N)$ matrix model

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$

An illustration: $U(N)$ matrix model

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$

An illustration: $U(N)$ matrix model

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

$$|\xi_1\rangle = \psi_{31}|s\rangle \quad |\xi_2\rangle = \psi_{32}\psi_{21}|s\rangle$$

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

$$|\xi_1\rangle = \psi_{31}|s\rangle \quad |\xi_2\rangle = \psi_{32}\psi_{21}|s\rangle$$

- Can we distinguish $|\xi_1\rangle$ and $|\xi_2\rangle$?

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

$$|\xi_1\rangle = \psi_{31}|s\rangle \quad |\xi_2\rangle = \psi_{32}\psi_{21}|s\rangle$$

- Can we distinguish $|\xi_1\rangle$ and $|\xi_2\rangle$?
- In general, the answer is *no*: they are not orthogonal:

$$\langle \xi_2 | \xi_1 \rangle = \langle s | \psi_{12}\psi_{23}\psi_{31} | s \rangle =$$

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

$$|\xi_1\rangle = \psi_{31}|s\rangle \quad |\xi_2\rangle = \psi_{32}\psi_{21}|s\rangle$$

- Can we distinguish $|\xi_1\rangle$ and $|\xi_2\rangle$?
- In general, the answer is *no*: they are not orthogonal:

$$\langle \xi_2 | \xi_1 \rangle = \langle s | \psi_{12}\psi_{23}\psi_{31} | s \rangle =$$

$$= \frac{1}{N^3} \langle s | \text{Tr}(\psi\psi\psi) | s \rangle + \mathcal{O}(1/N)$$

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

$$|\xi_1\rangle = \psi_{31}|s\rangle \quad |\xi_2\rangle = \psi_{32}\psi_{21}|s\rangle$$

- Can we distinguish $|\xi_1\rangle$ and $|\xi_2\rangle$?
- In general, the answer is *no*: they are not orthogonal:

$$\langle \xi_2 | \xi_1 \rangle = \langle s | \psi_{12} \psi_{23} \psi_{31} | s \rangle =$$

$$= \frac{1}{N^3} \langle s | \text{Tr}(\psi \psi \psi) | s \rangle + \mathcal{O}(1/N)$$

- Operator $\text{Tr}(\psi^3)$ can be bounded by $N^{5/2}$

$$|\langle s_1 | \text{Tr}(\psi \psi \psi) | s_2 \rangle| \lesssim N^{5/2}$$

- (Majorana) fermionic matrices $\psi_{ij}, \chi_{ij}, \dots$
- Start from a singlet states $|s\rangle$ and add errors/perturbations:

$$|\xi_1\rangle = \psi_{31}|s\rangle \quad |\xi_2\rangle = \psi_{32}\psi_{21}|s\rangle$$

- Can we distinguish $|\xi_1\rangle$ and $|\xi_2\rangle$?
- In general, the answer is *no*: they are not orthogonal:

$$\langle \xi_2 | \xi_1 \rangle = \langle s | \psi_{12} \psi_{23} \psi_{31} | s \rangle =$$

$$= \frac{1}{N^3} \langle s | \text{Tr}(\psi \psi \psi) | s \rangle + \mathcal{O}(1/N)$$

- Operator $\text{Tr}(\psi^3)$ can be bounded by $N^{5/2}$

$$|\langle s_1 | \text{Tr}(\psi \psi \psi) | s_2 \rangle| \lesssim N^{5/2}$$

- Hence $|\xi_{1,2}\rangle$ are orthogonal in the large N limit.

My goal for today is to generalize this

My goal for today is to generalize this

- ① Bound on matrix elements of singlet operators

My goal for today is to generalize this

- ① Bound on matrix elements of singlet operators
- ② State orthogonality and quantum error correction

My goal for today is to generalize this

- ① Bound on matrix elements of singlet operators
- ② State orthogonality and quantum error correction
- ③ What if we act with too many operators/have too many errors?

- Start from two Majoranas ψ^1, ψ^2 and from creation/annihilation operators

$$a_{ij} = \psi_{ij}^1 + i\psi_{ij}^2, \quad a_{ij}^\dagger = \psi_{ij}^1 - i\psi_{ij}^2$$

- Start from two Majoranas ψ^1, ψ^2 and from creation/annihilation operators

$$a_{ij} = \psi_{ij}^1 + i\psi_{ij}^2, \quad a_{ij}^\dagger = \psi_{ij}^1 - i\psi_{ij}^2$$

- Define Fock vacuum $|0\rangle$:

$$a_{ij}^\dagger |0\rangle = 0$$

- Start from two Majoranas ψ^1, ψ^2 and from creation/annihilation operators

$$a_{ij} = \psi_{ij}^1 + i\psi_{ij}^2, \quad a_{ij}^\dagger = \psi_{ij}^1 - i\psi_{ij}^2$$

- Define Fock vacuum $|0\rangle$:

$$a_{ij}^\dagger |0\rangle = 0$$

- Singlet states(closed strings) $|s\rangle = \text{Tr}(a^{m_1}) \dots \text{Tr}(a^{m_k}) |0\rangle$ are approximately orthogonal for large N

- Start from two Majoranas ψ^1, ψ^2 and from creation/annihilation operators

$$a_{ij} = \psi_{ij}^1 + i\psi_{ij}^2, \quad a_{ij}^\dagger = \psi_{ij}^1 - i\psi_{ij}^2$$

- Define Fock vacuum $|0\rangle$:

$$a_{ij}^\dagger |0\rangle = 0$$

- Singlet states(closed strings) $|s\rangle = \text{Tr}(a^{m_1}) \dots \text{Tr}(a^{m_k}) |0\rangle$ are approximately orthogonal for large N
- Contracting ψ^m in

$$\langle s | \text{Tr} \psi^m | s \rangle \sim N^{m/2+1}$$

Familiar 't Hooft scaling after $\psi \rightarrow \psi/\sqrt{N}$

- Start from two Majoranas ψ^1, ψ^2 and from creation/annihilation operators

$$a_{ij} = \psi_{ij}^1 + i\psi_{ij}^2, \quad a_{ij}^\dagger = \psi_{ij}^1 - i\psi_{ij}^2$$

- Define Fock vacuum $|0\rangle$:

$$a_{ij}^\dagger |0\rangle = 0$$

- Singlet states(closed strings) $|s\rangle = \text{Tr}(a^{m_1}) \dots \text{Tr}(a^{m_k}) |0\rangle$ are approximately orthogonal for large N
- Contracting ψ^m in

$$\langle s | \text{Tr} \psi^m | s \rangle \sim N^{m/2+1}$$

Familiar 't Hooft scaling after $\psi \rightarrow \psi/\sqrt{N}$

Unfortunately, m_i has to be parametrically smaller than N

$$\mathrm{Tr} (\psi^1 \psi^1 \psi^1 \psi^1) = 2N^3 \times 1 - \text{Casimir for } SU(N)_1$$

$$\text{Tr} (\psi^1 \psi^1 \psi^1 \psi^1) = 2N^3 \times 1 - \text{Casimir for } SU(N)_1$$

Example: $\text{Tr} (\psi^1 \psi^2 \psi^3 \psi^4)$

$$\mathrm{Tr}(\psi^1\psi^1\psi^1\psi^1) = 2N^3 \times 1 - \text{Casimir for } SU(N)_1$$

Example: $\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4)$

- ① Separate the hermitian part:

$$\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4) + \mathrm{Tr}(\psi^4\psi^3\psi^2\psi^1)$$

$$\mathrm{Tr}(\psi^1\psi^1\psi^1\psi^1) = 2N^3 \times 1 - \text{Casimir for } SU(N)_1$$

Example: $\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4)$

- ① Separate the hermitian part:

$$\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4) + \mathrm{Tr}(\psi^4\psi^3\psi^2\psi^1)$$

- ② For any operators A, B :

$$0 \leq \mathrm{Tr}((A - B)^\dagger(A - B)) = \mathrm{Tr}(A^\dagger A + B^\dagger B - A^\dagger B - B^\dagger A)$$

$$\mathrm{Tr}(\psi^1\psi^1\psi^1\psi^1) = 2N^3 \times 1 - \text{Casimir for } SU(N)_1$$

Example: $\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4)$

- ① Separate the hermitian part:

$$\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4) + \mathrm{Tr}(\psi^4\psi^3\psi^2\psi^1)$$

- ② For any operators A, B :

$$0 \leq \mathrm{Tr}((A - B)^\dagger(A - B)) = \mathrm{Tr}(A^\dagger A + B^\dagger B - A^\dagger B - B^\dagger A)$$

- ③ Hence we reduce to $\mathrm{Tr}(\psi^1\psi^1\psi^2\psi^2)$

$$\mathrm{Tr}(\psi^1\psi^1\psi^1\psi^1) = 2N^3 \times 1 - \text{Casimir for } SU(N)_1$$

Example: $\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4)$

- 1 Separate the hermitian part:

$$\mathrm{Tr}(\psi^1\psi^2\psi^3\psi^4) + \mathrm{Tr}(\psi^4\psi^3\psi^2\psi^1)$$

- 2 For any operators A, B :

$$0 \leq \mathrm{Tr}((A - B)^\dagger(A - B)) = \mathrm{Tr}(A^\dagger A + B^\dagger B - A^\dagger B - B^\dagger A)$$

- 3 Hence we reduce to $\mathrm{Tr}(\psi^1\psi^1\psi^2\psi^2)$

- 4 Repeat to get $\mathrm{Tr}(\psi^1\psi^1\psi^1\psi^1)$

- \mathcal{O}_m is a singlet fermionic operator made from m fermions, *not necessarily single-trace*

- \mathcal{O}_m is a singlet fermionic operator made from m fermions, *not necessarily single-trace*

$$\left. \begin{array}{l} |\langle s | \mathcal{O}_{3k} | s \rangle| \leq 2^{k/2} N^{5k/2} \\ |\langle s | \mathcal{O}_{3k+1} | s \rangle| \leq \sqrt{2} N \times 2^{k/2} N^{5k/2} \\ |\langle s | \mathcal{O}_{3k+2} | s \rangle| \leq 2N^2 \times 2^{k/2} N^{5k/2} \\ 1 \leq k \leq N^{1/4}/3 \end{array} \right\} \mathcal{O}_m \sim N^{9m/10}$$

and

$$|\langle s | \mathcal{O}_4 | s \rangle| \leq 2N^3$$

- \mathcal{O}_m is a singlet fermionic operator made from m fermions, *not necessarily single-trace*

$$\left. \begin{array}{l} |\langle s | \mathcal{O}_{3k} | s \rangle| \leq 2^{k/2} N^{5k/2} \\ |\langle s | \mathcal{O}_{3k+1} | s \rangle| \leq \sqrt{2} N \times 2^{k/2} N^{5k/2} \\ |\langle s | \mathcal{O}_{3k+2} | s \rangle| \leq 2N^2 \times 2^{k/2} N^{5k/2} \\ 1 \leq k \leq N^{1/4}/3 \end{array} \right\} \mathcal{O}_m \sim N^{9m/10}$$

and

$$|\langle s | \mathcal{O}_4 | s \rangle| \leq 2N^3$$

For $\mathcal{O}_3, \mathcal{O}_4$ coincides with the answer in the planar limit, otherwise gives much bigger value

Unitarity evolution U :

$$\rho \rightarrow U^\dagger \rho U$$

Unitarity evolution U :

$$\rho \rightarrow U^\dagger \rho U$$

Quantum system interacting with an environment:

$$\rho \rightarrow \tilde{\rho} = \sum_{\alpha} E_{\alpha}^\dagger \rho E_{\alpha}$$

Unitarity evolution U :

$$\rho \rightarrow U^\dagger \rho U$$

Quantum system interacting with an environment:

$$\rho \rightarrow \tilde{\rho} = \sum_{\alpha} E_{\alpha}^\dagger \rho E_{\alpha}$$

Positive operators on both sides

Unitarity evolution U :

$$\rho \rightarrow U^\dagger \rho U$$

Quantum system interacting with an environment:

$$\rho \rightarrow \tilde{\rho} = \sum_{\alpha} E_{\alpha}^\dagger \rho E_{\alpha}$$

Positive operators on both sides

Trace preservation:

$$\sum_{\alpha} E_{\alpha} E_{\alpha}^\dagger = 1$$

Unitarity evolution U :

$$\rho \rightarrow U^\dagger \rho U$$

Quantum system interacting with an environment:

$$\rho \rightarrow \tilde{\rho} = \sum_{\alpha} E_{\alpha}^{\dagger} \rho E_{\alpha}$$

Positive operators on both sides

Trace preservation:

$$\sum_{\alpha} E_{\alpha} E_{\alpha}^{\dagger} = 1$$

Example: spin flip with probability p :

$$E_1 = \sqrt{1-p} \mathbb{I}$$

$$E_2 = \sqrt{p} X$$

Unitary operations can be inverted for any state.

Unitary operations can be inverted for any state.

General quantum operations are not always invertible. $\{E_\alpha\}$ is invertible for ρ if there is another $\{R_\alpha\}$ such that

$$\mathcal{E} : \rho \rightarrow \tilde{\rho} = \sum_{\alpha} E_{\alpha}^{\dagger} \rho E_{\alpha}$$

$$\mathcal{R} : \tilde{\rho} \rightarrow \rho = \sum_{\alpha} R_{\alpha}^{\dagger} \tilde{\rho} R_{\alpha}$$

Unitary operations can be inverted for any state.

General quantum operations are not always invertible. $\{E_\alpha\}$ is invertible for ρ if there is another $\{R_\alpha\}$ such that

$$\mathcal{E} : \rho \rightarrow \tilde{\rho} = \sum_{\alpha} E_{\alpha}^{\dagger} \rho E_{\alpha}$$

$$\mathcal{R} : \tilde{\rho} \rightarrow \rho = \sum_{\alpha} R_{\alpha}^{\dagger} \tilde{\rho} R_{\alpha}$$

Approximate quantum error correction:

$$\rho \rightarrow \mathcal{E}(\rho) = \sum_{\alpha} E_{\alpha}^{\dagger} \rho E_{\alpha}$$

$$\mathcal{E}(\rho) \rightarrow \mathcal{R}(\mathcal{E}(\rho)) = \sum_{\alpha} R_{\alpha}^{\dagger} \mathcal{E}(\rho) R_{\alpha}$$

$$||\rho - \mathcal{R}(\mathcal{E}(\rho))|| \leq \epsilon$$

What does erasure mean?

$$\mathcal{H} = E \otimes \bar{E}$$

What does erasure mean?

$$\mathcal{H} = E \otimes \bar{E}$$

Erasure(depolarization) \mathcal{E} of E :

$$\mathcal{E}(\rho) = \frac{1_E}{\dim_E} \otimes \rho_{\bar{E}}$$

$$\mathcal{H} = E \otimes \bar{E}$$

Erasure(depolarization) \mathcal{E} of E :

$$\mathcal{E}(\rho) = \frac{1_E}{\dim_E} \otimes \rho_{\bar{E}}$$

$\{E_\alpha\}$ - all possible operators on E .

$$\mathcal{H} = E \otimes \bar{E}$$

Erasure(depolarization) \mathcal{E} of E :

$$\mathcal{E}(\rho) = \frac{1_E}{\dim_E} \otimes \rho_{\bar{E}}$$

$\{E_\alpha\}$ - all possible operators on E .

Example: one qubit

$$\rho \rightarrow \frac{1}{4} (1\rho 1 + X\rho X + Y\rho Y + Z\rho Z)$$

$\{E_\alpha\}$ is exactly correctable iff

$$P_{\text{code}} E_\alpha^\dagger E_\beta P_{\text{code}} = N_{\alpha\beta} \mathbf{1} P_{\text{code}}$$

P_{code} projector on code subspace.

$N_{\alpha\beta}$ - hermitian matrix

Knill–Laflamme condition: errors are orthogonal

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2}$$

Knill–Laflamme condition: errors are orthogonal

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2}$$

In our case they are almost orthogonal:

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2} + \langle s_1 | \mathcal{O}_{\alpha\beta} | s_2 \rangle$$

Knill–Laflamme condition: errors are orthogonal

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2}$$

In our case they are almost orthogonal:

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2} + \underbrace{\langle s_1 | \mathcal{O}_{\alpha\beta} | s_2 \rangle}_{1/N}$$

Knill–Laflamme condition: errors are orthogonal

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2}$$

In our case they are almost orthogonal:

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2} + \underbrace{\langle s_1 | \mathcal{O}_{\alpha\beta} | s_2 \rangle}_{1/N}$$

Find nearest orthogonal basis (orthogonal Procrustes problem aka "pretty good measurement")

Holevo; Hausladen, Wootters

Knill–Laflamme condition: errors are orthogonal

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2}$$

In our case they are almost orthogonal:

$$\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle = \delta_{\alpha\beta} \delta_{s_1 s_2} + \underbrace{\langle s_1 | \mathcal{O}_{\alpha\beta} | s_2 \rangle}_{1/N}$$

Find nearest orthogonal basis (orthogonal Procrustes problem aka "pretty good measurement")

Holevo; Hausladen, Wootters

Requires $\sqrt{\langle s_1 | E_\alpha^\dagger E_\beta | s_2 \rangle} \rightarrow$ bound norms/eigenvalues

Matrix models: errors E_α and field content

A set of (Majorana) fermions ψ_{ij}^a

a - “flavor” index, $a = 1, \dots, D$ ($D = 16$ for BFSS)
 ij - $SU(N)$ adjoint

A set of (Majorana) fermions ψ_{ij}^a

a - “flavor” index, $a = 1, \dots, D$ ($D = 16$ for BFSS)

ij - $SU(N)$ adjoint

Introduce orthogonal $SU(N)$ generators $T_{kl}^{(ij)}$:

$$\psi_{ij}^a = \sum_{(kl)} T_{ij}^{(kl)} \psi_{(kl)}^a$$

A set of (Majorana) fermions ψ_{ij}^a

a - "flavor" index, $a = 1, \dots, D$ ($D = 16$ for BFSS)

ij - $SU(N)$ adjoint

Introduce orthogonal $SU(N)$ generators $T_{kl}^{(ij)}$:

$$\psi_{ij}^a = \sum_{(kl)} T_{ij}^{(kl)} \psi_{(kl)}^a$$

Equivalent to qubits by Jordan–Wigner transformation:

A set of (Majorana) fermions ψ_{ij}^a

a - "flavor" index, $a = 1, \dots, D$ ($D = 16$ for BFSS)

ij - $SU(N)$ adjoint

Introduce orthogonal $SU(N)$ generators $T_{kl}^{(ij)}$:

$$\psi_{ij}^a = \sum_{(kl)} T_{ij}^{(kl)} \psi_{(kl)}^a$$

Equivalent to qubits by Jordan–Wigner transformation:

Normalization:

$$\psi_{(ij)}^a \psi_{(kl)}^b + \psi_{(kl)}^b \psi_{(ij)}^a = 2 \times 1 \times \delta_b^a \times \delta_{(kl)}^{(ij)}$$

Errors may occur in a *fixed set*:

$$E = \{\psi_{(12)}^1, \psi_{(78)}^4, \psi_{(54)}^7, \dots\}$$

Errors may occur in a *fixed set*:

$$E = \{\psi_{(12)}^1, \psi_{(78)}^4, \psi_{(54)}^7, \dots\}$$

Erasure operators:

$$E_\alpha = \text{const} \prod_{[a, (ij)] \in \alpha} \psi_{(ij)}^a$$

α are all possible strings of $\psi_{(ij)}^a \in E$

Errors may occur in a *fixed set*:

$$E = \{\psi_{(12)}^1, \psi_{(78)}^4, \psi_{(54)}^7, \dots\}$$

Erasure operators:

$$E_\alpha = \text{const} \prod_{[a, (ij)] \in \alpha} \psi_{(ij)}^a$$

α are all possible strings of $\psi_{(ij)}^a \in E$

- Problem 1(bilinear problem):

$$\psi_{(ij)}^1 \psi_{(ij)}^2 \propto \frac{1}{N^2} \text{Tr} (\psi^1 \psi^2) \text{Tr} (T_{(ij)} T_{(ij)}) = \mathcal{O}(N^0)$$

- Problem 1(bilinear problem):

$$\psi_{(ij)}^1 \psi_{(ij)}^2 \propto \frac{1}{N^2} \text{Tr} (\psi^1 \psi^2) \text{Tr} (T_{(ij)} T_{(ij)}) = \mathcal{O}(N^0)$$

- Can not distinguish them. Blunt solution: avoid them.
- Problem 2: $\mathcal{O}_{\alpha\beta}$ might contain a lot($\sim N$) of operators.

- Problem 1(bilinear problem):

$$\psi_{(ij)}^1 \psi_{(ij)}^2 \propto \frac{1}{N^2} \text{Tr} (\psi^1 \psi^2) \text{Tr} (T_{(ij)} T_{(ij)}) = \mathcal{O}(N^0)$$

- Can not distinguish them. Blunt solution: avoid them.
- Problem 2: $\mathcal{O}_{\alpha\beta}$ might contain a lot ($\sim N$) of operators.
- Suppose $E_\alpha^\dagger E_\beta$ has k fermions:

- Problem 1(bilinear problem):

$$\psi_{(ij)}^1 \psi_{(ij)}^2 \propto \frac{1}{N^2} \text{Tr} (\psi^1 \psi^2) \text{Tr} (T_{(ij)} T_{(ij)}) = \mathcal{O}(N^0)$$

- Can not distinguish them. Blunt solution: avoid them.
- Problem 2: $\mathcal{O}_{\alpha\beta}$ might contain a lot ($\sim N$) of operators.
- Suppose $E_\alpha^\dagger E_\beta$ has k fermions: suppressed at least by

$$\sim N^{k/10}$$

- Problem 1(bilinear problem):

$$\psi_{(ij)}^1 \psi_{(ij)}^2 \propto \frac{1}{N^2} \text{Tr} (\psi^1 \psi^2) \text{Tr} (T_{(ij)} T_{(ij)}) = \mathcal{O}(N^0)$$

- Can not distinguish them. Blunt solution: avoid them.
- Problem 2: $\mathcal{O}_{\alpha\beta}$ might contain a lot ($\sim N$) of operators.
- Suppose $E_\alpha^\dagger E_\beta$ has k fermions: suppressed at least by

$$\sim N^{k/10}$$

- Total number of different singlet operators $\sim k!$

Result:

$$\epsilon \lesssim \frac{|E|}{N^{2/5}}$$

as long as

Result:

$$\epsilon \lesssim \frac{|E|}{N^{2/5}}$$

as long as

- ➊ No bilinears

Result:

$$\epsilon \lesssim \frac{|E|}{N^{2/5}}$$

as long as

- ① No bilinears
- ② Number of (known) error locations $|E|$:

$$|E| \lesssim N^{1/10}$$

Result:

$$\epsilon \lesssim \frac{|E|}{N^{2/5}}$$

as long as

- ① No bilinears
- ② Number of (known) error locations $|E|$:

$$|E| \lesssim N^{1/10}$$

(probably could be improved)

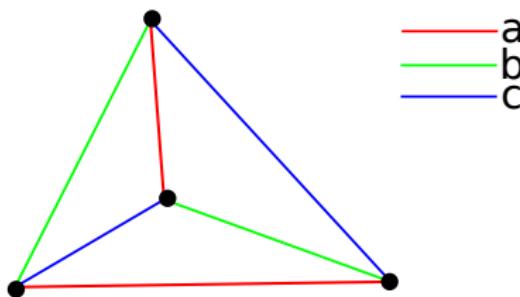
Field content: Majorana ψ_{abc} in the fundamental of $O(N)^3$

Gurau'11; Witten'16; Carrozza, Tanasa'15; Klebanov, Tarnopolsky'16

Field content: Majorana ψ_{abc} in the fundamental of $O(N)^3$

Gurau'11; Witten'16; Carrozza, Tanasa'15; Klebanov, Tarnopolsky'16

$$H_{\text{CTKT}} = J \sum_{abca'b'c'} \psi_{abc} \psi_{ab'c'} \psi_{a'bc'} \psi_{a'b'c}$$



$$H_{\text{CTKT}} = J \sum_{abca'b'c'} \psi_{abc} \psi_{ab'c'} \psi_{a'bc'} \psi_{a'b'c}$$

- The same large N limit as SYK

$$H_{\text{CTKT}} = J \sum_{abca'b'c'} \psi_{abc} \psi_{ab'c'} \psi_{a'bc'} \psi_{a'b'c}$$

- The same large N limit as SYK
- No disorder. No ensemble average?

$$H_{\text{CTKT}} = J \sum_{abca'b'c'} \psi_{abc} \psi_{ab'c'} \psi_{a'bc'} \psi_{a'b'c}$$

- The same large N limit as SYK
- No disorder. No ensemble average?
- CTKT: Schwartzian is there, but there are other $1/N$ corrections.

$$H_{\text{CTKT}} = J \sum_{abca'b'c'} \psi_{abc} \psi_{ab'c'} \psi_{a'bc'} \psi_{a'b'c}$$

- The same large N limit as SYK
- No disorder. No ensemble average?
- CTKT: Schwartzian is there, but there are other $1/N$ corrections.
- Gurau–Witten model: $1/N$ corrections coincide with SYK upto $1/N^2$ (quenched vs annealed):

$$H_{\text{CTKT}} = J \sum_{abca'b'c'} \psi_{abc} \psi_{ab'c'} \psi_{a'bc'} \psi_{a'b'c}$$

- The same large N limit as SYK
- No disorder. No ensemble average?
- CTKT: Schwartzian is there, but there are other $1/N$ corrections.
- Gurau–Witten model: $1/N$ corrections coincide with SYK upto $1/N^2$ (quenched vs annealed):

$$H_{\text{GW}} = J \sum_{abca'b'c'} \psi_{abc}^1 \psi_{ab'c'}^2 \psi_{a'bc'}^3 \psi_{a'b'c}^4$$

Expectation:

$H_{\text{CTKT}} \sim N^6$ since there are N^6 terms.

Expectation:

$H_{\text{CTKT}} \sim N^6$ since there are N^6 terms.

Reality:

$$|\langle s | H_{\text{CTKT}} | s \rangle| \leq N^5$$

Klebanov, Popov, Tarnopolsky, AM'17

Expectation:

$H_{\text{CTKT}} \sim N^6$ since there are N^6 terms.

Reality:

$$|\langle s | H_{\text{CTKT}} | s \rangle| \leq N^5$$

Klebanov, Popov, Tarnopolsky, AM'17

$$\mathcal{O} = \sum_I A_I B_I \leq \frac{1}{2} (A_I^2 + B_I^2)$$

Expectation:

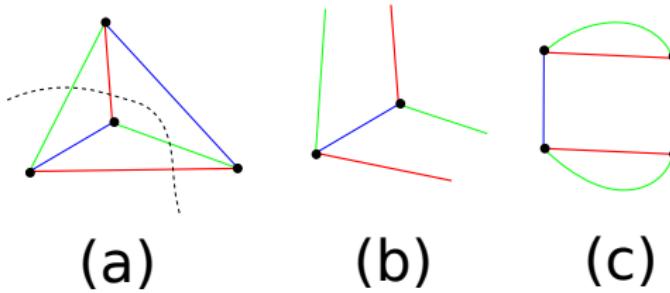
$H_{\text{CTKT}} \sim N^6$ since there are N^6 terms.

Reality:

$$|\langle s | H_{\text{CTKT}} | s \rangle| \leq N^5$$

Klebanov, Popov, Tarnopolsky, AM'17

$$\mathcal{O} = \sum_I A_I B_I \leq \frac{1}{2} (A_I^2 + B_I^2)$$



Expectation:

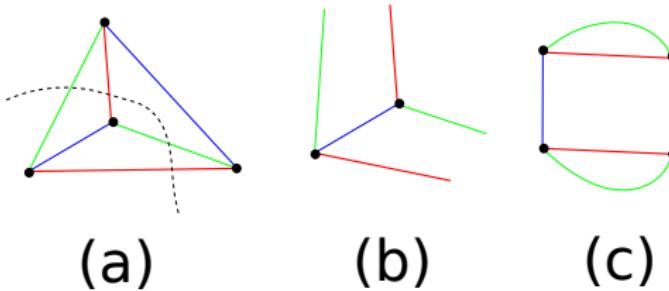
$H_{\text{CTKT}} \sim N^6$ since there are N^6 terms.

Reality:

$$|\langle s | H_{\text{CTKT}} | s \rangle| \leq N^5$$

Klebanov, Popov, Tarnopolsky, AM'17

$$\mathcal{O} = \sum_I A_I B_I \leq \frac{1}{2} (A_I^2 + B_I^2)$$



Last term is Casimir for $O(N^2)$ (sic!): $\psi_{abc} \rightarrow \psi_{Ac}$ with $O(N^2) \times O(N)$

$$(c) \leq N^5$$

\mathcal{O}_{2k} build from $2k \leq N^{3/4}$ fermions:

$$|\langle s | \mathcal{O}_{2k} | s \rangle| \leq N^{5k/2} \times \begin{cases} 1, & k \text{ even} \\ \frac{1}{\sqrt{N}}, & k \text{ odd} \end{cases}$$

This result depends on field content only (Hilbert space).
Holds for any singlet $|s\rangle$

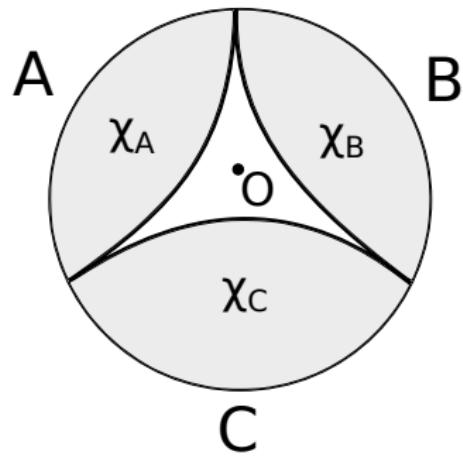
- No bilinear problem: $\psi_{abc}\psi_{a'b'c'}$ does not contain non-trivial singlets

- No bilinear problem: $\psi_{abc}\psi_{a'b'c'}$ does not contain non-trivial singlets
- Correct any erasure of size $|E| \leq N^{1/6}$ at known locations:

$$\|\rho - \mathcal{R}(\mathcal{E}(\rho))\| \lesssim \frac{|E|^5}{N^2}$$

- For matrix and tensor models, large N and singlet condition automatically imply correction of certain erasures.

- For matrix and tensor models, large N and singlet condition automatically imply correction of certain erasures.
- As long as erasures are not too large.



- After erasure some information is lost after all.

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- Theories with spacial dimensions: fuzzy spheres vacua of BMN?

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- Theories with spacial dimensions: fuzzy spheres vacua of BMN?
- Singlet erasures?

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- Theories with spacial dimensions: fuzzy spheres vacua of BMN?
- Singlet erasures?
- Stabilizer codes:

$$G_i |c\rangle = |c\rangle$$

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- Theories with spacial dimensions: fuzzy spheres vacua of BMN?
- Singlet erasures?
- Stabilizer codes:

$$G_i |c\rangle = |c\rangle$$

(Gauge-)stabilizer codes?

$$Q_i |c\rangle = 0$$

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- Theories with spacial dimensions: fuzzy spheres vacua of BMN?
- Singlet erasures?
- Stabilizer codes:

$$G_i |c\rangle = |c\rangle$$

(Gauge-)stabilizer codes?

$$Q_i |c\rangle = 0$$

- Dynamical aspects?

- After erasure some information is lost after all.
Subsystem quantum erasure correction?

Harlow'16

$$P_{\text{code}} \in \mathcal{P}_{\text{code}} \sim (1_E \otimes X_A) \mathcal{P}_{\text{code}}$$

- Theories with spacial dimensions: fuzzy spheres vacua of BMN?
- Singlet erasures?
- Stabilizer codes:

$$G_i |c\rangle = |c\rangle$$

(Gauge-)stabilizer codes?

$$Q_i |c\rangle = 0$$

- Dynamical aspects?

Thank you!

Extra slides

$$\mathcal{L} = \frac{N}{\lambda} \text{Tr} \left(\chi D_t \chi + (D_t X)^2 + \dots \right)$$

$$\mathcal{L} = \frac{N}{\lambda} \text{Tr} \left(\chi D_t \chi + (D_t X)^2 + \dots \right)$$

$$\langle \text{Tr} \left(\chi^k \right) \rangle \sim N$$

$$\mathcal{L} = \frac{N}{\lambda} \text{Tr} \left(\chi D_t \chi + (D_t \chi)^2 + \dots \right)$$

$$\langle \text{Tr} \left(\chi^k \right) \rangle \sim N$$

But $\chi \sim \sqrt{N} \psi$, so

$$\langle \text{Tr} \left(\psi^k \right) \rangle \sim N^{1+k/2}$$

Why do we expect 't Hooft scaling in BFSS ground state?

Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars X_{ij}^μ , sixteen fermions ψ_{ij}^a .

Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars X_{ij}^μ , sixteen fermions ψ_{ij}^a .

Wave-function size bound:

$$R^2 = \frac{1}{N} \langle \text{Tr} (X_\mu^2) \rangle \geq \lambda^{2/3}$$

Polchinski'99

Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars X_{ij}^μ , sixteen fermions ψ_{ij}^a .

Wave-function size bound:

$$R^2 = \frac{1}{N} \langle \text{Tr} (X_\mu^2) \rangle \geq \lambda^{2/3}$$

Polchinski'99

$\lambda^{2/3}$ size of the gravity region. Conjectured to be actual estimate.

Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars X_{ij}^μ , sixteen fermions ψ_{ij}^a .

Wave-function size bound:

$$R^2 = \frac{1}{N} \langle \text{Tr} (X_\mu^2) \rangle \geq \lambda^{2/3}$$

Polchinski'99

$\lambda^{2/3}$ size of the gravity region. Conjectured to be actual estimate.

Another evidence: non-singlet excitations

Maldacena, AM'17

$$E_{\text{adj}} \sim \frac{\lambda}{R^2}$$

Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars X_{ij}^μ , sixteen fermions ψ_{ij}^a .

Wave-function size bound:

$$R^2 = \frac{1}{N} \langle \text{Tr} (X_\mu^2) \rangle \geq \lambda^{2/3}$$

Polchinski'99

$\lambda^{2/3}$ size of the gravity region. Conjectured to be actual estimate.

Another evidence: non-singlet excitations

Maldacena, AM'17

$$E_{\text{adj}} \sim \frac{\lambda}{R^2}$$

Conjecture: non-singlets are gapped.

Consistent with Monte-Carlo data.

Berkowitz, Hanada, Rinaldi, Vranas'17

- Consider ψ_i^a , $i = 1, \dots, N$; $a = 1, \dots, D$.

- Consider ψ_i^a , $i = 1, \dots, N$; $a = 1, \dots, D$.

-

$$C_2(O(N)) + C_2(O(D)) = 2ND(N + D - 2) \sim N^2$$

Klebanov, AM, Popov, Tarnopolsky

- Consider ψ_i^a , $i = 1, \dots, N$; $a = 1, \dots, D$.

$$C_2(O(N)) + C_2(O(D)) = 2ND(N + D - 2) \sim N^2$$

Klebanov, AM, Popov, Tarnopolsky

- The only singlet operators are

$$Q^{ab} = \sum_i \psi_i^a \psi_i^b \quad \left(\text{O(D) charge} \right)$$

- Consider ψ_i^a , $i = 1, \dots, N$; $a = 1, \dots, D$.

$$C_2(O(N)) + C_2(O(D)) = 2ND(N + D - 2) \sim N^2$$

Klebanov, AM, Popov, Tarnopolsky

- The only singlet operators are

$$Q^{ab} = \sum_i \psi_i^a \psi_i^b \quad \left(\text{O(D) charge} \right)$$

$$\sum_{a,b} Q^{ab} Q_{ab} \sim N^2 \text{ coincides with the naive expectation}$$