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Quantum error correction seem to be tightly related with
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Error correction generally implies redundancy
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In this talk

I would like to emphasize the importance of large N limit.

Namely, large N automatically implies a version of quantum
error correction in the gauge-singlet sector, regardless of the
Hamiltonian

I will discuss matrix models(think reduction of Yang–Mills to
QM) and tensor-models(think Gurau–Witten or
Carrozza–Tanasa–Klebanov–Tarnopolsky)

Numerous disclaimers:

Boundary perspective: quantum mechanics of fermions

No locality: stringy geometry

Berenestein’04; Itzhaki, McGreevy’04; . . .

How robust are singlet states in these models against errors, such
as erasures?
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Holographic error correction

Consider HKLL and causal wedge reconstruction.

Almheiri, Dong, Harlow ’15
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Reconstruction of O requires AB or AC or BC. No need for the
whole ABC.



Holographic error correction

Consider HKLL and causal wedge reconstruction.

Almheiri, Dong, Harlow ’15

A B

C

O

χC

χA χB

Reconstruction of O requires AB or AC or BC. No need for the
whole ABC.



Interpretation: quantum error correction.
Holographic states are robust: loss of A does not prevent us from
reconstructing O.

Quantum mechanical models have no geometry but we can still
study the robustness against erasures.

Comment: Gauge symmetry vs global symmetry: singlet errors vs
arbitrary errors?
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An illustration: U(N) matrix model

(Majorana) fermionic matrices ψij , χij , . . .

Start from a singlet states |s〉 and add errors/perturbations:

|ξ1〉 = ψ31|s〉 |ξ2〉 = ψ32ψ21|s〉

Can we distinguish |ξ1〉 and |ξ2〉 ?

In general, the answer is no: they are not orthogonal:

〈ξ2|ξ1〉 = 〈s|ψ12ψ23ψ31|s〉 =

=
1

N3
〈s|Tr (ψψψ) |s〉+O (1/N)

Operator Tr
(
ψ3
)

can be bounded by N5/2

|〈s1|Tr (ψψψ) |s2〉| . N5/2

Hence |ξ1,2〉 are orthogonal in the large N limit.
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My goal for today is to generalize this

1 Bound on matrix elements of singlet operators

2 State orthogonality and quantum error correction

3 What if we act with too many operators/have too many
errors?
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Planar limit

Start from two Majoranas ψ1, ψ2 and from
creation/annihilation operators

aij = ψ1
ij + iψ2

ij , a†ij = ψ1
ij − iψ2

ij

Define Fock vacuum |0〉:

a†ij |0〉 = 0

Singlet states(closed strings) |s〉 = Tr (am1) . . .Tr (amk ) |0〉 are
approximately orthogonal for large N

Contracting ψm in

〈s|Trψm|s〉 ∼ Nm/2+1

Familiar ’t Hooft scaling after ψ → ψ/
√
N

Unfortunately, mi has to be parametrically smaller than N
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Reducing to Casimirs using Cauchy–Schwartz and full squares

Tr
(
ψ1ψ1ψ1ψ1

)
= 2N3 × 1 - Casimir for SU(N)1

Example: Tr
(
ψ1ψ2ψ3ψ4

)
1 Separtate the hermitian part:

Tr
(
ψ1ψ2ψ3ψ4

)
+ Tr

(
ψ4ψ3ψ2ψ1

)
2 For any operators A,B:

0 ≤ Tr
(

(A− B)†(A− B)
)

= Tr
(

A†A + B†B − A†B − B†A
)

3 Hence we reduce to Tr
(
ψ1ψ1ψ2ψ2

)
4 Repeat to get Tr

(
ψ1ψ1ψ1ψ1

)
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Bounds from representation theory

Om is a singlet fermionic operator made from m fermions, not
necessarily single-trace

|〈s|O3k |s〉| ≤ 2k/2N5k/2

|〈s|O3k+1|s〉| ≤
√

2N × 2k/2N5k/2

|〈s|O3k+2|s〉| ≤ 2N2 × 2k/2N5k/2

1 ≤ k ≤ N1/4/3

Om ∼ N9m/10

and
|〈s|O4|s〉| ≤ 2N3

For O3,O4 coincides with the answer in the planar limit,
otherwise gives much bigger value
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How do we describe errors

Unitarity evolution U:
ρ→ U†ρU

Quantum system interacting with an environment:

ρ→ ρ̃ =
∑
α

E †
αρEα

Positive operators on both sides
Trace preservation: ∑

α

EαE †
α = 1

Example: spin flip with probability p:

E1 =
√

1− p1

E2 =
√

pX
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pX



Unitary operations can be inverted for any state.

General quantum operations are not always invertible. {Eα} is
invertible for ρ if there is another {Rα} such that

E : ρ→ ρ̃ =
∑
α

E †
αρEα

R : ρ̃→ ρ =
∑
α

R†
αρ̃Rα

Approximate quantum error correction:

ρ→ E(ρ) =
∑
α

E †
αρEα

E(ρ)→ R(E(ρ)) =
∑
α

R†
αE(ρ)Rα

||ρ−R(E(ρ))|| ≤ ε
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What does erasure mean?

H = E ⊗ Ē

Erasure(depolarization) E of E :

E(ρ) =
1E

dimE
⊗ ρĒ

{Eα} - all possible operators on E .
Example: one qubit

ρ→ 1

4
(1ρ1 + XρX + Y ρY + ZρZ )
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Example: one qubit

ρ→ 1

4
(1ρ1 + XρX + Y ρY + ZρZ )



Knill–Laflamme condition

{Eα} is exactly correctable iff

PcodeE †
αEβPcode = Nαβ1Pcode

Pcode projector on code subspace.
Nαβ - hermitian matrix



Construction of recovery

Knill–Laflamme condition: errors are orthogonal

〈s1|E †
αEβ|s2〉 = δαβδs1s2

In our case they are almost orthogonal:

〈s1|E †
αEβ|s2〉 = δαβδs1s2 + 〈s1|Oαβ|s2〉
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Holevo; Hausladen, Wootters

Requires
√
〈s1|E †

αEβ|s2〉 → bound norms/eigenvalues
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Matrix models: errors Eα and field content

A set of (Majorana) fermions ψa
ij

a - “flavor” index, a = 1, . . . ,D(D = 16 for BFSS)
ij - SU(N) adjoint

Introduce orthogonal SU(N) generators T
(ij)
kl :

ψa
ij =

∑
(kl)

T
(kl)
ij ψa

(kl)

Equivalent to qubits by Jordan–Wigner transformation:
Normalization:

ψa
(ij)ψ

b
(kl) + ψb

(kl)ψ
a
(ij) = 2× 1× δab × δ

(ij)
(kl)
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Errors may occur in a fixed set:

E = {ψ1
(12), ψ

4
(78), ψ

7
(54), . . . }

Erasure operators:

Eα = const
∏

[a,(ij)]∈α

ψa
(ij)

α are all possible strings of ψa
(ij) ∈ E
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Errors may occur in a fixed set:

E = {ψ1
(12), ψ

4
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Erasure operators:
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α are all possible strings of ψa
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Conditions on error correction

Problem 1(bilinear problem):

ψ1
(ij)ψ

2
(ij) ∝

1

N2
Tr
(
ψ1ψ2

)
Tr
(
T(ij)T(ij)

)
= O

(
N0
)

Can not distinguish them. Blunt solution: avoid them.

Problem 2: Oαβ might contain a lot(∼ N) of operators.

Suppose E †
αEβ has k fermions: suppressed at least by

∼ Nk/10

Total number of different singlet operators ∼ k!
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Result:

ε .
|E |

N2/5

as long as

1 No bilinears

2 Number of (known) error locations |E |:

|E | . N1/10

(probably could be improved)
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Carrozza–Tanasa–Klebanov–Tarnopolsky(CTKT) tensor model

Field content: Majorana ψabc in the fundamental of O(N)3

Gurau’11; Witten’16; Carrozza, Tanasa’15; Klebanov, Tarnopolsky’16

HCTKT = J
∑

abca′b′c ′

ψabcψab′c ′ψa′bc′ψa′b′c

a
b
c
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HCTKT = J
∑

abca′b′c ′

ψabcψab′c ′ψa′bc′ψa′b′c

The same large N limit as SYK

No disorder. No ensemble average?

CTKT: Schwartzian is there, but there are other 1/N
corrections.

Gurau–Witten model: 1/N corrections coincide with SYK
upto 1/N2(quenched vs annealed):

HGW = J
∑

abca′b′c ′

ψ1
abcψ

2
ab′c ′ψ

3
a′bc′ψ

4
a′b′c
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Expectation:

HCTKT ∼ N6 since there are N6 terms.

Reality:
|〈s|HCTKT|s〉| ≤ N5

Klebanov,Popov,Tarnopolsky,AM’17

O =
∑
I

AIBI ≤
1

2

(
A2
I + B2

I

)

(a) (b) (c)

Last term is Casimir for O(N2)(sic!): ψabc → ψAc with
O(N2)× O(N)

(c) ≤ N5
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General bound

O2k build from 2k ≤ N3/4 fermions:

|〈s|O2k |s〉| ≤ N5k/2 ×

{
1, k even

1√
N
, k odd

This result depends on field content only(Hilbert space).
Holds for any singlet |s〉



No bilinear problem: ψabcψa′b′c ′ does not contain non-trivial
singlets

Correct any erasure of size |E | ≤ N1/6 at known locations:

||ρ−R(E(ρ))|| . |E |
5

N2
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Summary

For matrix and tensor models, large N and singlet condition
automatically imply correction of certain erasures.

As long as erasures are not too large.
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Open questions

After erasure some information is lost after all.

Subsystem quantum erasure correction?

Harlow’16

Pcode E Pcode ∼ (1E ⊗ XA) Pcode

Theories with spacial dimensions: fuzzy spheres vacua of
BMN?

Singlet erasures?

Stabilizer codes:
Gi |c〉 = |c〉

(Gauge-)stabilizer codes?

Qi |c〉 = 0

Dynamical aspects?
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Thank you!



Extra slides



’t Hooft scaling

L =
N

λ
Tr
(
χDtχ+ (DtX )2 + . . .

)

〈Tr
(
χk
)
〉 ∼ N

But χ ∼
√

Nψ, so

〈Tr
(
ψk
)
〉 ∼ N1+k/2
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Why do we expect ’t Hooft scaling in BFSS ground state?

Nine scalars Xµ
ij , sixteen fermions ψa

ij .
Wave-function size bound:

R2 =
1

N
〈Tr

(
X 2
µ

)
〉 ≥ λ2/3

Polchinski’99

λ2/3 size of the gravity region. Conjectured to be actual estimate.

Another evidence: non-singlet excitations

Maldacena, AM’17

Eadj ∼
λ

R2

Conjecture: non-singlets are gapped.
Consistent with Monte–Carlo data.

Berkowitz, Hanada, Rinaldi, Vranas’17
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Maldacena, AM’17

Eadj ∼
λ

R2

Conjecture: non-singlets are gapped.
Consistent with Monte–Carlo data.
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Vector models: O(N)× O(D)

Consider ψa
i , i = 1, . . . ,N; a = 1, . . . ,D.

C2 (O(N)) + C2 (O(D)) = 2ND(N + D − 2) ∼ N2

Klebanov, AM, Popov, Tarnopolsky

The only singlet operators are

Qab =
∑
i

ψa
i ψ

b
i

(
O(D) charge

)
∑
a,b

QabQab ∼ N2 coincides with the naive expectation
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