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In this talk

@ | would like to emphasize the importance of large N limit.

@ Namely, large N automatically implies a version of quantum
error correction in the gauge-singlet sector, regardless of the
Hamiltonian

o | will discuss matrix models(think reduction of Yang—-Mills to
QM) and tensor-models(think Gurau-Witten or
Carrozza—-Tanasa—Klebanov—Tarnopolsky)

Numerous disclaimers:
@ Boundary perspective: quantum mechanics of fermions

@ No locality: stringy geometry
Berenestein’04; ltzhaki, McGreevy'04; ...

How robust are singlet states in these models against errors, such
as erasures?



@ Motivation: Holographic error correction

© An illustration

© Erasure of a subsystem and quantum operations
@ Matrix models

© Tensor models

@ Conclusion
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C

Reconstruction of O requires AB or AC or BC. No need for the
whole ABC.
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Interpretation: quantum error correction.
Holographic states are robust: loss of A does not prevent us from
reconstructing O.

Quantum mechanical models have no geometry but we can still
study the robustness against erasures.

Comment: Gauge symmetry vs global symmetry: singlet errors vs
arbitrary errors?
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An illustration: U(N) matrix model

@ (Majorana) fermionic matrices v, xjj, - - -
@ Start from a singlet states |s) and add errors/perturbations:

§1) = ¥31ls)  [€2) = ¥32vharls)

Can we distinguish |£1) and [&) ?
In general, the answer is no: they are not orthogonal:

(&21€1) = (s|v129023¢31]5) =

= 36l Te (W) Is) + O (1/N)

Operator Tr (1/3) can be bounded by N°/2
(1| Tx (o)) |s2)| < N®/2

Hence |£12) are orthogonal in the large N limit.
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My goal for today is to generalize this
© Bound on matrix elements of singlet operators
@ State orthogonality and quantum error correction
© What if we act with too many operators/have too many
errors?
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Planar limit

e Start from two Majoranas !, % and from
creation/annihilation operators

a = v+ ivf, a=vj—ivj
@ Define Fock vacuum |0):
al|0y =0

@ Singlet states(closed strings) |s) = Tr(a™)...Tr(a™)|0) are
approximately orthogonal for large N

e Contracting ¢ in
<S|Tr1/}m‘5> ~ Nm/2+1
Familiar 't Hooft scaling after ¥ — ¢/v/'N

Unfortunately, m; has to be parametrically smaller than N
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Reducing to Casimirs using Cauchy—Schwartz and full squares

Tr (¢1¢1w1¢1) = 2N83 x 1 - Casimir for SU(N);
Example: Tr (vly2¢3¢*)
@ Separtate the hermitian part:
Tr (¢1¢2¢3¢4) + Tr (w4w3w2wl)
@ For any operators A, B:

0<Tr ((A ~B)f(A- B)) —Tr (ATA+ BB - ATB - BM)

© Hence we reduce to Tr (¢ ¢lep?4?)
Q@ Repeat to get Tr (ylylyty?)
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Bounds from representation theory

@ Op, is a singlet fermionic operator made from m fermions, not
necessarily single-trace
|(s1O3kls)| < 2K/2 5K/
|(s1O3k11]5)| < V2N x 2K/2 5K/
[(5|Ospp2|s)| < 2NZ x 2k/2 5k/2
1< k< NY4/3

O, ~ N9/10

and
|(s|Oals)| < 2N°

For O3, O4 coincides with the answer in the planar limit,
otherwise gives much bigger value
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How do we describe errors

Unitarity evolution U:
p— UTpU

Quantum system interacting with an environment:
o= =3 Elpka
(6

Positive operators on both sides
Trace preservation:

Z E.El =1

(e

Example: spin flip with probability p:

E1 = 1-— pl

E» = /pX
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Unitary operations can be inverted for any state.
General quantum operations are not always invertible. {E,} is
invertible for p if there is another {R,} such that

E:p%ﬁ:ZElpEa

R:p—p=) RipR,
(07
Approximate quantum error correction:

p—E(p) =) ElpE,

E(p) = R(E(p)) = Y _ RLE(P)Ra

«

lp = R(E(P)I| <€
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What does erasure mean?

H=ERE
Erasure(depolarization) £ of E:

1g

Elp) = m@’ﬂé

{E4} - all possible operators on E.
Example: one qubit

1
p— Z(llerXprL YpY +ZpZ)



Knill-Laflamme condition

{E.} is exactly correctable iff
PcodeEg(E,BPcode = aﬁlpcode

Pcode projector on code subspace.
Nog - hermitian matrix
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Construction of recovery

Knill-Laflamme condition: errors are orthogonal
<51|EJ¢EB|S2> = 504/365152
In our case they are almost orthogonal:

1/N

(s1|ELEsls2) = bagbais, + (11O0mts2)

Find nearest orthogonal basis(orthogonal Procrustes problem aka
" pretty good measurement”)

Holevo; Hausladen, Wootters

Requires <51\E:LE/3]52> — bound norms/eigenvalues
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Matrix models: errors E, and field content

A set of (Majorana) fermions 17

a - “flavor” index, a=1,...,D(D = 16 for BFSS)
ij - SU(N) adjoint

Introduce orthogonal SU(N) generators T,S,'J):

a kl) , a
v =3 T3 %)
(#)

Equivalent to qubits by Jordan—-Wigner transformation:
Normalization:

Wiyt + Y0yl = 2 X 1 x 55 x 51
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Conditions on error correction

Problem 1(bilinear problem):

Dl & 2m T (01?) Tr (T Tap) = O (N°)

Can not distinguish them. Blunt solution: avoid them.

Problem 2: O, might contain a lot(~ N) of operators.
Suppose E:LEg has k fermions: suppressed at least by

~ Nk/lO

Total number of different singlet operators ~ k!
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Result:

as long as
© No bilinears

@ Number of (known) error locations |E|:

E| < N0

(probably could be improved)
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Field content: Majorana t,pc in the fundamental of O(N)3

Gurau'll; Witten'16; Carrozza, Tanasa'l5; Klebanov, Tarnopolsky'16

HCTKT =J Z ¢abc¢ab’c’wa’bc"¢a’b’c

abca’b’c’

—a

C
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HCTKT =J Z 7vbabclpab’c’lba’bc’l/}a’b’c

abca’ b’ c’

The same large N limit as SYK
No disorder. No ensemble average?

CTKT: Schwartzian is there, but there are other 1/N
corrections.

Gurau-Witten model: 1/N corrections coincide with SYK
upto 1/N?(quenched vs annealed):

1 2 3 4
Haw = J Z VabcWap Vo Varbrc

abca’ b’ c’
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Expectation:
Horrr ~ N since there are N° terms.

Reality:
|[(s|Horkr|s)| < N°

Klebanov,Popov, Tarnopolsky, AM'17

0= AB < % (A7 + B})

@ (B (©

Last term is Casimir for O(N?)(sic!): ¥apc — P ac with
O(N?) x O(N)
(c) < N°



General bound

Os build from 2k < N3/% fermions:

1, k
[(s|Oaks)| < N/2 x { : ekver;d
Wa (o}

This result depends on field content only(Hilbert space).
Holds for any singlet |s)
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@ No bilinear problem: ;514 does not contain non-trivial
singlets

e Correct any erasure of size |E| < N*/® at known locations:

5
o~ REENI S 5]
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@ For matrix and tensor models, large N and singlet condition
automatically imply correction of certain erasures.

@ As long as erasures are not too large.
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Open questions

@ After erasure some information is lost after all.
Subsystem quantum erasure correction?
Harlow'16

Pcode E Pcode ~ (1E ® XA) Pcode

@ Theories with spacial dimensions: fuzzy spheres vacua of
BMN?

@ Singlet erasures?

@ Stabilizer codes:

(Gauge-)stabilizer codes?

Q,'|C> =0

@ Dynamical aspects?



Thank you!
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't Hooft scaling

L= %Tr (XDtX (DX + .. )

(Tr () ~ N

But x ~ v N, so
<TI' <,¢k)> -~ N1+k/2



Why do we expect 't Hooft scaling in BFSS ground state?



Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars Xi sixteen fermions ¢7.



Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars X}/, sixteen fermions 7.
Wave-function size bound:
1

R? = 4 (Tr (X7)) = A%°

Polchinski'99



Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars Xi sixteen fermions 7.
Wave-function size bound:
2 1 2 2/3
R = —(Tr (X )) > A\
N
Polchinski’'99

A2/3 size of the gravity region. Conjectured to be actual estimate.



Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars Xi sixteen fermions Vi

Wave-function size bound:
1
R? = —N( It (X2)> > \2/3

Polchinski'99

A2/3 size of the gravity region. Conjectured to be actual estimate.

Another evidence: non-singlet excitations
Maldacena, AM’17

A
Eaqj ~ 2



Why do we expect 't Hooft scaling in BFSS ground state?

Nine scalars Xi sixteen fermions Vi

Wave-function size bound:
1
R? = —N( It (X2)> > \2/3

Polchinski'99

A2/3 size of the gravity region. Conjectured to be actual estimate.

Another evidence: non-singlet excitations
Maldacena, AM’17

A
Eqqj ~ 2

Conjecture: non-singlets are gapped.
Consistent with Monte—Carlo data.

Berkowitz, Hanada, Rinaldi, Vranas'17
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Vector models: O(N) x O(D)

o Consider ¢, i=1,...,N; a=1,...,D.
°

Co (O(N)) + G (O(D)) = 2ND(N + D — 2) ~ N?
Klebanov, AM, Popov, Tarnopolsky

@ The only singlet operators are
Q% => wiy! ( O(D) charge)
i

Z Q?*Q,p ~ N? coincides with the naive expectation
a,b
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