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Motivation: Linguistics
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Computational linguistics
Distributional semantics

"You shall know a word by the company it keeps" (Firth 1957)

Distributional hypothesis: The
meaning of a word can be
represented by a vector recording
the frequency of its cooccurrence
with other words. (Harris 1954)

The basis of this vector space is a
set of commonly occurring "context
words".
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Computational linguistics
Compositional models of meaning

Distributional semantics works well for nouns but has problems with
anything more complex

To overcome this difficulty recent work has focussed on compositional
models of meaning (Coecke, Sadrzadeh, Clark ’10)

These models introduce higher index objects in order to represent
grammatical structure

(red)ij(box)j = (red box)i,
(like)ijk(cats)j(fish)k = (cats like fish)i
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Computational linguistics
Compositional models of meaning

Expect the meaning of a word to be independent of the ordering of the
context words

A permutation of the basis vectors does not change the overlap of a
meaning vector with any given context word
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Computational linguistics
Compositional models of meaning

There is evidence that the components of a word’s meaning
representation follow a Gaussian distribution

(Kartsaklis, Ramgoolam, Sadrzadeh ’17)

Figure 1: Histograms for
elements of adjective
matrices
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Permutation invariant Gaussian matrix model
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Permutation invariant Gaussian matrix model
What do these models look like?

Zero dimensional QFT with matrix valued fields

Z =
∫
dMe−S(M)

Gaussian → No interaction terms

S(M) ∼M +M2

Permutation invariant → The action of the theory is unchanged by
permuting the matrix elements

S(Mij) = S(Mσ(i)σ(j)), σ ∈ SD
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Permutation invariant Gaussian matrix model
Observables

The observables of interest are the permutation invariant polynomials

f(Mij) = f(Mσ(i)σ(j)), ∀σ ∈ SD

We can calculate expectation values via

〈f(Mij)〉 = 1
Z

∫
dMe−S(M)f(Mij)
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Permutation invariant Gaussian matrix model
Observable graph correspondence

There is a 1-1 correspondence between these observables and directed
graphs

Each unique index is associated with a vertex and each matrix is
associated with a directed edge from the first of its indices to the
second

⇔
∑
i

Mii, ⇔
∑
i,j

Mij

⇔
∑
i,j

MiiMjj , ⇔
∑
i,j,k

MiiMijMjkMik

11 / 46



Permutation invariant Gaussian matrix model
Observable graph correspondence

There are 11 invariants at quadratic order:

∑
i

MiiMii

∑
i,j

MijMij

∑
i,j

MijMji ∑
i,j

MiiMjj

∑
i,j

MiiMij

∑
i,j

MiiMji

∑
i,j,k

MijMjk
∑
i,j,k

MijMik

∑
i,j,k

MijMkj ∑
i,j,k

MijMkk

∑
i,j,k,l

MijMkl
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Permutation invariant Gaussian matrix model
Representation theory

We can define a five-parameter model with the partition function

Z(Λ, a, b, J0, JS) =
∫
dMe

J0
∑D

i=1Mii+JS
∑

i<j
(Mij+Mji)−Λ

2
∑

i
M2

ii

e
− 1

4 (a+b)
∑

i<j
(M2

ij+M2
ji)−

1
2 (a−b)

∑
i<j

MijMji

This factorises into D integrals for the diagonal matrix elements and
D(D − 1)/2 integrals for the off-diagonal elements

This model with two linear terms and three quadratic is solvable but
not the most general (Kartsaklis, Ramgoolam, Sadrzadeh ’17)
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Permutation invariant Gaussian matrix model
Representation theory

The most general Gaussian action is comprised of a weighted sum of all
possible linear and quadratic terms

D∑
i=1

Mii,
D∑

i,j=1
Mij ,

D∑
i=1

M2
ii,

D∑
i,j=1

MijMji, . . . ,
D∑

i,j,k,l=1
MijMkl

This action mixes the D2 elements Mij in some complicated way such
that we are not able to solve the partition function in this form

Z =
∫
dMexp

(
− 1

2xαΛαβxβ + ραxα

)
=

√
(2π)N
detΛ exp

(1
2ρα(Λ−1)αβρβ

)
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Permutation invariant Gaussian matrix model
Representation theory

It is possible to solve the most general Gaussian one-matrix action
(Ramgoolam ’18)

Look for a change of variables that factorises the partition function (at
least into block diagonal form) ⇒ representation theory of the
symmetric group
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Permutation invariant Gaussian matrix model
Representation theory

VD is the natural representation of the symmetric group on D symbols.
Consider it as the span of D orthonormal basis vectors {e1, e2, . . . , eD}
with the action of σ ∈ SD given by

ρVD
(σ)ei = eσ−1(i)

and extended by linearity.

The D2 matrix elements Mij transform as the product of two copies of
the natural representation VD ⊗ VD

VD is a reducible representation of the symmetric group. There is an
invariant vector in this space given by

E0 = 1√
D

D∑
i=1

ei
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Permutation invariant Gaussian matrix model
Representation theory

The following D − 1 linear combinations

E1 = 1√
2

(e1 − e2),

E2 = 1√
6

(e1 + e2 − 2e3),

...

Ea = 1√
a(a+ 1)

(e1 + e2 + · · ·+ ea − aea+1)

with 1 ≤ a ≤ D− 1 form an SD-invariant subspace of VD. The Ea form
a basis of an irrep of the symmetric group called the Hook
representation.

17 / 46



Permutation invariant Gaussian matrix model
Representation theory

The natural representation of the symmetric group irreducibly
decomposes as

VD = V0 ⊕ VH

We would like to find the transformation that reduces VD ⊗ VD to a
direct sum of irreducible representations of Diag(SD).

Mij
∼= VD ⊗ VD
= (V0 ⊕ VH)⊗ (V0 ⊕ VH)
= (V0 ⊗ V0)⊕ (V0 ⊗ VH)⊕ (VH ⊗ V0)⊕ (VH ⊗ VH)

The only term that transforms as a reducible representation of SD is
VH ⊗ VH .

18 / 46



Permutation invariant Gaussian matrix model
Representation theory

The VH ⊗ VH space can be decomposed into irreps of the diagonal SD
as

VH ⊗ VH = V0 ⊕ VH ⊕ V2 ⊕ V3

= · · · ⊕ · · · ⊕ · · · ⊕ · · ·

Leaving us with

Span{Mij : 1 ≤ i, j ≤ D} =
2⊕

α=1
V α

0

3⊕
α=1

V α
H ⊕ V2 ⊕ V3
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Permutation invariant Gaussian matrix model
Representation theory

We define the following variables transforming according to this
decomposition

Trivial rep: S00, SHH→0 SV0;α, α = {1, 2}
Hook rep: S0H

a , SH0
a , SHH→Ha SVH ;α

a , α = {1, 2, 3}
The rep V2: SHH→V2

a SV2
a

The rep V3: SHH→V3
a SV3

a

where superscripts track the representation theoretic origin of each
variable.
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Permutation invariant Gaussian matrix model
Representation theory

The orthonormality of the ei basis of VD

〈ei|ej〉 = δij , 1 ≤ i, j ≤ D.

implies the same for EA

〈EA|EB〉 = δAB, 0 ≤ A,B ≤ D − 1.

We then define the overlap coefficients

C0,i = 〈E0|ei〉 = 1√
D

Ca,i = 〈Ea|ei〉 = 1√
a(a+ 1)

( a∑
j=1

δij − aδi,a+1
)
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Permutation invariant Gaussian matrix model
Representation theory

Using the orthonormality we use

D−1∑
A=0

CA,iCA,j = C0,iC0,j +
D−1∑
a=1

Ca,iCa,j = δij

to define an object of central importance in the calculation of
correlators

D−1∑
a=1

Ca,iCa,j = δij −
1
D
≡ F (i, j)

This is the projector in VD for the VH subspace.
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Permutation invariant Gaussian matrix model
Representation theory

Indeed F (i, j) behaves like a projector obeying

D∑
j=1

F (i, j)F (j, k) = F (i, k)

and
D∑
i=1

F (i, i) = D − 1

Furthermore
D∑
i=1

F (i, j) = 0
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Permutation invariant Gaussian matrix model
One-point function

It is possible to write the Clebsch-Gordan coefficients in terms of the
Ca,i and C0,i

Mij = 1
D
S00 + 1√

D − 1

D−1∑
a=1

Ca,iCa,jS
HH→0 + 1√

D

D−1∑
a=1

Ca,jS
0H
a

+ 1√
D

D−1∑
a=1

Ca,iS
H0
a +

D−1∑
a,b,c=1

Ca,iCb,jC
VHVH→VH
a,b; c SHH→Hc

+
D−1∑
a,b=1

DimV2∑
c=1

Ca,iCb,jC
VHVH→V2
a,b; c SHH→V2

c

+
D−1∑
a,b=1

DimV3∑
c=1

Ca,iCb,jC
VHVH→V3
a,b; c SHH→V3

c .
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Permutation invariant Gaussian matrix model
Quadratic invariants

Our action should also include terms quadratic in Mij

Every irreducible representation of SD, call it VR has the property that

Sym2(VR)

contains the trivial representation exactly once

The square of M transforms as

M2 ∼= Sym2(VD ⊗ VD)
= Sym2(2V0 ⊕ 3VH ⊕ V2 ⊕ V3)
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Permutation invariant Gaussian matrix model
Quadratic invariants

There are two copies of V0 in this decomposition: V 00
0 and V HH

0

Sym2(V 00
0 ⊕ V HH

0 ) contains three invariants:

(S00)2, S00SHH→0 = SHH→0S00, (SHH→0)2

The general invariant quadratic function of the variables transforming
as V0 is

2∑
α,β=1

(ΛV0)αβSV0;αSV0;β

with ΛV0 a 2× 2 symmetric matrix.
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Permutation invariant Gaussian matrix model
Quadratic invariants

Similarly, for the VH , V2 and V3 variables we have

3∑
α,β=1

(ΛVH
)αβ

D−1∑
a

SVH ;α
a SVH ;β

a

ΛV2

DimV2∑
a

SV2
a S

V2
a

ΛV3

DimV2∑
a

SV3
a S

V3
a

respectively, with ΛVH
a 3× 3 symmetric matrix, and ΛV2 , ΛV3

numbers.
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Permutation invariant Gaussian matrix model
Quadratic invariants

We now have a partition function

Z(ρ1, ρ2; ΛV0 ,ΛVH
,ΛV2 ,ΛV3) =

∫
dMe−S

Our action can now be written

S =−
2∑

α=1
ρV0
α S

V0;α + 1
2

3∑
α,β=1

SV0;α(ΛV0)αβSV0;β

+ 1
2

D−1∑
a=1

3∑
α,β=1

SVH ;α
a (ΛVH

)αβSVH ;β
a + 1

2ΛV2

DimV2∑
a=1

SV2
a S

V2
a

+ 1
2ΛV3

DimV3∑
a=1

SV3
a S

V3
a
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Permutation invariant Gaussian matrix model
Quadratic invariants

The measure dM for integration over the matrix variables Mij is taken
to be the Euclidean measure

dM =
∏
i

dMii

∏
i 6=j

dMij

It can be shown that

dM = dSV0;1dSV0;2
D−1∏
a=1

dSVH ;1
a dSVH ;2

a dSVH ;3
a

DimV2∏
a=1

dSV2
a

DimV3∏
a=1

dSV3
a
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Permutation invariant Gaussian matrix model
Quadratic invariants

We are now able to apply standard techniques from Gaussian
integration to calculate expectation values of observables

〈f(M)〉 = 1
Z

∫
dMe−Sf(M)

Which we can generate by taking derivatives of the result

Z =
∫
dMexp

(
− 1

2xαΛαβxβ + ραxα

)
=

√
(2π)N
detΛ exp

(1
2ρα(Λ−1)αβρβ

)

30 / 46



Permutation invariant Gaussian matrix model
One-point function

The only non-vanishing first order expectation values are

〈SV0;α〉 =
∑
β

(Λ−1
V0

)αβρV0
β

From this we can write the first order expectation values of the original
Mij

〈Mij〉 = 1
D
〈S00〉+ 1√

D − 1

D−1∑
a=1

Ca,iCa,j〈SHH→0〉

=
(Λ−1

V0
)1βρ

V0
β

D
+

(Λ−1
V0

)2βρ
V0
β√

D − 1
F (i, j)
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Permutation invariant Gaussian matrix model
Quadratic expectation values

The quadratic expectation values are given by

〈SVi;α
a S

Vj ;β
b 〉conn ≡ 〈SVi;α

a S
Vj ;β
b 〉 − 〈SVi;α

a 〉〈SVj ;β
b 〉

= δ(Vi, Vj)(Λ−1
Vi

)αβδab

The decoupling of the different irreps follows from the factorised form
of the partition function
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Permutation invariant Gaussian matrix model
Quadratic expectation values

Since we have a Gaussian theory higher point expectation values can
be written in terms of linear and quadratic expectation values by
Wick’s theorem

〈MijMklMpq〉 =〈MijMkl〉conn〈Mpq〉+ 〈MijMpq〉conn〈Mkl〉
+ 〈MklMpq〉conn〈Mij〉+ 〈Mij〉〈Mkl〉〈Mpq〉

where 〈MijMkl〉conn is given by the following expression
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Permutation invariant Gaussian matrix model
Quadratic expectation values

〈MijMkl〉conn =
1
D2 (Λ−1

V0
)11 +

(Λ−1
V0

)22

D − 1
F (i, j)F (k, l) +

(Λ−1
V0

)12

D
√
D − 1

(
F (k, l) + F (i, j)

)
+

(Λ−1
VH

)11

D
F (j, l) +

(Λ−1
VH

)22

D
F (i, k) +

D(Λ−1
VH

)33

(D − 2)

D∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q)

+
(Λ−1

VH
)12

D

(
F (j, k) + F (i, l)

)
+

(Λ−1
VH

)13
√
D − 2

D∑
p=1

(
F (j, p)F (k, p)F (l, p) + F (i, p)F (j, p)F (l, p)

)
+

(Λ−1
VH

)23
√
D − 2

D∑
p=1

(
F (i, p)F (k, p)F (l, p) + F (i, p)F (j, p)F (k, p)

)
+ (Λ−1

V2
)
(1

2
F (i, k)F (j, l) +

1
2
F (i, l)F (j, k)−

D

D − 2

D∑
p,q=1

F (i, p)F (j, p)F (k, q)F (l, q)F (p, q)

−
1

(D − 1)
F (i, j)F (k, l)

)
+

(Λ−1
V3

)
2
(
F (i, k)F (j, l)− F (i, l)F (j, k)

)
.
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Permutation invariant Gaussian matrix model
Quadratic expectation values

As as example

〈 〉
=

D∑
i,j=1
〈MijMij〉conn

=
(
(Λ−1

V0
)1αρ

V0
α

)2 +
(
(Λ−1

V0
)2αρ

V0
α

)2
+ (Λ−1

V0
)11 + (Λ−1

V0
)22

+ (D − 1)
(
(Λ−1

VH
)11 + (Λ−1

VH
)22 + (Λ−1

VH
)33
)

+ D(D − 3)
2 (Λ−1

V2
)

+ (D − 1)(D − 2)
2 (Λ−1

V3
)
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Experiment
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Experiment
Test of Gaussianity

This model was compared to experimental data in order to test
Gaussianity (Ramgoolam, Sadrzadeh, Sword ’19)

A data set of adjective and intransitive verb matrices was constructed
from large corpora of data

The couplings of the theoretical model were set by evaluating the first
and second order expectation values of observables

This was then used to predict a selection of cubic and quartic
expectation values which could be compared with experiment
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Experiment
Test of Gaussianity

Table 1: Comparison of theoretical and experimental expectation values for
adjectives
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Experiment
Test of Gaussianity

Table 2: Comparison of theoretical and experimental expectation values for
verbs
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Experiment
Test of Gaussianity

Generally a good agreement, between 90% and 99% , even in the worst
case the theory gives the correct order of magnitude.

These results improve for lower values of D

The authors note that this suggests the discrepancy may be related to
the specifics of the method used to construct the verb and adjective
matrices
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Extending the model
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Extensions
Linguistics as motivation

Taking inspiration from linguistics lead us to consider permutation
invariant Gaussian one-matrix models

(red)ij(box)j = (red box)i

Could also consider:

Adjective verb combinations: Two-matrix models of Mij and Nij

(eat)ij(quickly)jk(cats)k = (cats eat quickly)i

Transitive verbs: Tensors models of Tijk

(like)ijk(cats)j(fish)k = (cats like fish)i
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Extensions
Two matrix model: Observable graph correspondence

Can apply similar techniques to solve permutation invariant Gaussian
two-matrix models (GB, Padellaro, Ramgoolam ’21)

The observables of the theory f(M,N) are again permutation invariant
polynomials and must satisfy

f(Mi,j , Nk,l) = f(Mσ(i),σ(j)Nσ(k),σ(l)), ∀σ ∈ SD

There is a 1-1 correspondence between these observables and directed,
coloured graphs
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Extensions
Two matrix model: Observable graph correspondence

∑
i

MiiNii

∑
i,j

MijNij

∑
i,j

MjiNij ∑
i,j

MiiNjj

∑
i,j

MijNii

∑
i,j

MjiNii

∑
i,j

MiiNij

∑
i,j

MiiNji

∑
i,j,k

MjkNij
∑
i,j,k

MijNik

∑
i,j,k

MkjNij

∑
i,j,k

MijNjk ∑
i,j,k

MkkNij

∑
i,j,k

MijNkk

∑
i,j,k,l

MijNkl
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Summary

A large collection of matrices that arises in computational
linguistics are permutation invariant and Gaussian

We considered a permutation invariant Gaussian one-matrix
model to study the statistics of these matrices

The observables of the theory are in 1-1 correspondence with
directed graphs

With the help of representation theory of the symmetric group
this model is solvable

The theoretical expectation value predictions are mostly in good
agreement with experimental values
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Summary

More recently, the most general permutation invariant Gaussian
two-matrix model was solved

A direction for future work is to consider equivalent tensor models,
Tijk
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