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Tensor vs. vector theories

Same universality class at large NV
@ vector models are branched polymers
@ possibility of large-N in tensors: melons [Gurau 1011 ff]

@ “melons are branched polymers”, same universality class

Field theory: RG flow in phase space
@ how do they compare?
@ what's the phase structure of field theory with tensorial interactions?
@ quantum/random geometry interpretation: emergence of a continuum?

Caveat: two kinds of “tensor field theory"!
here: propagating tensor degrees of freedom (no background spacetime)
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Non-

Gaussian fixed point in tensor theory?

Various methods and claims in the literature:

[Brezin/Zinn-Justin '92] RG for matrix model integrating out N + 1 +— N
[Eichhorn/Koslowski 1309,1408] FRG setup and methods for matrix model

[E/K 1710] NGFP with several relevant directions in » = 3 sextic melonic TM
[E/K/Lumma/Pereira 1811] NGFP in r = 4 full sextic and [E/L/P/S 1912] octic TM

Propagating tensor fields in ¢2" . truncation:

e 6 6 o

[Benedetti/BenGeloun/Oriti 1411] FRG setup, non-autonomous equation (j)‘ll 5 due to
compactness, phase transition only when hidden compactness scale sent to infinity

[Benedetti/Lahoche 1508] qb‘llﬁ with gauge constraint: Wilson-Fisher like FP
[BenGeloun/Martini/Oriti 1508, 1601] d)‘llﬂ, on R: Wilson-Fisher like FP

extending truncation: ¢?74 [BGK1606], necklaces [CLO1703], tetrahedron [BGKOP1805] ...
[Lahoche/OuSamary 1608,/1803/1809/1812/1904/1908] Ward identities, eff.-vertex exp.

[Carrozza/Lahoche 1612] d)%"g on SU(2) with gauge constraint, cyclic-melonic potential
approximation, stable (?) Wilson-Fisher type FP up to n =6

Crucial: convergence with higher truncations!

Improve the local potential approximation of oo many cyclic-melonic couplings!
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Outline

© FRG for O(N) scalar field theory
o FRG equations
@ Wilson-Fisher fixed point

e FRG in the cyclic-melonic potential approximation
@ FRG for tensorial interactions
@ The cyclic-melonic potential approximation

© Rescaling and dimension
@ Beta equations and rescaling
@ Equivalence to O(N) field theory

e Wilson-Fisher fixed point
@ Existence in the LPA
@ Indications in the LPA’



Functional renormalization group

Theory at scale k given by generating function with k-dep. IR-regulator Ry

RUAY/ . /D¢e—5[¢}—<¢,m¢>+<a¢)

Scale-dependent effective action via Legendre transform w.r.t. ¢ = Wg’f][‘]]

Trlp] = St}p{(J, ©) = Wi[J]} = (v, Rigp)

Renormalization group flow determined by functional equation [wetterich'93,
Morris'94]

1 koL R4
koI kl¢] = fTr(mi
2 1ol + Re

Flow interpolates between microscopic theory k — oo and full quantum
effective action I' = lim_,o 'y,
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O(N) scalar field theory

O(NNV)-symmetric scalar field theory in d dimensions in the local potential
approximation (LPA, Z; = cons.) parametrized by potential U = Uy,

Iy = /ddl‘ (;Zk&ﬁ“a(ba + U(¢a¢a)>

Projection of the flow on constant average field p = %(b“qba:

1 (N —=1)koRi(q) korRi(q)
kOUy, = - Trg—— , ~ : .
2 "Zk? +Ri(@) + U Zyq® + Ri(q) + U + 20U

optimized Ry d+1 N -1 1
= Zik +
Cd sk (Z;Jc? YU " Zk+ U+ 200"
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Flow equations

Rescaling u = U/cqZpk® and p = Z,k*~?¢"¢, by their canonical dimension:

N—1+ 1
1+u  1+4 +2pu”

koku + du — (d — 2)pu’ =

Flow equations for couplings X, in u(p) = > %p" from Taylor exp. at p = 0:
kOkAn + dAn —n(d — 2)A, = (N — 1)) + 8" (Ni)
Infinite tower of coupled algebraic equations of order n + 1
o 3™(\;) Taylor coeff. of ﬁ of the form WPOZ(H)([L’}’\z, s Ant1)

o B™(N\;) = B™((2i — 1)\;) Taylor coeff. of m
— approximate solutions by truncation at a give order n, but most do not
converge with n!
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Outline

© FRG for O(N) scalar field theory

@ Wilson-Fisher fixed point

© FRG in the cyclic-melonic potential approximation

© Rescaling and dimension

e Wilson-Fisher fixed point



Large- N solutions

In the large-N limit, the v/ term vanishes:

1
1+

kOxu + du — (d — 2)pu’ =

Flow equations for vacuum expansion u(p) = > -, % (p — k)" decouple:

815,% + (d — 2)/{,:1
atgn + dgn + (d - 2)”971:5”(07927 s 9ns Gnt+1 = 0)

— exact recursive fixed point solution (8;g, = 0)

1 ., 4—d ., 3
=oT5 BT 5 6=

K:*

the Wilson-Fisher fixed point
@ non-vanishing vacuum (& local minimum) for 2 < d < 4
@ converges to the Gaussian fixed point u =0 for d — 4

@ scaling exponents 6; = d — 2¢, only 6; > 0
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Exact solutions

Possible to solve the flow for u’ exactly with method of characteristics:
[Busiello/DeCesare/Rabuffo '81]...[Litim/Tetradis 9501]

"

"o — (d— ) pu — U "
kEopu' 4 2u’ — (d — 2)pu e

has implicit 1-parameter fixed-point solutions

1 2—d 4—-d =
p= e (2250 5 et

- ___conv
—co -4 -2 -1 0 12 4

[Litim/Marchais/Mati 1702]

8/29



Outline

© FRG for O(N) scalar field theory

e FRG in the cyclic-melonic potential approximation
@ FRG for tensorial interactions

© Rescaling and dimension

e Wilson-Fisher fixed point



FRG Setup for dynamic tensor fields

Tensor field ¢ : G*™ — C/R on compact G with explicit curvature scale a:
[straightforward, first done in [Benedetti/BenGeloun/Oriti 1411]

@)= [ dgiteete) . [ da=a

Tensorial interactions: unitary transformations U¢ : L*(G) — L*(G):

o(g) — <® Ue ¢> (9) = /dhl...dhr [T U<(ge: he)b(ha, ... )

c=1

Theory space labelled by (bipartite) r + 1 edge-coloured graphs b:

Tild, 6] = (6, Kkd) + > MosTro[d, 0], Ki = (=1)™ ZpA + py

beB
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Supertrace for complex field

Hessian is 2 X 2 matrix with respect to ¢ and é [overlooked in literature so far],

(2) _ PR+F F12
(Fk +R’“HZ)_< Fpy P+ F

with effective propagator Py = (—1)% Z,A + s, + Ry and
_ 8°Tx[¢, 4] Ly — §°T1 [0, 9] Foy 4+ Tk [0, ¢]
5¢(9)6(h)’ 50(9)0p(h) 3¢(g)od(h)

if invertible (possible in momentum space):

1— kORil 1 Q(PR + F) kO Ry
koI, = -Tr—————"— = =-TrnA,
SR I‘f) + R, 2 T (Pu+F)?— FiaFy
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Outline

© FRG for O(N) scalar field theory

© FRG in the cyclic-melonic potential approximation

@ The cyclic-melonic potential approximation

© Rescaling and dimension

e Wilson-Fisher fixed point



Cyclic-melonic interactions

Interactions parametrized by a polynomial function: [Carrozza/Lahoche 1612]

3 NuTnle,d) = ZTrGVk 6e0) . Vi(x)=) oA
bechcme\ n=2 :

Diagrammatically:

TrgVi(¢ e ¢) = A%@Jr)é@ +>\Z® +

Hessian: sum over choices of 2 vertices — multi-edge pair: melonic contribution

F[6,6)(g,h) ZZ {ZM (9% h) (S e 8) P G0 )

c1n2

+0(ges he)(@ e )" G he) + [ [ 0(a6 1) (62 )™ (ger e |-
b#c
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Constant-field projection

Projection to constant field
p:=(p,0) =a" 6¢.
allows to express everything in terms of potentials V{:
Fi6.ollg. ) = o= 3 | (T odtans ) + adtes ) = 1) Vi) + 0.
c=1 b#c

Combinatorial non-locality captured by operator

o (g g HCL(S 9b, hb) + aé(gCa c) -1
b#c

In momentum (representation) space

05 := bo;, + (1 = do;.) [ [ 603,
b#c
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Projected FRG equation

FRG equation for u(p) := pupp + >.._; V(p) similar to O(N = 2) theory
) k) Ri . k) Ri
P+ O5VE () Put 2 O5ViE (p) + 20 (T d0se) 2o Vi ()

(Same analysis for real ¢ yields only second term)
To evaluate trace choose

e G=U(1)
o kinetic term 5Cj = 1= >0 [5.|*
o optimized regulator Ry, = Zj (k*¢ — a=%Cj) 6 (k* — a=%C})

1
koru(p) = ETT

Relation to Tensor models: Nj, := ak

o trace Trg, becomes [[}_, -, oy BN — S 15.]%9)
@ scaling in Ry, fixed naturally by field propagation (no freedom [Eichhorn et. al.])
o crucial difference: K = Zy A + p, not just K = Zj,
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Full equation

Identifying V;¢ = V4, /r allows to calculate full FRG equation for potential
Uy = pkp + Vi(p —HkPJFZ

Non-autonomous FRG equation for real/complex ¢ (N, = 1,2) at arbitrary r:
[as expected from Benedetti/BenGeloun/Oriti 1411]

1
korUi(p) = (C - @) kz(Z’“(/g?CZk +Uj(p) + 20U} (p )

(1) r (s)
¢ TiNgLg k 2 : < ) ( k:) )

k% Z, + Ul (p k%Zk + M(S)( )
(1 ) (s)
1 rNe Ly, sl; ¢ (Ng)
J Mpacg, L (2 o2 ¢Z() )
2 N kCZk-i-U k2§Zk+M()()
Different relative weight between mass and coupllngs at order s: effective mass

M (p) = + —2V{(p)
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Threshold functions

IV (Ny) = H > |l I"9< Ny ZU 2§>

c=1;.€Z\{0}

@ "box" scheme: approximation by a sum over the hypercube
@ ‘integral”’ scheme: approximation, sufficient in the N — oo limit,

e "simplex’ scheme: exact trace for ( =1/2

(2Ng)® box
Iés)(Nk) = fugC)Né integral, v{¢) = %
25 I'(Np+1) |
?W Slmp ex
2H (2% (2Ng)* box
Ugo b2 _
I (Ny) = {s+2< N Irjtegral
(a+1)‘ [Ti—o(NK +14) simplex, ¢ = 1/2

(S+2)! (2N + 8) [Ti—o (N + i) simplex, ¢ =1
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Outline

© FRG for O(N) scalar field theory

© FRG in the cyclic-melonic potential approximation

© Rescaling and dimension

@ Beta equations and rescaling

e Wilson-Fisher fixed point



Non-autonomous beta equations

Full FRG equation is not tractable — flow equation for couplings:

k&kAn __(

Zpk2C - %k) Bn(“kv Ai) + Ny ; (CFi(Nk) - %kGlr(NkD B (1, Ai)

with expansion of Taylor coefficients due to effective mass:

n l
B (uk,’"‘sxi) :Z<’“;S> BF (taxs M)

=1

Non-autonomous part at order {:

FL(Ny) = N?vd) +2r N, + —Z( ) (=) 15 (V)

_ 1 & yr _
GL(NK) 1= FE(N) =N 10 (N) = 5 30 (D) (= )1 s N 212 ()
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Rescaling and dimension

Rescaling: at scale Vi, where a given order N,fe“ is dominant:

An = 27 L doti—(derr—=20)n [ (1—n)desr S\n

[Possibility of consistent rescaling in k and a first explored in BenGeloun/Martini/Oriti 1601]

Dk An + deihn — n(desr — 2C + mi) An
FL(N, GL(N, N
:( nk) Ndeff/?’"(u, )+N¢Z<C r(NVe) i Gl ’“)>5;1(,:L,Ai)

dest dets
=1 Ny* 2 Ny

Small-Nj, limit: deg = 0

Confirms the argument in [Benedetti/BenGeloun/Oriti 1411] based on [Benedetti 1403]

Large- Ny limit: deg =1 — 1
@ stems from melonic single-d;_ o contributions

Consistent with renormalization: eff. dimension d, = d(r — 1)
@ vertex weights d,. — n(d, — 2¢)

o divergence degree w*?d =d, — %N —dg (0guran + Ko — 1)
[Carrozza/Oriti/Rivasseau 1303], [OusmaneSamary/Vignes-Tourneret 1211], [BenGeloun 1306]...,7 /59



Dimensional flow

Continuous rescaling: [improves ideas in Benedetti/BenGeloun/Oriti 1411]
An = ZPEXMFY (ak) "N,

effective dimension 5 LN
log F (N
deg(k) i= ———F———=
eit () 0log Ny,
full FRG equations

kdpdn = — deg(k) A + n(deg(k) — 2C 4 i) An

ey B o (PN e GLND) s
(€= 5) Frimy N D (CFT%N]Z) B ;F;<N:>> P

— r=6

@ dimension changes ’ r=5
continuously through scales 4 — r=4
o deg is NOT the spectral dim. 3 —r=s

eff

of the generated geometry! 2

@ tensorial theory behaves like 1 /
a deg-dim. local field theory N

0.001 0.010 0.100 1 10 100 18/29




Outline

© FRG for O(N) scalar field theory

© FRG in the cyclic-melonic potential approximation

© Rescaling and dimension

@ Equivalence to O(NV) field theory

e Wilson-Fisher fixed point



No phase transition in TGFT with fixed curvature a

In given regime, rederive equation for potential from beta equations:

Small-Ny: equivalence to O(N,) theory in d =0

Small- Ny, limit cyclic-melonic potential approximation gives exactly

1 N, —1 1
%) 20/ (p) = 2
chowule) + 20 (0) = TS T T W) + 20w (p)

Consequence for theory with fixed curvature scale a: small-INy is small-k limit
@ UV fixed points do not persist to IR
@ no phase transition for deg < 2 (Mermin-Wagner theorem)
@ universal symmetry restoration due to compactness of GG [Benedetti 1403]
@ cyclic-melonic potential approximation not valid in IR, BUT
e result independent of specific interactions (r-fold zero mode always there)
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Equivalence to d,-dim. O(NN) theory

Way out: a — oo limit

Then large- N}, equations valid at any k! Only melonic (single-9) contributions

_ _ Mk —5\2
kop — (—2 =r(1l-—
bt = (220 + ) r( dr+2<> 1+ )2
3 Y . Y Tk ni- y.
kOpAn + dpAp — (dy — 2C + mg )0\, <1 e 2§> B™ (s As)

independent of Ny (upon rescaling constant cq, = (véf)N,z))

[agrees with and generalizes equations in BenGeloun/Martini/Oriti 1601]
Equivalence to O(V) theory in d, dimensions for N — oo

up to the relative factor r between mass and couplings

_ Mk
- g %

(kO + d — (dyr — 2¢ + 1) pO,) (iup + V(P)) “TT L)
k
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Flow of anomalous dimension

There is one other difference: no argument that 1, = —kd log Zj, vanishes...

B Ao
=21+ a2+ A

Nk

sign in tensorial flow of 7y, is unusual!

Understanding large-a tensorial theory in the cyclic-melonic LPA(’)

o first expectation: similar result to large-N, O(N) theory in d,. dim.
@ what's the effect of the r factor (LPA)?
@ what's the effect of the specific flow of n;, (LPA’)?
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Outline

© FRG for O(N) scalar field theory

© FRG in the cyclic-melonic potential approximation

© Rescaling and dimension

e Wilson-Fisher fixed point
@ Existence in the LPA



Critical dimension

At origin of phase space (“Gaussian fixed point”, GFP):
Scaling exponents given by scaling dimension d, — n(d, — 2¢) (vertex weights)

— critical dimension  d, = d¢y = 4C

UV perspective:
@ just-renormalizable quartic theory at d..it = 4¢
o for d, > diy only one UV-relevant (renormalizable) direction
@ — quantum triviality
IR perspective (phase transitions):
o for d, > d..t IR-attractive surface of codimension one
@ splits the phase space in two regions

@ — phase transition, can be described by mean field theory
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Wilson-Fisher fixed point in the LPA

Wilson-Fisher fixed point: non-Gaussian fixed point with one UV-relevant
direction, continuously connected in d,. to the GFP at d, = d¢,it

1.0~

@ no decoupling of equations
due to factor r

@ only quantitative modi-
fication due to factor r

@ phase transition for

a — oo in LPA

1.0k L L L
-2 0 2 6
dr
Stability of the NGFP, r =d, +1 =4 (( = 1):
[n ] 10a [ 102Xy [ 103x3 [ 10Tx4 [ 10%x5 [ 108X [ 107x; | 103X 10939 [ 1010X,
6 | 71817 | 28522 35074 3.7706 1.3424 6.2207
7 | 71720 | 2:8680 3.5233 3.7406 1.0103 -8.3707 | -17.501
8 | -7.1740 | 2.8647 3.5200 3.7469 1.0866 7.9239 | -13.910 41.128
o | 71751 | 28630 3.5182 3.7503 11232 76812 | -11.912 63.425 304.07
10 | -71750 | 28631 3.5184 3.7501 1.1205 7.6994 | -12.062 61.750 281.24 -358.82
1| 71749 | 28633 3.5186 3.7497 1.1167 77245 | -12.268 50.449 249.87 -851.88
12 | 71749 | 28633 3.5186 3.7497 1.1166 77252 | -12.274 50.384 248.98 -865.87
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Quantitative difference to O(/V) theory

Scaling exponents 0; = d, — 2(i + 60;(r, ()

6i—(dr-24)
12}
1.0
0.8 . i=1
o6} - i=2
+ =3
0.4
0.2+
‘ ‘ ‘ ‘ N g
30 32 34 36 38 40
Stability of scaling exponents, r =d, +1 =4 (¢ = 1):
[n[ 00 [ 0o [ 63 [ 64 [ 65 [ 66 [ 67 [ 068 [ 069 [ 019
6 | 044445 | -1.9006 | -6.1670 | -11553 | -16454 | 28527
7 | 045200 | -1.8256 | -47984 | -0.8777 | -13.603 | -21312 | -34.652
8 | 045314 | -1.8660 | -41832 | -8.2540 | -12239 | -17.179 | -26.712 | -41.022
9 0.45218 -1.8834 -4.0306 -7.0618 -11.165 -14.647 -21.814 -32.301 -47.464
10 | 045205 | -18787 | -4.0690 | -6.3878 | -10.063 | -13.168 | -18.442 | -26.782 | -38.014 | -53.954
11 0.45214 -1.8757 -4.1043 -6.1630 -9.0992 -12.228 -16.073 -22.864 -31.940 -43.840
12 0.45217 -1.8761 -4.1011 -6.1886 -8.4649 -11.474 -14.452 -19.951 -27.551 -37.247
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Outline

© FRG for O(N) scalar field theory

© FRG in the cyclic-melonic potential approximation

© Rescaling and dimension

e Wilson-Fisher fixed point

@ Indications in the LPA’



A peculiar anomalous dimension

Tensor-specific flow of anomalous dimension 77 changes the phase structure:
mass parameter as function of dimension in n=4 truncation (¢ = 1):

2.0~
1.5¢F 1
1.0 1
p 05 1
v\NGFF7’2
0.0 < - l
o5 K \\ |
~\—O—A\. ~N
-1.0k — —
-1 0 1 2 3 4 5

o

@ solution with two branches — two non-Gaussian fixed points

@ agrees with € expansion around d, = dit at n = 2 in [Benedetti/Lahoche 1508]
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Scaling exponents

Scaling exponents of lower branch / upper branch (¢ = 1, n = 10 truncation)

6

-10 / -10
Y

3.0 3.5 4.0 4.5 4.5 4.0 3.5 3.0
dr dr

o NGFP; is of Wilson-Fisher type, occurs for d,. < do (branching point)

@ hint for Wilson-Fisher FP at d,, = d;it [Benedetti/Lahoche 1508],
[BenGeloun/Martini/Oriti 1601] — but convergence unclear...

@ NGFP; exists only for d,. >~ 3.5 — no second NGFP for d, < dcit!
@ asymptotic-safe NGFP close to d, > d..it? But no integer rank r...
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Asymptotic safety?

For ¢ < 1 the branching point is shifted to higher dimension:

2.0 T T T T
151
@ branching point for 1or
¢ =1/2 around de = 100 o5k
o NGFP5 with two relevant ~
. . . 0.0
directions at finite rank S —
— NGFP,
@ converges -05f N
g NGFP,
10 ‘ : : ‘
0 1 2 3 4 5
o
scaling exponents at the NGFP2 for d = 3 > dcyit with ¢ =1/2:
[~ 91/2 [ 03 [ 0 [ 0 [ 6 [ 07 [ 0s [ 99 910
6 0.24545+1.332371 -2.3665 -4.8104 -9.1162 -16.366
7 0.24662+1.332761 -2.4041 -4.3120 -7.2845 -12.247 -20.146
8 0.246714+1.332641i -2.4115 -4.2725 -6.3724 -9.9634 -15.513 -23.995
9 0.24663+1.33264i -2.4074 -4.3130 -6.0972 -8.6451 -12.814 -18.883 -27.893
10 0.24664+1.33265i -2.4073 -4.3116 -6.1298 -8.0245 -11.124 -15.803 -22.338 -31.831
11 0.24664+1.332651% -2.4076 -4.3078 -6.1566 -7.9189 -10.141 -13.775 -18.904 -25.863
12 0.24664+1.332651% -2.4076 -4.3083 -6.1486 -7.9787 -9.7579 -12.459 -16.564 -22.099
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Summary

Insights:

@ tensor models and field theory related via Ny = a - k

o field theory allows to find interesting phase structure for a — oo

e tensorial field theory behaves like local field theory in d = d, = dg(r — 1)
@ equivalence to large-N O(N) scalar field theory in the cyclic-melonic LPA
°

tensor-specific flow of i deforms the Wilson-Fisher FP curve:

o hint for Wilson Fisher FP beyond critical dimension
e room for asymptotic safety
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Outlook

Cyclic-melonic approximation is only a first step:
@ analytic methods necessary for more precise statements about NGFPs
@ extend oo truncation: all melonic — multi-traces — ...
@ non-compact groups, realistic models of quantum gravity

@ insights from relation to Dyson-Schwinger equations?

Thanks for your attention!
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