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Multi-scalar models

Interactions of the type:
λabcdφaφbφcφd

Indices from 1 to N .
Broad class of field theories such as O(N ) model
Important universality classes: Ising, Heisenberg, ...

Challenge: Full classification of all possible universality classes

Gradually breaking the maximal symmetry group: O(N1)×O(N2), ...
Here: trifundamental model O(N1)× O(N2)× O(N3)
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Further motivation: 1/N corrections in tensor models

Homogeneous case: O(N3) tensor model

Long-range: line of infrared stable fixed points

Unitary large N CFT

What about subleading corrections ?

=⇒ Use multi-scalar results to compute 1/N corrections
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Outline

1 Short-range
The model
Small Ni

Different large N limits

2 Long-range
The model
Large N expansion

3 Conclusion and further work
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The short-range quartic multi-scalar model

S [φ] =

∫
ddx

[
1
2
∂µφa(x)∂µφa(x) +

1
4!
λabcdφa(x)φb(x)φc(x)φd(x)

]
,

d = 4− ε
Minimal subtraction scheme
Beta functions up to two loops

βabcd = − εg̃abcd + (g̃abef g̃efcd + 2 terms) −
(
g̃abef g̃eghcg̃fghd + 5 terms

)
+

1
12
(
g̃abceg̃efghg̃fghd + 3 terms

)
+O(g̃4) ,

with rescaled coupling g̃abcd = gabcd(4π)−d/2/Γ(d/2)
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The short-range quartic trifundamental model

Fields: rank 3 tensors transforming in the tri-fundamental
representation of O(N1)× O(N2)× O(N3).
Couplings:

g̃abcd = g̃
(
δtabcd + 5 terms

)
+

∑
i=1,2,3

g̃p,i

(
δp,iab;cd + 5 terms

)
+ 2g̃d

(
δdabcd + 2 terms

)
where:

δt δp,1 δd
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Beta functions

Easily obtained by substitution

Can also be written as a gradient flow

Tetrahedron: alone generates all other couplings by RG flow

Interested only in fixed points with non zero tetrahedral coupling

Too complicated to solve in the generic case

Numerical solutions

Vector, Matrix and Tensor-like limits
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Numerical solutions for small Ni ’s

Search for fixed points at one loop

Real critical couplings

Non zero tetrahedral coupling

Results:

No real fixed point with non zero tetrahedral coupling stable in all five
directions in the range 2 ≤ Ni ≤ 50
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Vector-like limit

Send N1 →∞ and keep N2,N3 fixed.
New orthogonal couplings:

g̃S = g̃ + g̃p,1 , g̃D = g̃ − g̃p,1 , g̃2 = g̃d +
g̃p,2
N2

+
g̃p,3
N3

,

Rescaling to obtain a large N1 limit: g̃S = ḡS/N1 and so on.

Decoupled beta functions at leading-order

βS = −εḡS + 2ḡ2S
βD = −εḡD − 2ḡ2D
βp,2 = −εḡp,2 + 4ḡS ḡp,2 + 2N3ḡ

2
p,2

βp,3 = −εḡp,3 + 4ḡS ḡp,3 + 2N2ḡ
2
p,3

β2 = −εḡ2 + 4ḡS ḡ2 + 2N2N3ḡ
2
2 .
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2
2 .



10/29

Fixed points and stability

32 fixed points:

ḡ?S = {0, ε
2
} , ḡ?D = {0,− ε

2
} ,

ḡp,2 = {0,± ε

2N3
} , ḡp,3 = {0,± ε

2N2
} , ḡ2 = {0,± ε

2N2N3
} ,

One stable fixed point: (ḡ?S , ḡ
?
D , ḡ

?
p,2, ḡ

?
p,3, ḡ

?
2 ) = ( ε2 ,−

ε
2 , 0, 0, 0)

Corresponds to ḡp,1 = ε
2 and ḡ? = ḡ?p,2 = ḡ?p,3 = ḡ?2 = 0

Chiral fixed point with symmetry O(N1)× O(N2N3) similar to
bi-fundamental models
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?
2 ) = ( ε2 ,−

ε
2 , 0, 0, 0)

Corresponds to ḡp,1 = ε
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Matrix-like limit

Double-scaling limit: N1 = cN, N2 = N, N →∞ and N3, c fixed.

Redefinition of double-trace coupling: g̃dp = g̃d +
g̃p,3
N3

Rescaling:

g̃ =
ḡ

N
, g̃p,1 =

ḡp,1
N

, g̃p,2 =
ḡp,2
N

, g̃p,3 =
ḡp,3
N2 , g̃dp =

ḡdp
N2 .

Standard scaling of quartic matrix invariants
Single-trace: tetrahedron and first two pillows

Double-trace: third pillow and double-trace
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Fixed points and stability

32 fixed points

Only 16 with non zero tetrahedral coupling

Lengthy but straightforward study of the signs of the critical
exponents

No real stable fixed point

For N3 >
c2+1
c : complex infrared fixed point stable in all five

directions
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Tensor-like limit

Homogeneous large N limit: N1 = N2 = N3 = N, N →∞
Only one pillow: g̃p/3 = g̃p,1 = g̃p,2 = g̃p,3

Usual rescaling:

g̃ =
ḡ

N3/2 , g̃p =
ḡp
N2 , g̃d =

ḡd
N3 ,

Two-loop beta functions up to order O(N−3/2): reproduces previous
results at leading order
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Hierarchy between N and ε

Naive expansion: non-perturbative sub-leading order

Fictitious single coupling beta function: −εg + g3 + 2a
N g2

Fixed points:

g?,± = − a

N
±
√
ε+

a2

N2 .

Fixed points behavior governed by εN2

Demand that the fixed point from the leading order remains
dominant in the beta functions

Here we assume : εN2 � 1 and we set N = Ñ/
√
ε
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Fixed points

Parametrize the couplings as
ḡ? = ḡ?(0) + Ñ− 1

2 ḡ?(1) + Ñ−1ḡ?(2) + O(Ñ−3/2) and so on.

Leading-order

ḡ?(0) = ±
√
ε

2
, ḡ?p,(0) = ± 3i

√
ε

2
+

3ε
2

+O(ε3/2) ,

ḡ?d ,(0) = ∓ i

√
ε

2
(3±

√
3) +O(ε3/2) .

Order Ñ−1/2

ḡ?(1) = 0 , ḡ?p,(1) = ∓ 3
√
2ε3/4 , ḡ?d ,(1) = ± 3

ε3/4√
2
.

Can also compute order Ñ−1: starts at
√
ε.
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Stability

Critical exponents up to order Ñ−1:

ωt = 2ε∓ 6i
√
2ε

Ñ
+O(ε3/2, Ñ−3/2) ,

ωp = ±2i
√
2ε+ 12

√
ε∓ i
√
2ε

Ñ
+O(ε3/2, Ñ−3/2) ,

ωd = ±2i
√
6ε∓ 12

√
3
√
ε∓ i
√
2ε

Ñ
+O(ε3/2, Ñ−3/2) .

Choice of lower sign in ḡ?d ,(0): positive real part

Complex fixed point of [Giombi,Klebanov,Tarnopolski] subsists at
subleading orders
Order Ñ−1 gives real part to the three critical exponents: IR stable
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Reminder: Long-range models

Kinetic term of the form φ(∂2)ζφ with 0 < ζ < 1

Vast array of applications [Campa, Dauxois, Ruffo, 2009]

Admit phase transition [Dyson]

One-parameter families of universality classes: ζ

Study transition between short-range and long-range universality
classes [Angelini et al., Brezin et al.,...]

Rigorous renormalization group in d = 3 [Brydges et al., Abdesselam,...]
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The long-range quartic multi-scalar model

S [φ] =

∫
ddx

[
1
2
φa(x)(−∂2)ζφa(x) +

1
2
κabφa(x)φb(x)

+
1
4!
λabcdφa(x)φb(x)φc(x)φd(x)

]

Indices take values from 1 to N

Mass parameter κ treated as a perturbation

d < 4 fixed

Canonical dimension of the field: ∆φ = d−2ζ
2

Weakly relevant case: ζ = d+ε
4 with small ε

UV dimension of the field ∆φ = d−ε
4
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Two-loop beta functions

Renormalization scheme and detailed computations: Long-range
multi scalar model at three loops [Benedetti,Gurau,SH,Suzuki]

Here only need two loops

βabcd = −εg̃abcd + αD (g̃abef g̃efcd + 2 terms)

+ αS

(
g̃abef g̃eghcg̃fghd + 5 terms

)
,

β
(2)
cd = −(d − 2∆φ)r̃cd + αD

(
r̃ef g̃efcd

)
+ αS

(
r̃ef g̃eghcg̃fghd

)
.

with αD and αS explicit constants in terms of polygamma functions and
an indefinite sum J0.
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Long-range O(N)3 tensor model

Set N1 = N2 = N3 = N

Choice of couplings:

g̃abcd = g̃
(
δtabcd + 5 terms

)
+ g̃p

(
δpab;cd + 5 terms

)
+ 2g̃d

(
δdabcd + 2 terms

)
,

a = (a1, a2, a3).
δtabcd and δdabcd are defined as in the short-range case, and

δpab;cd =
1
3

3∑
i=1

δp,iab;cd .

Rescaling for the large N limit:

g̃ =
ḡ

N3/2 , g̃p =
ḡp
N2 , g̃d =

ḡ

N3 ,
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Scaling limit

ε = 0: exactly marginal tetrahedral coupling in the large N limit

Next-to-leading order: line of fixed points collapses to the trivial
fixed point

ε 6= 0: vanishing tetrahedron coupling at leading-order

Fictitious beta function: −εg + g2/N

Fixed points: g? = 0 or g? = Nε

We need Nε� 1: set ε = ε̃
N

Expand in 1/N first, then in ε̃.
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Beta functions

Define two new independent couplings:

ḡ1 =
ḡp
3
, ḡ2 = ḡd + ḡp .

Parametrize the alpha coefficients:

αD = 1 + αD,1 ε + αD,2 ε
2 + O(ε3) ,

αS = αS,0 + αS ,1 ε + O(ε2)

Two-loop beta functions at order N−1:

βt =
ḡ

N

[
12ḡ1 (1 + αS ,0ḡ1)− ε̃

]
+O(N−3/2) .



23/29

Fixed points: leading order

Parametrize the critical couplings as:
ḡ? = ḡ?(0) + ḡ?(1)N

−1/2 + O(N−1) and so on

Solve order by order
Leading order: line of fixed points

ḡ?1,(0) = ±
√
−ḡ?(0)2 − ḡ?(0)

2αS,0 +O(ḡ?(0)
3) ,

ḡ?2,(0) = ±
√
3
√
−ḡ?(0)2 − 3ḡ?(0)

2αS ,0 +O(ḡ?(0)
3) .

Complex for real tetrahedral coupling
Real for purely imaginary tetrahedral coupling
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Fixed points: Next-to-leading order

Two free parameters: ḡ?(0) and ḡ?(1)

ḡ?1,(1) = −2ḡ?(0) − 2ḡ?(0)ḡ
?
(1)αS,0 ∓

ḡ?(0)ḡ
?
(1)√

−ḡ?(0)2
+O(ḡ?(0)

3) ,

ḡ?2,(1) = −3ḡ?(0) − 6ḡ?(0)ḡ
?
(1)αS,0 ∓

√
3ḡ?(0)ḡ

?
(1)√

−ḡ?(0)2
+O(ḡ?(0)

3) .
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Fixing the tetrahedral coupling

Keep the same number of non trivial order for each beta function

Order N−3/2 for the tetrahedral coupling

Allows us to fix ḡ?(0) and ḡ?(1)

Expanding in ε̃

ḡ?(0) = ± i

12

(
ε̃−

αS ,0

6
ε̃2
)

+O(ε̃3) .

ḡ?(1) =

{
1
6

(
−ε̃+

αS,0
2 ε̃2

)
+O(ε̃3) for the upper choice of sign in ḡ?1,(0)

1
18

(
ε̃− αS,0

18 ε̃
2)+O(ε̃3) for the lower choice of sign.
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Stability

Two stable fixed points at leading order

ḡ? = ± i

12

(
ε̃−

αS ,0

6
ε̃2
)

+
1

6N1/2

(
ε̃−

αS,0

3
ε̃2
)

+O(ε̃3,N−1) ,

ḡ?1 =
1
12

(
ε̃−

αS ,0

12
ε̃2
)
∓

iαS ,0

36N1/2 ε̃
2 +O(ε̃3,N−1) ,

ḡ?2 =
1

4
√
3

(
ε̃−

αS ,0

12
(2−

√
3)ε̃2

)
± i(−3 + 2

√
3)

12N1/2

(
ε̃−

αS,0

2
ε̃2
)

+O(ε̃3,N−1) ,

Expand in ε̃ the critical exponents at next-to-leading order



27/29

1/N corrections to the critical exponents

∂β(2)(ḡ?) = −ν−1 = −d

2
+

1
2
√
3

(
ε̃−

αS ,0

6
ε̃2
)
± i√

3N1/2

(
ε̃−

αS,0

2
ε̃2
)

+O(ε̃3,N−1) ,

∂β1(ḡ?) =
1
3

(
ε̃−

αS ,0

6
ε̃2
)
± 2i

3N1/2

(
ε̃−

αS,0

2
ε̃2
)

+O(ε̃3,N−1) ,

∂β2(ḡ?) =
1√
3

(
ε̃−

αS ,0

6
ε̃2
)
± 2i√

3N1/2

(
ε̃−

αS,0

2
ε̃2
)

+O(ε̃3,N−1) ,

ωt =
ε̃

N

(
1 +

αS ,0

6
ε̃
)

+
2iαS ,0ε̃

2

3N3/2 +O(ε̃3,N−2) .

From four lines of fixed points to eight isolated fixed points
Two stable ones
What was real at LO gets an imaginary part
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Conclusion

Tri-fundamental model O(N1)× O(N2)× O(N3) both in short and
long-range setting
In general: NO stable fixed points with non zero tetrahedral coupling
Consider complex fixed points: unitary CFT ?

Homogeneous long-range model in the large N limit: Complex IR
stable fixed points
Breaking of unitarity at next-to-leading order

Similar results for short-range but real part suppressed in 1/N
Similar behaviors at finite N

Real unitary CFT at strictly large N only for the long-range model
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Perspectives

General proof of the non-existence of stable real fixed points with
non zero tetrahedral coupling

Group theoretical arguments, gradient flow equations, ...

Real stable fixed points with rank p symmetry with higher p ?

Sextic interactions with p = 3: real fixed points, what happens at
sub-leading orders ?

Thank you !
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