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Tensor Field Theory
A new playground for non-perturbative QFT

• 1979. ’t Hooft’s series of lectures Can we make sense out of
“Quantum Chromodynamics”?

– Proposes a strategy to control QCD via the study of its singularities
in the Borel plane.

– Requires a good control of the RG flow of the coupling constant.
– Requires asymptotic freedom.

• 2012. First perturbatively renormalizable Tensor Field Theory [Ben
Geloun, Rivasseau], rapidly shown to be asymptotically free (upto four
loops) [Ben Geloun].

• 2013. First constructive results about Tensor models [Gurau].

• 202?. First non-perturbative definition of a just renormalisable
Bosonic field theory [Rivasseau, Vignes-Tourneret].
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The T 4
5 field theory

• Tensors:

T : Z5 → C, Tn,T n with n,n ∈ Z5.

• Free action:

Cn,n =
δn,n
Zb

κjmax(n2)
n2 + m2

b
, n2 := n21 + n22 + n23 + n24 + n25.

• Interactions:

V (T ,T ) = gbZ 2
b

2

5∑
c=1

Vc(T ,T ), Vc(T ,T ) = c

Lemma
T 4
5 is just renormalizable to all orders of perturbation with a

power-counting similar to φ44 [Avohou-Rivasseau-Tanasa 2015, Rivasseau-V.-T.
2021].



The T 4
5 field theory

Intermediate Field Representation

There is a bijection between quartic melonic coloured graphs and ciliated
edge-coloured maps.
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The T 4
5 field theory

Divergence degree: ω(G) = 4− E(G)−
(

C(∂G)− 1
)
− δ(G)

Lemma (Superficially divergent graphs)
The superficially divergent graphs all belong to one of the cases listed
below. Moreover, in the intermediate field representation,
• divergent four-point graphs are trees such that the unique path

between their two cilia is monochrome,
• the closed superficially divergent graphs are

– plane trees if ω = 5,
– unicyclic maps if ω = 0 or ω = 2

Finally, in the latter case, ω(G) = 2 if and only if the unique cycle of G is
monochrome.

E (G) C(∂G) δ(G) ω(G)
4 1 0 0
2 2

0 0
0 5
3 2
5 0



The T 4
5 field theory

The fundamental melons

• Divergent 2-point graphs constructed by recursive insertion of the
tadpole into itself.

• Divergent 4-point graphs made of a monochrome chain of melonic
interaction vertices plus insertions of tadpoles.

c c c



The T 4
5 field theory

1PI bare functions

• Gmel
2,b := bare melonic connected 2-point function,

Σmel
b := bare melonic self-energy, Σmel

b (n) =
∑5

c=1 Σmel
b (nc):

=
c

or Σmel
b (nc) = −gbZ 2

b
∑
p∈Z5

δpc ,nc

C−1b (p)− Σmel
b (p)

• Γmel
4,b := bare melonic 1PI 4-point function,

Γmel
4,b (n,n,m,m) =

∑5
c=1 δnĉ ,nĉ δmĉ ,mĉ δnc ,mc δmc ,nc Γmel

4,b (nc , nc):

=
c

+
c
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Multiscale analysis in one slide
Multiscale analysis is a discrete implementation of Wilson’s in-
terpretation of renormalization: Physics changes with scale.
Integrating out high energy degrees of freedom leads to an ef-
fective theory, the parameters of which are related to the initial
ones via the RG flow.

Multiscale analysis is one of the main tools of constructive QFT.

• Let φ be a Gaussian random field of covariance C . If C =
∑∞

j=0 C j

(where C j(p) ensures |p| ' M j), then

φ
law=
∑

j
φj with φj ∼ µC j .

• Integrating over φjmax down to φj+1 (included) gives the effective
theory at scale j . Its parameters m2

j ,Zj , λj are defined by the sums
of the (local parts of the) Feynman graphs, all edges of which bear
propagators Ck , k > j + 1.
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Mass renormalization

We first perform full mass renormalization:

Σmel
b (n) = Σmel

b (0) + Σmel
mr (n).

We define the renormalized mass as follows:

m2
r := m2

b − Σmel
b (0)

so that

Gmel
2,b (m2

b; n) = κjmax(n)
C−1b (n)− Σmel

b (n)
= κjmax(n)

Zbn2 + m2
r − Σmel

mr (n) =: Gmel
2,mr (m2

r ; n).



Effective wave-functions

The effective wave-function constant Zj is

Zj := Zb −
∂Σmel

mr ;>j+1
∂n2c

(0)

where Σmel
mr ;>j (n) =

∑
c Σmel

mr ;>j (nc ) is the sum of mass-renormalized amplitudes of all
1PI melonic 2-point graphs, all internal scales of which are greater than or equal to j,
namely

Σmel
mr ;>j(nc) := −gbZ 2

b
∑
p∈Z5

η>j(p2) δpc ,nc − δpc ,0

Zbp2 + m2
r −

∑
c′ Σmel

mr (pc′)
.

Note that with these notations, Zjmax = Zb and Z−1 = Zr = 1.



Effective coupling constants

The effective coupling constant gjZ 2
j is

−gjZ 2
j := Γmel

4,b;>j+1(0, 0)

where

Γmel
4,b;>j(nc , nc) := −gbZ 2

b
1 + gbZ 2

b
∑

p,q δp ĉ ,q ĉ
δpc ,nc δqc ,ncGmel

2,mr ;>j(p)Gmel
2,mr ;>j(q)

and

Gmel
2,mr ;>j(n) := η>j(n2)

Zbn2 + m2
r − Σmel

mr ;>j(n)
.

With these conventions, gjmax = gb and g−1 = gr .



Analyticity

Theorem
The effective wave-functions and coupling constants are analytic
functions of the bare coupling gb (a priori in a disk of radius going to 0
as jmax →∞).

Proof.

Zj = Zb +
∞∑

n=1
(gbZ 2

b )nAn(m2
r ,Zb, jmax, j) bivariate analytic

Zb = 1 + ∂Σmel
mr

∂n2c
(0) analytic (implicit fct thm)

Zj(gb) = Zj(gb,Zb(gb)) is holomorphic around 0. �
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Asymptotic freedom

Theorem
For all j ∈ {−1, 0, . . . , jmax − 1},

gj+1 − gj = βjg2
j + O(g3

j )

where βj = β2 + O(M−j), β2 is a negative real number and
O(g3

j ) = g3
j f (gj) where f is analytic around the origin (a priori in a

domain which shrinks to {0} as jmax →∞).

Proof.

gj+1Z 2
j+1(gb), gjZ 2

j (gb), Zj+1(gb), Zj(gb)
=⇒ gj+1

(
gb(gj)

)
= gj+1(gj)

" Products and derivatives of cut-off functions. �
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From discrete to continuous

For gr > 0 small enough, the discrete RG flow is decreasing and goes to
0 as j →∞. But what happens if gr is complex?

In order to answer, we invoke the theory of discrete holomorphic
dynamical systems. Moreover it will allow us to relate the discrete flow to
a continuous Cauchy problem and thus get a preciser behaviour.

Remark. From a RG point of view, it would be more natural to study

gj
(
(gk)k>j+1, (Zk)k>j+1

)
.

RG flow goes from UV to IR and gr is the endpoint of it. But it is easier
to go to a one (complex) dimensional continuous initial value problem.



Two simplifying assumptions

gj+1 = gj + βjg2
j + g3

j f (gj) =: hjmax,j(gj)

A priori Ωjmax → {0} as jmax →∞. But the first two Taylor coefficients of hjmax,j are
uniformly bounded in jmax.

Assumption 1. The series gj+1(gj) is holomorphic in a domain uniform
in jmax.

The dynamics defined by hjmax,j is not autonomous, its Taylor coefficients depend on j.
Nevertheless, far from the infrared cutoff, the behaviour of βj suggests that the
dynamics becomes autonomous.

Assumption 2. The discrete RG flow gj+1 = h(gj) is defined by the
iteration of a (unique) holomorphic map h, tangent to the identity, and
such that

h(z) = z + β2z2 + O(z3), β2 < 0.



Discrete holomorphic dynamical systems
Some concepts

Definition (Holomorphic dynamical system)
Let M be a complex manifold, and p ∈ M. A (discrete) holomorphic
local dynamical system at p is a holomorphic map f : U → M such that
f (p) = p, where U ⊆ M is an open neighbourhood of p; we shall assume
that f 6= idU . We shall denote by End(M, p) the set of holomorphic local
dynamical systems at p.

M = C, p = 0.

Definition (Stable set)
The stable set Kf of f is the set of all points z ∈ U such that the orbit
{f ◦k(z) : k ∈ N} is well-defined.

Definition (Conjugation)
We say that f , g ∈ End(C, 0) are holomorphically conjugated if there
exists a holomorphic map h such that h ◦ f = g ◦ h.
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Discrete holomorphic dynamical systems
Some concepts

Definition (Multiplicity)
Let f ∈ End(C, 0) be a holomorphic local dynamical system with a
parabolic fixed point at the origin. Then we can write:

f (z) = e2iπp/qz + ar+1z r+1 + O(z r+2),

with ar+1 6= 0. r + 1 is called the multiplicity of f .

Definition (Directions)
Let f ∈ End(C, 0) be tangent to the identity of multiplicity r + 1 > 2.
Then a unit vector v ∈ S1 is an attracting (resp. repelling) direction for f
at the origin if ar+1v r is real negative (resp. real positive).

r attracting and r repelling directions
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Discrete holomorphic dynamical systems
Some concepts

Definition (Basins)
Let v ∈ S1 be an attracting direction for an f ∈ End(C, 0) tangent to the
identity. The basin centerd at v is the set of points z ∈ Kf \ {0} such
that limk→∞ f ◦k(z) = 0 and limk→∞ f ◦k(z)/|f ◦k(z)| = v .

Definition (Petals)
An attracting petal centered at an attracting direction v of an
f ∈ End(C, 0) tangent to the identity is an open simply connected
f -invariant set P ⊆ Kf \ {0} such that a point z ∈ Kf \ {0} belongs to
the basin centered at v if and only if its orbit intersects P. In other
words, the orbit of a point tends to 0 tangent to v if and only if it is
eventually contained in P. A repelling petal (centered at a repelling
direction) is an attracting petal for the inverse of f .



The flower theorem

Theorem (Leau-Fatou)
Let f ∈ End(C, 0) be a holomorphic local dynamical system tangent to
the identity with multiplicity r + 1 > 2 at the fixed point. Let
v±1 , . . . , v±r ∈ S1 be the attracting (resp. repelling) directions of f at the
origin. Then,
1. for each attracting (resp. repelling) direction v±j there exists an

attracting (resp. repelling petal) P±j , so that the union of these 2r
petals together with the origin forms a neighbourhood of the origin.
Furthemore, the 2r petals are arranged cyclically so that two petals
intersects if and only if the angle between their central directions is
π/r .

2. If P is a petal centered at one of the attracting directions, then
there is a biholomorphism ϕ : P → C such that ϕ ◦ f (z) = ϕ(z) + 1
for all z ∈ P.



The flower theorem
f (g) = g − g4

Re g

Im g

v+
1

v+
2

v+
3 v−

1

v−
2

v−
3

Figure: Attracting (green) and repelling (red) petals of a dynamics of
multiplicity 4, and a typical trajectory.

Remark. Petals can be optimized so that their opening angle is 2π/r .



The flower theorem
Consequence for the RG flow

Any holomorphic dynamical system of multiplicity 2 tangent to
the identity has a cardioid-like invariant domain.

Re g

Im g

v+
v−

Figure: A unique attracting petal of a multiplicity 2 parabolic dynamics.



Appetizer

gj+1 = gj + β2g2
j + g3

j h(gj)

1. Does it exist a continuous Cauchy problem such that its unique
solution f (t) is such that

∀j ∈ {−1, 0, . . . } , gj = f (j + 1)?

YES

2. There exists a simply connected domain Dε (0 ∈ ∂Dε) containing a
Nevanlinna-Sokal disk such that

gr ∈ Dε =⇒ |f (t)| < ε, ∀t > 0.

Theorem

3. If gr ∈ R+ then we have a pretty good control on its large-time
behaviour. Theorem
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Conclusion

We are still far from being able to prove the existence of non-
Abelian Yang-Mills theory. Nevertheless we have never been
closer to constructing a just renormalizable Bosonic field the-
ory. And this theory may very well be a tensor field theory.

T 4
5 is just renormalizable, asymptotically free and has exponentially

bounded simple families of divergent graphs.
Its flow can be controlled with a very good precision (some assumptions
must be turned into theorems nevertheless).

The path towards the non-perturbative definition of T 4
5 is yet to

be discovered and will very probably involve all currently known
tools for constructive tensors.
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Thank you for your attention



Uniform boundedness

Theorem
Let ε be a sufficiently small positive real number. There exists a simply
connected domain Dε of C such that Dε ⊂ U, 0 ∈ ∂Dε, and Dε contains
a Nevanlinna-Sokal disk Sδ, δ = 1

6
ε

1+ 3π
2 |β3,2|ε

, such that if gr ∈ Dε then,
for all t > 0, the unique maximal solution on R+ of the Cauchy problem
belongs to Dε.

back



Large time behaviour
If the initial value gr is real and h real-valued, we have:

Theorem
There exists gc ∈ R∗+ such that for all gr real in (0, gc), the Cauchy
problem has a unique decreasing solution f defined on R+. Moreover let
ε be a positive real number smaller than 1. Then there exists a positive
real number α(ε) (smaller than 1) such that if gr ∈ (0, αgc), f satisfies

gr

1− β2gr t + β−3
β2

gr log(1− β2gr t) + β−3
β2

grφ−(t)
< f (t)

<
gr

1− β2gr t + β+
3
β2
gr log(1− β2gr t) + β+

3
β2
grφ+(t)

,

with β−3 := (1− sgn(β3)ε)β3, β+
3 := (1 + sgn(β3)ε)β3 and φ−, φ+ two

bounded functions on R+.

back
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