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Tensor PCA problem

Tensor PCA is a statistical model introduced by [Richard and
Montanari, 2014], it consists in inferring an unknown unit vector v0
from a tensor T given by:

T =
√
nβ(v0)⊗k + Z

with Z Gaussian noise tensor such that Zi1...ik ∼ N (0, 1) and β the
signal-to-noise ratio.

H(v) = 〈T, v⊗k〉 will be referred to as the landscape.
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Tensor PCA motivations

Tensor PCA model has been extensively studied in the last years due to
three main important motivations:

1 Algorithms for Tensor PCA may be adaptable for Tensor
decomposition which has multiple important applications.

2 It is a simple model that allows the study of high dimensional non
convex landscapes that arise in multiple fields as well as the gradient
descent dynamics in such landscapes.

3 Tensor PCA may exhibit a statistical-algorithmic gap that are
common in multiple other statistical inference models.
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Tensor decomposition

Tensor decomposition (generalization of matrix SVD) is motivated by
the increasing number of problems in which it is crucial to exploit the
tensorial structure ( [Sidiropoulos et al., 2017]).

Two main tensor decomposition models are commonly used: Tucker
decomposition and CP decomposition.

CP decomposition consists in approximating an initial tensor T by a
sum of rank-one tensors:

T̂ =
∑
i

vi ⊗wi ⊗ zi

Example of papers that proposed algorithms that could be used as
frames or basic bricks for more general algorithms:
Homotopy [Anandkumar et al., 2017], Averaged gradient
descent [Biroli et al., 2020], Iterated gradient etc.
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Applications in machine learning

Recently it was successfully used to address important problems in
machine learning:

Unsupervised learning (learning latent variable models, in particular
latent Dirichlet allocation [Anandkumar et al., 2014], [Anandkumar
et al., 2015])

Supervised learning (training of two-layer neural networks [Janzamin
et al., 2015])

Reinforcement learning ( [Azizzadenesheli et al., 2016])
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Other applications

(a) Hyper-spectral images [Lin and
Bourennane, 2013] (b) Neural network

compression [Astrid and Lee, 2017]

(c) Telecommunication
[Decurninge et al., 2020]

(d) Medical
diagnosis [Bharath et al.,
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High dimensional non convex landscapes

It has been showed that the landscape of Tensor PCA has interesting
properties [Arous et al., 2019, Ros et al., 2019, Auffinger et al., 2021]

It is a typical case of a high dimensional landscape highly non-convex
and that has an exponentially growing number of critical points and
local minima.

These landscapes occur in diverse areas: disordered systems, biology,
neural networks, inference, string theory and cosmology.

A line of research uses Tensor PCA to understand these
landscapes [Arous et al., 2019, Mannelli et al., 2019a, Mannelli et al.,
2019b, Mannelli et al., 2020, Ros et al., 2019, Ros, 2020]
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Statistical threshold: MLE

Maximum Likehood Estimator (MLE):

v̂ = arg max
‖v‖=1

〈T, v ⊗ v ⊗ v〉

The maximum likelihood estimator achieves the maximal correlation
with the planted vector among measurable estimators above the
estimation threshold. [Jagannath et al., 2020]

O(1) βImpossible Theoretically possible
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Statistical thresholds: Trace invariants

In [Evnin, 2020], trace invariants were recently used to study the
highest eigenvalue of a real symmetric Gaussian tensor.

Subsequently, [Gurau, 2020] provided a theoretical study on a
function based on an infinite sum of these invariants. Their results
suggest a transition phase for the highest eigenvalue of a tensor for β
around the theoretical threshold O(1).

However this method requires computing an integral over a
n-dimensional space, which may not be possible in a polynomial time.
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Existent algorithms and computational threshold

Sum-of-squares: Semi-definite programming method, the first with a
O(n(k−2)/4) theoretical guarantees.

Tensor unfolding consists in reorganizing the tensor elements on a
matrix and then using matrix PCA tools. It is equivalent to SoS.

Homotopy-based method: consists in applying tensor power iteration
v ← T.v⊗k−1 with an initialization v = Tijj .

Other studied methods have been inspired by different perspectives
like statistical physics [Arous et al., 2020, Wein et al., 2019, Biroli
et al., 2020], quantum computing [Hastings, 2020] as well as
statistical query [Dudeja and Hsu, 2021].
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Statistical-algorithmic gap

O(1) O(n(k−2)/4) β

Optimal
theoretical
threshold

Impossible

Best known
algorithmic
threshold

Easy

Statistical-
computational

gap ?
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Statistical-computational gap investigations

There often exist conjectured intrinsic statistical-computational gaps
in many problems, as observed in tensor completion (Barak and
Moitra, 2016), high-order clustering (Luo and Zhang, 2020), but also
planted clique, sparse PCA, community detection, etc.

The analysis of statistical-computational gaps has attracted a lot of
attention because of its crucial role in the understanding of the
computational feasibility of a wide range of inference and tensor
problems.

Two main approaches:

Average case reduction [Luo and Zhang, 2020]: Evidence for the
computational hardness developed by establishing the equivalence of
the computational hardness commonly raised conjectures.
Analysis of restricted algorithmic models

13 / 53



Algorithmic limits

The analysis of Sum-of-squares framework. This led to a new
conjecture on low degree polynomial methods [Hopkins, 2018,Kunisky
et al., 2019].

Belief propagation, approximate message passing [Lesieur et al., 2017]

Analysis of optimization landscape
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Gradient-based algorithms

In particular for local algorithms like gradient descent (on which SMPI is
based). Two main explanations are given for the failure of gradient-based
methods in low SNR:

The number of minima is exponentially large, thus the algorithm will
get stuck in one of them. [Arous et al., 2019]

Regardless of if it will get stuck or not, the signal is too weak anyway
in the equator [Arous et al., 2020].
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Simple Gradient descent

In the power iteration, let’s denote the part associated to the noise
gN and the one associated to the signal gS .

Tvv = Zvv + β〈v , v0〉2v0
≡ gN +gS

A naive approach is to consider that gN is at each step a random
vector. And see in which case we can increase the correlation with v0
at each step.

If β � n(k−2)/2, gradient descent will always be successful.

If β � n(k−2)/2, gradient descent with a random initialization will fail
with an exponential probability (which is the probability to have a non
trivial initial correlation with v0).
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SMPI

Tensor T = Z + βv⊗k0

Input

v1First step: Generate minit random vectors.

Second step: Iterate miter times :

v j+1
i =

Tv j
i v

j
i∥∥∥Tv j

i v
j
i

∥∥∥

. . . vminit

vmiter
1

. . . vmiter
minit

... ...

v

Output

Third step: Choose the vector v =
arg max1≤i≤minit

(T.vmiter
i .vmiter

i .vmiter
i ) :
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The main features of SMPI

Simple algorithm that began by some surprising observations, followed by
refinements that led to these four main features: Just take them as they
are for now.

1 Large step size

2 Larger stopping condition

3 Polynomial number of iterations

4 Polynomial number of initialisations.
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Power iteration and gradient descent

The gradient on a sphere is given by
∇f (v)− (∇f (v).v)v = Tvv − (Tvvv)v (more mathematical details
in [Ros et al., 2019])

It will be in our case equal to g = Tvv − (Tvvv)v .

The power iteration could be considered as a gradient descent with a
step size equal to 1/(Tvvv) indeed

Tvv = Tvv−(Tvvv)v+(Tvvv)v = g+(Tvvv)v = (Tvvv)(v+
g

Tvvv
).
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Empirical comparison
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Figure: Comparison of the results of SMPI with the unfolding method (Unf) and
Homotopy-based method (Hom)
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Questions on the algorithm

Why does it give different results that one should expect from the
naive analysis we did in the beginning?

Why do we require these four conditions?

What about the previous explanations on the failure of local methods?
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Empirical analysis of the convergence

Tvv = Zvv + β〈v , v0〉2v0
≡ gN +gS
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Figure: In blue, the total correlation of vi with v0 at each iteration i . In orange in
the left, the correlation between the normalized gN and v0. In orange in the right,
the ratio between contribution of the noise gradient to v0 and the signal gradient.
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The plateau

〈 Zvv
||Zvv ||

, v0〉 =
〈v , v0〉(‖Tvv‖ − β〈v , v0〉)√

‖Tvv‖2 + β2〈v , v0〉4 − 2β〈v , v0〉3‖Tvv‖

For β = 1.44
√
n, the theoretical value is 〈 Zvv

||Zvv|| , v0〉th = 0.496. The table
1 give the average and the standard deviation obtained experimentally for
different n

Table: Experimental plateau

n 50 100 150 200 400

〈 Zvv
||Zvv|| , v0〉

0.469
±0.148

0.518
±0.074

0.507
±0.056

0.487
±0.038

0.511
±0.025
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Noise gradient increases its correlation with v0

Proposition

Let Z be a random tensor whose components follow N (0, 1). Let v0 a
fixed vector. Let ρ a random unitary vector and ε > 0.

Then if we denote w0 =
ρ+ εv0√

1 + ε2
and w1 =

Zw0w0

‖Zw0w0‖
, we have:

E (〈 Zw1w1

‖Zw1w1‖
, v0〉2) > E (〈 Zw0w0

‖Zw0w0‖
, v0〉2) (1)
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Simple illustration

v ← Tvv = (Zv0vv)v0 +
n−1∑
i=1

(Zeivv)ei + βv0(v .v0)2

Tvv = (Zv0vv)v0 +
n−1∑
i=1

(Zeivv)ei + βv0(v .v0)2

Noise contribution
to the convergence

towards v0

Signal contribution
to the convergence

towards v0
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Questions on the algorithm

Why does it give different results that one should expect from the
naive analysis we did in the beginning? ⇒ The mechanism of
convergence takes advantage of the noise

Why do we require these four conditions?

What about the previous explanations on the failure of local methods?
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Importance of a polynomial number of iterations.
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Figure: (a) : in blue the distribution of the correlation between the signal and all
initial vectors, and in red the correlations of the initializations that succeeded.
n = 200, miter = 1000 and β = 1.2 (b) each curve represents the trajectory of an
initalization
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Diverging out of a minimum

Let’s consider a minimum of the landscape that we denote v0. Let v1
be one of the eigenvector of the Hessian matrix at v0 and λ1 its
associated eigenvalue.

T.(v0 + εv1)⊗2 = T.(v0)⊗2 + 2εT.(v0 ⊗ v1) + O(ε2)

= f (v0)v0 + ε 2λ1v1 + O(ε2)
(2)

Hence, if 2|λ1| > f (v0), 〈y1, v0〉 < 〈y0, v0〉 and 〈y1, v1〉 > 〈y0, v0〉.
Which means that if any of the eigenvalues is smaller than −2f (v0),
then the minimum is unstable under power iteration.
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Importance of a large step size
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Schema

Figure: Figure illustrating the mechanism of convergence of power iteration in low
(left) and large (right) Signal-to-Noise Ratio
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Insight on the success of the algorithm

It is thus very interesting to take advantage of the numerical analysis we
performed on SMPI to understand how it would be able to bypass this
these possible explanations to the failure of local iterative algorithms.

The algorithm runs through many spurious minima but is still able to
escape them thanks to its large step size.

It is the gradient associated to the noise Zvv that not only triggers
the convergence but also carries it. It is consistent with the fact that
the signal is indeed too small for its associated gradient to converge
towards the signal by itself.
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Practical applications: Tensor decomposition

Hyperspectral images consist in hundreds of narrow contiguous bands
over a wide range of the electromagnetic spectrum.

Hyperspectral sensors have applications in astronomy, agriculture,
molecular biology, biomedical imaging, geosciences, physics, and
surveillance.

Denoising is an important preprocessing step to analyze a
hyperspectral image (HSI).

Figure: Caption
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Comparison of SMPI with ALS

In [Liu et al., 2012], the authors showed that the CP decomposition
model using the ALS algorithm performs better than other considered
methods as a denoising procedure.

In order to judge the performance of our algorithm, we perform the
same experiment and compare it with the ALS algorithm using the
Python TensorLy package [Kossaifi et al., 2016]. The hyperspectral
image we use is the open source data given in [Miller et al., 2018]
that we normalize.

Table: Comparison of methods

n 20 50 100 200

ALS (TensorLy) 43.58 54.24 60.58 66.53
SMPI 44.24 54.53 60.93 66.91
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Non convex landscapes

Many observations that may bring new insights:

The importance of the step size.

There may be more than just counting the minima and the critical
points.

In inference problems, one has to study more carefully the behavior of
the gradient.
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Statistical algorithmic gap
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Figure: Asymptotic behavior of SMPI method illustrated by different results on
various values of n, ranging from 50 to 400. The dashed line (Opt ∞)
corresponds to the predicted optimal theoretical result assuming n =∞
( [Jagannath et al., 2020]).
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Scaling

We will make the assumption that the threshold can approximately be
written as β = cnα and our aim is to recover α empirically. Given n1 and
n2, two values of n:

αemp =
log
(
βemp
n2

)
− log

(
βemp
n1

)
log(n2)− log(n1)

(3)

Table: Experimental scaling for each method

n2 150 200 400 800

Unfolding 0.23 0.248 0.26 0.2516
SMPI -0.063 -0.052 -0.053 -0.036

The two methods have an approximately constant α, which confirms that
the threshold behaves like β = cnα in this range of n.
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Finite size effects?

It is important to first consider the possibility that the experimental
results that we obtained could be due to finite size effects.

The main aim and motivation of this work is not closing the gap but
rather to provide novel theoretical and experimental insights that will
help us understand better this conjectured gap either to prove it
rigorously or to rule it out.
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Comparison with a matrix case

A recent paper [Bandeira et al., 2020] proved that an observation made
by [Montanari and Richard, 2015] that an SDP can tightly optimize a
spiked matrix Hamiltonian was actually due to finite size effect and the
SDP is not tight. This emerges at around dimension n ∼ 104

Constant factors are not relevant and the difference is fundamentally
different and differ by a factor of n1/2

We observe that as n grows, the average correlation obtained by
SMPI actually improves

We can’t compare directly the dimension n of a tensor T with the one
of a matrix M.
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Conclusion

The results obtained and the new insights opens the way to explore
further questions.

Possible approaches to imporve our understanding:

Statistical physics (Spin glass)

Renormalization

Advanced Probability tools

Trace invariants
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