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c-, a- and F-theorems

Under the RG flow between fixed points: always decrease

Count degrees of freedom
@ d = 2: c-theorem — central charge [Zamolodchikov '86]

o d = 4: a-theorem — Weyl anomaly coefficient a [Cardy '88;

Komargodski, Schwimmer '11]

@ d = 3: No anomaly ! Is there a quantity decreasing along the RG
flow ?



Free energy on the sphere

Sphere: regulates IR divergences

UV divergences: F is the finite part of the free energy

Proof using relation between free energy and entanglement entropy
[Casini, Huertal]

@ Role of unitarity ?
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Long-range O(N)3 model = Non-trivial example



@ CFTs on the sphere
© Flow between Gaussian CFTs

© The long-range O(N)3 model



Going to the sphere

o Conformally flat metric

2a
guw(x) = Q00w . ) = 7
@ Transformation of primary fields
O(x) = Q(x) 22 0(x)
@ In practice: flat distance — chordal distance
X —
s(y) = 2000 YL e yjagg ()2

(1+ x2)1/2(1 + y2)1/2



Long-range models on the sphere

Scalar Laplacian on the sphere
o Eigenmodes: spherical harmonics

o Eigenvalues
n(n+d—1)

Wn:T7Dn:

(n+d—2)12n+d - 1)
nl(d — 1)!




Long-range models on the sphere

Scalar Laplacian on the sphere
o Eigenmodes: spherical harmonics

o Eigenvalues

w”:n(n—i-—gi—1)7Dn:
a

(n+d—2)12n+d - 1)
nl(d — 1)!

Long-range Laplacian on the sphere (—82)C
@ Naively: fractional Laplacian with exponent 0 < { <1

o Careful analysis:

Q

O _ 25 +0)
" F(n + 7 C)

[N | ]



Flow between two Gaussian CFTs

Semslé] = 5 [ 40002 6(x)+ 5 [ d¥xola)(=02)o(x

Generalized free field theory Short-range free action

e 0<(x«l1

e Two-point function (p%¢ + Ap?)~*
— p~2 when p =0
— p~2 when p = o0

@ RG flow between long-range free action in the IR and short-range in
the UV



1 1
F=3TrinCY = 5;} Dy In (w(®)

@ Compare free-energy at the fixed points
o GFFT with different values of ¢

@ Study the variations of F with respect to (

dFsin(n¢) T(d/2—Q)N(d/2+¢)
d¢ ~  sin(nd/2) F(1+d)




Variation of the free energy for d =3

dF
ac = %wg (1 —4¢%) tan(n¢)
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o Free energy decreases along the RG flow: respects the F-theorem




Variation of the free energy for d =3

dF 1
ac = 247¢ (1 —4¢%) tan(n¢)
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o Free energy decreases along the RG flow: respects the F-theorem

@ ( > 1: UV and IR exchanged

@ Trivial counter-example for non-unitary theories



The long-range O(N)* model

SIel = 5 | 4% Paselo) (- A) papel) + 5™

o O(N)3 tensor model with quartic interactions [Carrozza Tanasa,.. |

I

Tetrahedron Pillow Double-trace




The long-range O(N)* model

SIel = 5 | 4% Paselo) (- A) papel) + 5™

o O(N)? tensor model with quartic interactions [Carrozza, Tanasa,. . |
@ —
—
Tetrahedron Pillow Double-trace
@ 0 < ¢ < 1: long-range model with d < 4 fixed
@ Canonical dimension of the field: A = %
o Marginal case: ( = %



RG trajectories

At large N:

@ Tetrahedral coupling g does not flow
@ Four lines of fixed point paramatrized by g
@ One infrared attractive fixed point, stable and strongly interacting

@ Explicit renormalization group trajectory from UV to IR fixed point

(91-,92+)® > @®(g1+,92+)

(91—, 92-)® > ®(g14, 92—



Further properties

Exact computation of the two-point function in the large-N limit

@ Four-point function: geometric series in a Bethe-Salpeter kernel

@ No local stress-energy tensor but conformally invariant fixed points

Strong indications of unitarity at the large-N fixed points

Breaking of unitarity at NLO



Further properties

Exact computation of the two-point function in the large-N limit

@ Four-point function: geometric series in a Bethe-Salpeter kernel

@ No local stress-energy tensor but conformally invariant fixed points

@ Strong indications of unitarity at the large-N fixed points
@ Breaking of unitarity at NLO
@ What happens when putting this model on the sphere ?

@ Does it respect the F-theorem ?



Schwinger-Dyson equation

Three types of vacuum 2PIl-diagrams occurring at large N

5 N

_ _ 5(x—y)
G I(X?y) =C 1(X7y) + md/2 + )\2G(X7X) —F— Tt )‘ZG(va)3
( ) V&(x)
d
e Metric \/g(x) = (1_%‘;"(2)
@ Covariance on the sphere:
_<(4) _ ra)
CN=eypn BT grmacanng )



Solution of the Schwinger-Dyson equation

@ Tune bare mass to cancel tadpole and divergent part of melonic
integral

@ SDE solved by:

A
Gu(x,y) = 2C(x,y) = Zﬁ
B 4T (1 —d/4)
=N gy

— Same equation as in flat space

@ Square root singularity at Ac: model defined for g < gc = Ac Z(\c)?



Leading order

a3 (L -1 1 ~1,-1 m_2C
Fio =N 2ZTr[C C]—|—2Tr[|n(Z )+ 5 Z | C(x,x)

2 2 74
—i-)\zf / C(X,X)2 + A f / C(X,y)4)
X X,y
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e Terms proportional to Tr[1]: 0 by analytic continuation




Leading order

a3 (L -1 1 ~1,-1 LZC
Fio =N 2ZTr[C C]—|—2Tr[|n(Z )+ 5 Z | C(x,x)

zZ2 2 z4
2E [t 2 [ cten)
4 X 8 X,y

e Terms proportional to Tr[1]: 0 by analytic continuation

_l’_

e C(x,x) =0 by analytic continuation



Leading order

a3 (L -1 1 ~1,-1 m_24
Fio =N 2ZTr[C C]—|—2Tr[|n(Z )+ 5 Z | C(x,x)

2 224
+>\23 /C(X,X)2 + A / C(X,y)4)
4 Jx 8 Jxy

e Terms proportional to Tr[1]: 0 by analytic continuation

e C(x,x) =0 by analytic continuation

o Melon integral: set A = 97<

326 r( di—e)

€7 53d—1,d-1/2 r(

Ql -+

FITENT(E oo



Leading order

Fro =N GZT[C 1)+ 2 S Trlin(2~ C_l)]+m72CZ/C(X,x)

2 \2z4
—i-)\zZ /C(X,X / C(x y)4)
4 Jx

e Terms proportional to Tr[1]: 0 by analytic continuation

e C(x,x) =0 by analytic continuation

@ Melon integral: set A = d%
32¢ r(d )4r %—i—é)
€ 23d 1 d 1/2 r(d 6) r(%)r(ﬁ) 0

= Reduces to N3 times the free energy of the GFFT



Next-to-next-to-leading order

@ NLO: only contribution is a figure eight diagram — vanishes

@ NNLO: four types of contributions [Bonzom, Nador, Tanasa]
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Next-to-next-to-leading order

@ NLO: only contribution is a figure eight diagram — vanishes
@ NNLO: four types of contributions [Bonzom, Nador, Tanasa]

Closed ladders with tetrahedron vertices
Chains of bubbles with pillow vertices

(2500-0000,

Mixing of chains and ladders




Special diagram

@ Gives finite contribution to the free energy

@ Only depends on the tetrahedral coupling: same value at all the
fixed points

@ No role in checking the F-theorem



Resumming the ladders

Fusto = - (Tin(1 — o)) + Trlk)

with K7 the four-point kernel:

Non-trivial resummation — use conformal partial wave expansion



Conformal partial wave expansion

WAy > < |

@ |, >: basis for bilocal functions (three-point functions)
o CPW: basis for conformal four-point functions

o Labeled by the scaling dimension h in the principal series

77+:{h|h:g+ir,r€]R+}



Conformal partial wave expansion

WAy > < |

|1, >: basis for bilocal functions (three-point functions)

o CPW: basis for conformal four-point functions

Labeled by the scaling dimension h in the principal series

77+:{h|h:g+ir,r€]R+}

Standard CFT technique for four-point functions

First application to the free energy

In practice: insert resolution of the identity



CPW expansion of the free energy

FnNpo = Z / +1°°ﬂp h,J) (In(1 — k(h, J)) + k(h, J))

JEeNy
A A rA AN AA
XNh,JNF,’J Tr[\Uth ]

@ p, N known conformal quantities

o k(h,J) kernel eigenvalues

- )

Kk(h, J) = —
" -

(4m)d (3

-
~—



CPW expansion of the free energy

FnNpo = Z / +1°°ﬂp h,J) (In(1 — k(h, J)) + k(h, J))

JeNy
x NfSNE, Tr [\uA A, A]

@ p, N known conformal quantities
o k(h,J) kernel eigenvalues

§- i)
4
=T

k(h,J) = S (4n)d T3

-
~—

: _ S~ OFNNLO
o Consider —g b
@ Shift dimension of shadow operators to regulate divergences

@ One finite sum remaining: can be computed numerically



Renormalized sphere free energy

Ford=3,g=1anda=1:
0 —4 2
—g—FNNLO =7.57 x 10 N
g
For different values of g up to g¢:

_ga_g
4

3

2 .

2 4 6 8 10 12 14




The non-normalizable contribution

o |IR: CPW expansion restricted to the principal series

@ UV: One primary operator has dimension below d/2 — Add a
non-normalizable state



non-normalizable contribution

o |IR: CPW expansion restricted to the principal series

@ UV: One primary operator has dimension below d/2 — Add a
non-normalizable state

Py

@ Solutions of k(h,0) =1

@ Physical dimension on the left of the contour
@ UV: add minus the residue at h = h_

@ More intuitive from a perturbative point of view



The non-normalizable contribution: perturbative check

gir = £Vg2(1+ 0(g?)) + g2(v¥(1) + 9(d/2) — 2(d/4) + O(g?))

@ From the UV to the IR, goes from g1 ~ —/g2 to g1+ ~ /g2
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The non-normalizable contribution: perturbative check

gir = £Vg2(1+ 0(g?)) + g2(v¥(1) + 9(d/2) — 2(d/4) + O(g?))

@ From the UV to the IR, goes from g1 ~ —/g2 to g1+ ~ /g2
@ Graphs with an odd number of vertices have opposite signs

o One contribution at order |g|3:

>

9 (ruv IR r(=d/2)gP ,» 5
€ 9g <FNNLO - FNNLO) = 16W/ZF@I)N + O(lg])

@ Variation of free energy:

= Positive for 2 < d < 4



Numerical evaluation at finite g

AAF
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Positivity remains valid also at all values of g < g¢
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= The long-range O(N)® model satisfies the F-theorem



Conclusion

o F-theorem: for CFTs in d = 3, the sphere free energy decreases
along the RG flow

@ Proof using relation with entanglement entropy
@ Relies heavily on unitarity
e Long-range O(N)3 model satisfies the F-theorem

@ Use of conformal partial wave expansion to resum ladders

o Further hint of the unitarity of the model at large NV ?

o Lower ordersin 1/N ?
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