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c-, a- and F -theorems

Under the RG flow between fixed points: always decrease

Count degrees of freedom

d = 2: c-theorem → central charge [Zamolodchikov ’86]

d = 4: a-theorem → Weyl anomaly coefficient a [Cardy ’88;

Komargodski, Schwimmer ’11]

d = 3: No anomaly ! Is there a quantity decreasing along the RG
flow ?
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F -theorem

Free energy on the sphere

Sphere: regulates IR divergences

UV divergences: F is the finite part of the free energy

Proof using relation between free energy and entanglement entropy
[Casini, Huerta]

Role of unitarity ?

Long-range O(N)3 model ⇒ Non-trivial example
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Outline

1 CFTs on the sphere

2 Flow between Gaussian CFTs

3 The long-range O(N)3 model
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Going to the sphere

Conformally flat metric

gµν(x) = Ω(x)2δµν , Ω(x) =
2a

(1 + x2)

Transformation of primary fields

O(x)→ Ω(x)−∆OO(x)

In practice: flat distance → chordal distance

s(x , y) = 2a
|x − y |

(1 + x2)1/2(1 + y2)1/2
= |x − y |Ω(x)1/2Ω(y)1/2
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Long-range models on the sphere

Scalar Laplacian on the sphere

Eigenmodes: spherical harmonics

Eigenvalues

ωn =
n(n + d − 1)

a2
,Dn =

(n + d − 2)!(2n + d − 1)

n!(d − 1)!

Long-range Laplacian on the sphere
(
−∂2

)ζ
Naively: fractional Laplacian with exponent 0 < ζ < 1

Careful analysis:

ω
(ζ)
n = a−2ζ Γ(n + d

2 + ζ)

Γ(n + d
2 − ζ)
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Flow between two Gaussian CFTs

SGauss[φ] =
1

2

∫
ddx φ(x)(−∂2)ζφ(x)︸ ︷︷ ︸

Generalized free field theory

+
λ

2

∫
ddx φ(x)(−∂2)φ(x)︸ ︷︷ ︸

Short-range free action

0 < ζ < 1

Two-point function (p2ζ + λp2)−1

→ p−2ζ when p → 0
→ p−2 when p →∞

RG flow between long-range free action in the IR and short-range in
the UV
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Free energy

F =
1

2
Tr[lnC−1] =

1

2

∑
n≥0

Dn ln
(
ω

(ζ)
n

)
Compare free-energy at the fixed points

GFFT with different values of ζ

Study the variations of F with respect to ζ

dF

dζ
= −ζ sin(πζ)

sin(πd/2)

Γ(d/2− ζ)Γ(d/2 + ζ)

Γ(1 + d)
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Variation of the free energy for d = 3

dF

dζ
=

1

24
πζ
(
1− 4ζ2

)
tan(πζ)
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ζ

-����
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Free energy decreases along the RG flow: respects the F -theorem

ζ > 1: UV and IR exchanged

Trivial counter-example for non-unitary theories
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The long-range O(N)3 model

S [ϕ] =
1

2

∫
ddx ϕabc(x)(−∆)ζϕabc(x) + S int[ϕ]

O(N)3 tensor model with quartic interactions [Carrozza,Tanasa,. . . ]

Tetrahedron Pillow Double-trace

0 < ζ < 1: long-range model with d < 4 fixed

Canonical dimension of the field: ∆ = d−2ζ
2

Marginal case: ζ = d
4
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RG trajectories

At large N:

Tetrahedral coupling g does not flow

Four lines of fixed point paramatrized by g

One infrared attractive fixed point, stable and strongly interacting

Explicit renormalization group trajectory from UV to IR fixed point

(g1+, g2+)

(g1+, g2−)

(g1−, g2+)

(g1−, g2−)

(0, 0)
+
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Further properties

Exact computation of the two-point function in the large-N limit

Four-point function: geometric series in a Bethe-Salpeter kernel

No local stress-energy tensor but conformally invariant fixed points

Strong indications of unitarity at the large-N fixed points

Breaking of unitarity at NLO

What happens when putting this model on the sphere ?

Does it respect the F -theorem ?
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Schwinger-Dyson equation

Three types of vacuum 2PI-diagrams occurring at large N

G−1(x , y) = C−1(x , y) +
(
md/2 + λ2G (x , x)

) δ(x − y)√
g(x)

+ λ2G (x , y)3

Metric
√
g(x) =

(
2a

1+x2

)d
Covariance on the sphere:

C (x , y) =
c(∆)

s(x , y)2∆
, c(∆) =

Γ(∆)

2d−2∆πd/2Γ(d2 −∆)



13/24

Solution of the Schwinger-Dyson equation

Tune bare mass to cancel tadpole and divergent part of melonic
integral

SDE solved by:

G?(x , y) = ZC (x , y) = Z c(∆)

s(x , y)2∆

Z = 1 + λ2Z4 4Γ(1− d/4)

d(4π)dΓ(3d/4)

→ Same equation as in flat space

Square root singularity at λc : model defined for g < gc ≡ λc Z(λc)2
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Leading order

FLO =N3

(
1

2
Z Tr[C−1C ] +

1

2
Tr[ln(Z−1C−1)] +

m2ζ

2
Z
∫
x
C (x , x)

+
λ2Z2

4

∫
x
C (x , x)2 +

λ2Z4

8

∫
x ,y

C (x , y)4

)

Terms proportional to Tr[1]: 0 by analytic continuation

C (x , x) = 0 by analytic continuation

Melon integral: set ∆ = d−ε
4

Mε =
a2ε Γ(d+ε

4 )4 Γ(−d
2 + ε)

23d−1 πd−1/2 Γ(d−ε4 )4 Γ(d+1
2 ) Γ(ε)

−−→
ε→0

0

⇒ Reduces to N3 times the free energy of the GFFT
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Next-to-next-to-leading order

NLO: only contribution is a figure eight diagram → vanishes

NNLO: four types of contributions [Bonzom, Nador, Tanasa]

Closed ladders with tetrahedron vertices
n

Chains of bubbles with pillow vertices
n

Mixing of chains and ladders
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Special diagram

Gives finite contribution to the free energy

Only depends on the tetrahedral coupling: same value at all the
fixed points

No role in checking the F -theorem
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Resumming the ladders

FNNLO =
N2

2
(Tr[ln(I− K1)] + Tr[K1])

with K1 the four-point kernel:

K1 = −λ2K = −λp −λd +3λ2 − λ1K = −λp −λd +3λ2

Non-trivial resummation → use conformal partial wave expansion
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Conformal partial wave expansion

Ψ∆,∆,∆̃,∆̃
h,J ∼ |ψn >< ψn|

|ψn >: basis for bilocal functions (three-point functions)

CPW: basis for conformal four-point functions

Labeled by the scaling dimension h in the principal series

P+ =

{
h|h =

d

2
+ ir , r ∈ R+

}

Standard CFT technique for four-point functions

First application to the free energy

In practice: insert resolution of the identity
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CPW expansion of the free energy

FNNLO =
N2

2

∑
J∈N0

∫ d
2

+i∞

d
2

dh

2π i
ρ(h, J)

(
ln(1− k(h, J)) + k(h, J)

)
×N∆

h,JN ∆̃
h̃,J

Tr[Ψ∆,∆,∆̃,∆̃
h,J ]

ρ, N known conformal quantities

k(h, J) kernel eigenvalues

k(h, J) = − g2

(4π)d
Γ(−d

4 + h+J
2 )Γ(d4 − h−J

2 )

Γ( 3d
4 − h−J

2 )Γ(d4 + h+J
2 )

,

Consider −g ∂FNNLO
∂g

Shift dimension of shadow operators to regulate divergences

One finite sum remaining: can be computed numerically
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Renormalized sphere free energy

For d = 3, g = 1 and a = 1:

−g ∂

∂g
FNNLO = 7.57× 10−4 N2

For different values of g up to gc :

� � � � �� �� ��
��

�

�

�

�

-�
∂�
∂�
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The non-normalizable contribution

IR: CPW expansion restricted to the principal series

UV: One primary operator has dimension below d/2 → Add a
non-normalizable state

Solutions of k(h, 0) = 1

h− h+d
2

× ×

P+

Physical dimension on the left of the contour

UV: add minus the residue at h = h−

More intuitive from a perturbative point of view



21/24

The non-normalizable contribution

IR: CPW expansion restricted to the principal series

UV: One primary operator has dimension below d/2 → Add a
non-normalizable state

Solutions of k(h, 0) = 1

h− h+d
2

× ×

P+

Physical dimension on the left of the contour

UV: add minus the residue at h = h−

More intuitive from a perturbative point of view



22/24

The non-normalizable contribution: perturbative check

g1± = ±
√

g2
(
1 +O(g2)

)
+ g2

(
ψ(1) + ψ(d/2)− 2ψ(d/4) +O(g2)

)
From the UV to the IR, goes from g1− ' −

√
g2 to g1+ '

√
g2

Graphs with an odd number of vertices have opposite signs

One contribution at order |g |3:

Variation of free energy:

g
∂

∂g

(
FUV
NNLO − F IR

NNLO

)
= 16

Γ(−d/2)|g |3
23dπ3d/2Γ(d)

N2 +O(|g |5)

⇒ Positive for 2 < d < 4
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Numerical evaluation at finite g

0 2 4 6 8 10 12
g0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

g
∂ΔF
∂g

Positivity remains valid also at all values of g < gc

⇒ The long-range O(N)3 model satisfies the F -theorem
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Conclusion

F -theorem: for CFTs in d = 3, the sphere free energy decreases
along the RG flow

Proof using relation with entanglement entropy

Relies heavily on unitarity

Long-range O(N)3 model satisfies the F -theorem

Use of conformal partial wave expansion to resum ladders

Further hint of the unitarity of the model at large N ?

Lower orders in 1/N ?
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