Melonic large N limit of 5-index irreducible random tensors

Sylvain Carrozza

Tensor Journal Club February 16, 2022

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

Results based on:

► arXiv:2104.03665 - Commun. Math. Phys. (2022) with S. Harribey.

but also

 arXiv:1712.00249 - Commun. Math. Phys. (2019) with D. Benedetti, R. Gurau and M. Kolanowski.

► arXiv:1803.02496 - JHEP (2018)

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

OUTLINE

Introduction

O(N) irreducible random tensors with complete graph interaction

Existence of the large N limit

Melonic dominance at leading order

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDE
●00000	000000000	000000	00000

Outline

Introduction

O(N) irreducible random tensors with complete graph interaction

Existence of the large N limit

Melonic dominance at leading order

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
00000	00000000	000000	00000

RANDOM TENSORS

Space of tensors $T = T_{a_1...a_p}$, $a_i \in \{1, ..., N\}$, equipped with measure of the form:

$$\mathrm{d}\nu(T) = \mathrm{d}\mu_{\boldsymbol{P}}(T)\mathrm{e}^{-S_{\boldsymbol{N}}(T)}$$

• $d\mu_{P}$ is Gaussian with covariance P:

$$\int \mathrm{d}\mu_{\boldsymbol{P}}(T)T_{a_1\ldots a_p}T_{b_1\ldots b_p} = \boldsymbol{P}_{a_1\ldots a_p,b_1\ldots b_p}$$

both P and S_N are invariant under the action of some unitary group: O(N), U(N) or Sp(N).

What type of universal behaviour can we obtain in the asymptotic limit $N
ightarrow \infty$?

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
00000	00000000	000000	00000

Symmetric tensor:

$$T_{a_1a_2\cdots a_p} = \overbrace{a_1 \ a_2}^{} \cdots \overbrace{a_p}^{}$$

$$\sum_{c=1}^{N} T_{abc} T_{cde} = \bigwedge_{a \ b} \bigwedge_{d \ e}^{c}$$

Connected invariants:

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
00000	00000000	000000	00000

Symmetric tensor:

$$T_{a_1a_2\cdots a_p} = \overbrace{a_1 \ a_2}^{A_1} a_2 \cdots a_p$$

$$\sum_{c=1}^{N} T_{abc} T_{cde} = \overbrace{a \ b}^{C} \overbrace{d \ e}^{C}$$

Connected invariants:

$$p=1$$
 \longleftarrow $(\phi_a\phi^a)$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
00000	000000000	000000	00000

Symmetric tensor:

$$T_{a_1a_2\cdots a_p} = \overbrace{a_1 \ a_2}^{} \cdots \overbrace{a_p}^{}$$

$$\sum_{c=1}^{N} T_{abc} T_{cde} = \underbrace{a \atop b} \underbrace{c}_{de}$$

Connected invariants:

$$p=2 \qquad \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \cdots \qquad (\operatorname{tr}(M^n))$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
00000	000000000	000000	00000

Symmetric tensor:

$$T_{a_1a_2\cdots a_p} = \underbrace{a_1}_{a_2} \underbrace{a_2}_{a_1} \underbrace{a_p}_{a_2}$$

$$\sum_{c=1}^{N} T_{abc} T_{cde} = \underbrace{a \atop b} \underbrace{c}_{d} e$$

Connected invariants:

#{invariants of order 2n} ~ $\left(\frac{3}{2}\right)^n n!$

 \Rightarrow Rapid growth of theory space for $p \ge 3$. Universal features at large N?

QG IN $D \ge 3$ as a tensor integral?

$$\mathcal{F}(\lambda) = \ln \int \mathrm{d}T \, \exp\left(-T_{abc}T_{abc} + rac{\lambda}{N^{lpha}}T_{aeb}T_{bfc}T_{ced}T_{dfa}
ight)$$

[Ambjørn, Durhuss, Jónsson '91; Gross '91; Sasakura '91;...]

- ► Challenges:
 - matrix techniques not available (spectral representation)
 - interplay between combinatorics and topology: nice global properties from local Feynman rules?
 - ► large-N expansion ?
- Path to progress: [Gurau '09; Gurau, Rivasseau, Bonzom,... '10s]
 - more symmetry: $U(N)^{D} \rightarrow colored$ tensor models
 - tractable combinatorics, mapping to sufficiently regular topological spaces.

 \Rightarrow universal large-N expansion, in any $D \geq 3$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

[BONZOM, GURAU, RIELLO, RIVASSEAU '11...]

 $\omega(\Delta) = 0 \qquad \Leftrightarrow \qquad \Delta \text{ is melonic}$

 \rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$\left({G(\lambda) = 1 + \lambda G(\lambda)^{D + 1} }
ight)$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

[BONZOM, GURAU, RIELLO, RIVASSEAU '11...]

 $\omega(\Delta) = 0 \quad \Leftrightarrow \quad \Delta \text{ is melonic}$

 \rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$\left({{G}(\lambda) = 1 + \lambda G(\lambda)^{D + 1}}
ight)$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

[BONZOM, GURAU, RIELLO, RIVASSEAU '11...]

 $\omega(\Delta) = 0 \qquad \Leftrightarrow \qquad \Delta \text{ is melonic}$

 \rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$\left({{G}(\lambda) = 1 + \lambda G(\lambda)^{D + 1}}
ight)$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

[BONZOM, GURAU, RIELLO, RIVASSEAU '11...]

 $\omega(\Delta) = 0 \qquad \Leftrightarrow \qquad \Delta \text{ is melonic}$

 \rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$\left({{\mathcal{G}}(\lambda) = 1 + \lambda {\mathcal{G}}(\lambda)^{D + 1}}
ight)$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

[BONZOM, GURAU, RIELLO, RIVASSEAU '11...]

 $\omega(\Delta) = 0 \qquad \Leftrightarrow \qquad \Delta \text{ is melonic}$

 \rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$\left({{G}(\lambda)} = 1 + \lambda {{G}(\lambda)}^{D + 1}
ight)$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

[BONZOM, GURAU, RIELLO, RIVASSEAU '11...]

 $\omega(\Delta) = 0 \qquad \Leftrightarrow \qquad \Delta \text{ is melonic}$

 \rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$igg[G(\lambda) = 1 + \lambda G(\lambda)^{D+1} igg]$$

(Fuss-Catalan)

Critical regime / continuum limit:

Melons are branched polymers [Gurau, Ryan '13] i.e. they converge to the continuous random tree [Aldous '91].

$$d_{\rm spectral} = 4/3$$

 \Rightarrow strong universality: limit independent of D!

The melonic limit in Large-N QFT

Vector field $\phi_a(x)$

Bubble diagrams

Tensor field $T_{abc}(x)$

Melon diagrams

Planar diagrams

Matrix field $M_{ab}(x)$

Easy

Tractable

Hard

INTRODUCTION	0(N) IRREDUCIBLE TENSO	ORS LARGE N LIN	MIT LEADING ORDER
The melon	IC LIMIT IN LARG	e- <i>N</i> QFT	
Vector field	$\phi_a(x)$ Tensor fie	$\mathbb{I} d T_{abc}(x) $	Matrix field $M_{ab}(x)$
Bubble diag	rams Melon d	diagrams	Planar diagrams

Planar diagrams

Easy

Tractable

Hard

- Strong-coupling regime of the SYK model: disordered model of Majorana fermions [Kitaev; Maldacena, Stanford; Gross, Rosenhaus;...]
- Tensor model realization: fermionic tensor field $\Psi_{abc}(t)$
 - no disorder [Witten '16; Klebanov, Tarnopolsky '16]
 - natural QFT generalizations

[Klebanov et al., Gurau, Benedetti, Harribey, Suzuki, Lettera,...]

	E IENSORS LARGE // LI	LEADING ORDER
00000000 00000000	000000	00000

OUTLINE

Introduction

O(N) irreducible random tensors with complete graph interaction

Existence of the large N limit

Melonic dominance at leading order

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	00000000	000000	00000

Models

p-index tensor $T_{a_1...a_p}$, with *p* odd and measure of the form:

$$\mathrm{d}\nu(T) = \mathrm{d}\mu_{\boldsymbol{P}}(T)\mathrm{e}^{-S_{\boldsymbol{N}}(T)}$$

• P = orthogonal projector on an irreducible representation of O(N);

• $S_N = -\frac{\lambda}{N^{\alpha}} Inv(T)$, where Inv(T) is a complete-graph invariant (graph K_{p+1}).

Does this model admit a large N expansion? Is it melonic?

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	00000000	000000	00000

Models

p-index tensor $T_{a_1...a_p}$, with *p* odd and measure of the form:

$$\mathrm{d}\nu(T) = \mathrm{d}\mu_{\boldsymbol{P}}(T)\mathrm{e}^{-S_{\boldsymbol{N}}(T)}$$

• P = orthogonal projector on an irreducible representation of O(N);

• $S_N = -\frac{\lambda}{N^{\alpha}} \text{Inv}(T)$, where Inv(T) is a complete-graph invariant (graph K_{p+1}).

Does this model admit a large N expansion? Is it melonic?

 $T_{a_1a_2...a_p}$, in fundamental representation of $O(N) \times O(N) \times \cdots \times O(N)$:

- $\blacktriangleright P_{a_1a_2...a_p, b_1b_2...b_p} = \delta_{a_1b_1}\delta_{a_2, b_2}\cdots\delta_{a_p, b_p}$
- The complete-graph K_{p+1} is *p*-edge-colorable

<u>Theorem:</u> (Ferrari, Rivasseau, Valette '17) A melonic large *N* limit exists for prime *p*.

(p = 3: [Tanasa, SC '15])

$$(p=3) \qquad \qquad \frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}$$

•
$$A(G) \sim N^{-\omega}$$
 with $\omega = 3 + \frac{3}{2}V - F \ge 0$

• G leading order $\Leftrightarrow \omega = 0 \Leftrightarrow G$ is a melon diagram

Idea of proof:

- ► Euler relation: $\omega := g_{13} + g_{12} + g_{23} \in \frac{\mathbb{N}}{2}$, where g_{ij} = genus of the jacket (*ij*).
- melons are "super-planar" i.e. they have planar jackets

$$(p=3) \qquad \qquad \frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}$$

•
$$A(G) \sim N^{-\omega}$$
 with $\omega = 3 + \frac{3}{2}V - F \ge 0$

• G leading order $\Leftrightarrow \omega = 0 \Leftrightarrow G$ is a melon diagram

Idea of proof:

- ► Euler relation: $\omega := g_{13} + g_{12} + g_{23} \in \frac{\mathbb{N}}{2}$, where g_{ij} = genus of the jacket (*ij*).
- melons are "super-planar" i.e. they have planar jackets

$$(p=3) \qquad \qquad \frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}$$

•
$$A(G) \sim N^{-\omega}$$
 with $\omega = 3 + \frac{3}{2}V - F \ge 0$

• G leading order $\Leftrightarrow \omega = 0 \Leftrightarrow G$ is a melon diagram

Idea of proof:

- ► Euler relation: $\omega := g_{13} + g_{12} + g_{23} \in \frac{\mathbb{N}}{2}$, where g_{ij} = genus of the jacket (*ij*).
- melons are "super-planar" i.e. they have planar jackets

Conjecture (Klebanov–Tarnopolsky '17)

For p = 3, \exists melonic large N limit for O(N) symmetric traceless tensors.

Evidence. Explicit numerical check of all diagrams up to order λ^8 .

[Klebanov, Tarnopolsky, JHEP '17]

12 12 12 12 ¹¹³⁶ 12 12 12 0 12 0 12 0 12 0 12 12 ٢ 12 11 1 0 \cap 1155 12 11 × 12 11 ¹¹⁵⁶ 12 11 12 11 12

Proof and further generalizations.

- O(N) irreducible, p = 3
 [Benedetti, SC, Gurau, Kolanowski, Commun. Math. Phys. '19; SC, JHEP '18]
- 2. Sp(N) irreducible, p = 3
- 3. O(N) irreducible, p = 5

[SC, Pozsgay, Nucl. Phys. B '19]

[SC, Harribey '21]

Much more involved and subtle constructions than in the colored case.

IRREDUCIBLE TENSORS – PROPAGATOR

 ${\bf P}=orthogonal\ projector\ on\ one\ of\ the\ irreducible\ tensor\ spaces.$

example: for traceless tensors with symmetry

1	2
3	

IRREDUCIBLE TENSORS – PROPAGATOR

 $\mathbf{P} = \text{orthogonal projector on one of the irreducible tensor spaces.}$

example: for traceless tensors with symmetry

$$\begin{split} \int d\mu_{\mathsf{P}}(T) T_{a_1 a_2 a_3} T_{b_1 b_2 b_3} &= \mathsf{P}_{a_1 a_2 a_3, b_1 b_2 b_3} = \frac{1}{3} \left(\delta_{a_1 b_1} \delta_{a_2 b_2} \delta_{a_3 b_3} - \delta_{a_1 b_3} \delta_{a_2 b_2} \delta_{a_3 b_1} \right) \\ &\quad + \frac{1}{6} \left(\delta_{a_1 b_2} \delta_{a_2 b_1} \delta_{a_3 b_3} + \delta_{a_1 b_1} \delta_{a_2 b_3} \delta_{a_3 b_2} \right) \\ &\quad - \frac{1}{6} \left(\delta_{a_1 b_2} \delta_{a_2 b_3} \delta_{a_3 b_1} + \delta_{a_1 b_3} \delta_{a_2 b_1} \delta_{a_3 b_2} \right) \\ &\quad + \frac{1}{2(N-1)} \left(\delta_{a_1 b_3} \delta_{a_2 a_3} \delta_{b_1 b_2} + \delta_{a_1 a_2} \delta_{a_3 b_1} \delta_{b_2 b_3} \right) \\ &\quad - \frac{1}{2(N-1)} \left(\delta_{a_1 b_1} \delta_{a_2 a_3} \delta_{b_2 b_3} + \delta_{a_1 a_2} \delta_{a_3 b_3} \delta_{b_1 b_2} \right) \end{split}$$

IRREDUCIBLE TENSORS – PROPAGATOR

 $\mathbf{P} = \text{orthogonal projector on one of the irreducible tensor spaces.}$

example: for traceless tensors with symmetry

1 2 3

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	0000000000	000000	00000

IRREDUCIBLE TENSORS - MAPS AND STRANDED GRAPHS

• Feynman expansion \rightarrow combinatorial maps \mathcal{G} :

• Decomposition of propagators \rightarrow stranded graphs G:

ITRODUCTION	O(N) IRREDUCIBLE TENSORS
00000	0000000000

IRREDUCIBLE TENSORS – FEYNMAN AMPLITUDES

$$\mathcal{F}_N(\lambda) = \sum_{ ext{connected maps } \mathcal{G}} rac{\lambda^{V(\mathcal{G})}}{s(\mathcal{G})} A(\mathcal{G})$$

 \mathcal{G} decomposes into up to $15^{\mathcal{E}(\mathcal{G})}$ stranded graphs G:

$$egin{aligned} \mathcal{A}(\mathcal{G}) &= \sum_G \mathcal{A}(G)\,, \qquad \mathcal{A}(G) \sim \mathcal{N}^{-oldsymbol{\omega}(G)} \ &oldsymbol{\omega}(G) &= 3 + rac{3}{2} \mathcal{V}(G) + \mathcal{B}(G) - \mathcal{F}(G) \ &oldsymbol{V} &= \#\{ ext{vertices}\}, \ \mathcal{B} &= \#\{ ext{broken edges}\}, \ \mathcal{F} &= \#\{ ext{faces}\} \end{aligned}$$

IRREDUCIBLE TENSORS – 5-INDEX TENSORS

Unbroken

Broken

Map \mathcal{G} decomposes into up to $945^{\mathcal{E}(\mathcal{G})}$ stranded graphs G:

$$egin{aligned} & A(\mathcal{G}) = \sum_G A(G)\,, \qquad A(G) \sim \mathcal{N}^{-oldsymbol{\omega}(G)} \ & oldsymbol{\omega}(G) = 5 + 5\mathcal{V}(G) + B_1(G) + 2B_2(G) - F(G) \ & B_1 = \#\{ ext{broken edges}\}, \ B_2 = \#\{ ext{doubly - broken edges}\} \end{aligned}$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

MAIN THEOREMS

$$Z_{\boldsymbol{P}}(\lambda, N) = \int d\mu_{\boldsymbol{P}} \exp\left(\frac{\lambda}{6N^5}\right) \qquad F_{\boldsymbol{P}}(\lambda, N) = \frac{6}{N^5} \lambda \partial_{\lambda} \ln Z_{\boldsymbol{P}}(\lambda, N)$$

<u>Theorem 1</u> (SC, Harribey '21) In the sense of formal power series:

$$F_{\boldsymbol{P}}(\lambda, N) = \sum_{\omega \in \mathbb{N}} N^{-\omega} F_{\boldsymbol{P}}^{(\omega)}(\lambda)$$

Theorem 2 (SC, Harribey '21) For sufficiently small λ , $F_{P}^{(0)}(\lambda)$ is the unique continuous solution of the polynomial equation

$$1 - X + m_{\mathbf{P}}\lambda^2 X^6 = 0$$

such that ${\it F}_{{m P}}^{(0)}(0)=1$, and where $m_{m P}$ is a model-specific real constant.

Example. For the symmetric traceless and antisymmetric reps, $m_P = \left(\frac{1}{5!}\right)^4$.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	●00000	00000

OUTLINE

Introduction

O(N) irreducible random tensors with complete graph interaction

Existence of the large N limit

Melonic dominance at leading order

00000
00

MAIN DIFFICULTIES

Natural conjecture: For any stranded graph G, $\omega(G) \geq 0$.

 \times Incorrect ! \times Counter-example: chain of "bad double-tadpoles"

Subclass of graphs with good scaling properties: stranded graphs containing no melon or double-tadpole subgraphs.

▶ No global constraint such as Euler's relation available \Rightarrow analysis of local combinatorial structure of *G*.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	00000	00000

PROOF STRATEGY

1. Eliminate melon and double-tadpole 2-point functions at the Feynman map level:

$$-\underbrace{\bigcirc} = \mathcal{O}\left(\frac{1}{N}\right) - \underbrace{\bigcirc} = \mathcal{O}(1) - \underbrace{\mathcal{O}(1) - \underbrace{\mathcalO}(1) - \underbrace{\mathcalO}(1) - \underbrace{\mathcalO}(1) - \underbrace{\mathcalO}(1) - \underbrace{\mathcalO}(1$$

This is where the irreducibility assumption plays a crucial role.

2. Obtain \mathcal{G} with no melon and no double-tadpole.

Proposition: For any stranded configuration G of \mathcal{G} , $\omega(G) \geq 0$.

Proof. Induction on V = #{vertices}. Conceptually straightforward but challenging by its complexity.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

	INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000 00000000 00000 00000	000000	00000000	000000	00000

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

000000 000000 00000	INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
	000000	00000000	000000	00000

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

	INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000 00000000 00000 00000	000000	00000000	000000	00000

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

Find local combinatorial moves that:

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

End graphs

► Ring graphs (V = 0):

- G with no face of length 1 or $2 \Rightarrow \omega(G) > 0$.
- Special cases that need to be treated separately.

. . .

00000 0000000 000000 00000 00000	0

- decrease V;
- decrease ω ;
- ▶ preserve constraints: connectedness, Ø melon, Ø double-tadpole.

LEADING ORDER

LEADING ORDER

LEADING ORDER

LEADING ORDER

д

LEADING ORDER

IDEA OF PROOF - BOUNDARY GRAPHS

One can recast recursive bounds on ω into bounds on flip distance between boundary graphs:

IDEA OF PROOF - BOUNDARY GRAPHS

One can recast recursive bounds on ω into bounds on flip distance between boundary graphs:

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	00000	00000

MAIN THEOREMS

$$Z_{\boldsymbol{P}}(\lambda, N) = \int d\mu_{\boldsymbol{P}} \exp\left(\frac{\lambda}{6N^5} \bigotimes^{\bullet}\right) \qquad F_{\boldsymbol{P}}(\lambda, N) = \frac{6}{N^5} \lambda \partial_{\lambda} \ln Z_{\boldsymbol{P}}(\lambda, N)$$

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

$$\ell \qquad F_{\boldsymbol{P}}(\lambda, N) = \sum_{\boldsymbol{\omega} \in \mathbb{N}} N^{-\boldsymbol{\omega}} F_{\boldsymbol{P}}^{(\boldsymbol{\omega})}(\lambda)$$

Theorem 2 (SC, Harribey '21) For sufficiently small λ , $F_{P}^{(0)}(\lambda)$ is the unique continuous solution of the polynomial equation

$$1 - X + m_{\mathbf{P}}\lambda^2 X^6 = 0$$

, such that ${\it F}_{{m
ho}}^{(0)}(0)=1$, and where $m_{m
ho}$ is a model-specific real constant.

Example. For the symmetric traceless and antisymmetric reps, $m_P = \left(\frac{1}{5!}\right)^4$.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	00000000	000000	●0000

OUTLINE

Introduction

O(N) irreducible random tensors with complete graph interaction

Existence of the large N limit

Melonic dominance at leading order

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

Melonic dominance

Proposition: \mathcal{G} is leading order $\Leftrightarrow \mathcal{G}$ is melonic.

Proof. Cauchy-Schwarz inequalities on maps for which we do not already have strict bounds e.g.

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

Melonic dominance

Proposition: \mathcal{G} is leading order $\Leftrightarrow \mathcal{G}$ is melonic.

Proof. Cauchy-Schwarz inequalities on maps for which we do not already have strict bounds e.g.

SCHWINGER-DYSON EQUATION

Hallmark of melonic limit: the 2-point function verifies a closed SDE

 $r \Rightarrow F_{P}^{(0)}$ is a solution of the polynomial equation

$$1 - X + m_{\mathbf{P}}\lambda^2 X^6 = 0$$

INTRODUCTION	O(N) IRREDUCIBLE TENSORS	LARGE N LIMIT	LEADING ORDER
000000	000000000	000000	00000

MAIN THEOREMS

$$Z_{\boldsymbol{P}}(\lambda, N) = \int d\mu_{\boldsymbol{P}} \exp\left(\frac{\lambda}{6N^5} \bigotimes^{\bullet}\right) \qquad F_{\boldsymbol{P}}(\lambda, N) = \frac{6}{N^5} \lambda \partial_{\lambda} \ln Z_{\boldsymbol{P}}(\lambda, N)$$

Theorem 1 (SC, Harribey '21) In the sense of formal power series:

$$\ell \qquad F_{\boldsymbol{P}}(\lambda, N) = \sum_{\boldsymbol{\omega} \in \mathbb{N}} N^{-\boldsymbol{\omega}} F_{\boldsymbol{P}}^{(\boldsymbol{\omega})}(\lambda)$$

Theorem 2 (SC, Harribey '21) For sufficiently small λ , $F_{P}^{(0)}(\lambda)$ is the unique continuous solution of the polynomial equation

$$1 - X + m_{\mathbf{P}}\lambda^2 X^6 = 0$$

such that ${\it F}_{{m
ho}}^{(0)}(0)=1$, and where $m_{m
ho}$ is a model-specific real constant.

Example. For the symmetric traceless and antisymmetric reps, $m_P = \left(\frac{1}{5!}\right)^4$.

CONCLUSION AND OUTLOOK

Large N limit of p-index irreducible random tensors with p = 5:

Complete graph interaction + O(N) symmetry \Rightarrow melonic limit.

- ▶ In contrast to the matrix case, the irreducibility condition is essential.
- Other interactions, other symmetry groups (e.g. Sp(N)), as well as fermionic tensors can be analyzed with the same method.
- Subleading orders can in principle be characterized as well.

Open questions:

- ► Generalization to arbitrary (prime) p?
- ► Useful applications to strongly-coupled QFT?
- ► Towards a general theory of random tensors?