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INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Results based on:

I arXiv:2104.03665 � Commun. Math. Phys. (2022) with S. Harribey.

but also

I arXiv:1712.00249 � Commun. Math. Phys. (2019)
with D. Benedetti, R. Gurau and M. Kolanowski.

I arXiv:1803.02496 � JHEP (2018)
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Random tensors

Space of tensors T = Ta1:::ap , ai ∈ {1; : : : ; N}, equipped with measure of
the form:

d�(T ) = d—PPP (T )e−SN(T )

I d—PPP is Gaussian with covariance PPP :∫
d—PPP (T )Ta1:::apTb1:::bp = PPP a1:::ap ;b1:::bp

I both PPP and SN are invariant under the action of some unitary group:
O(N), U(N) or Sp(N).

What type of universal behaviour can we obtain in the asymptotic limit
N →∞ ?
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Tensors and invariants
Symmetric tensor:

· · ·
a1 a2 ap

Ta1a2···ap =
∑N

c=1 TabcTcde =
ba ed

c

Connected invariants:

#{invariants of order 2n} ∼
(
3
2

)n
n!

⇒ Rapid growth of theory space for p ≥ 3. Universal features at large N?

6/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Tensors and invariants
Symmetric tensor:

· · ·
a1 a2 ap

Ta1a2···ap =
∑N

c=1 TabcTcde =
ba ed

c

Connected invariants:

p = 1 (ffiaffi
a)

#{invariants of order 2n} ∼
(
3
2

)n
n!

⇒ Rapid growth of theory space for p ≥ 3. Universal features at large N?

6/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Tensors and invariants
Symmetric tensor:

· · ·
a1 a2 ap

Ta1a2···ap =
∑N

c=1 TabcTcde =
ba ed

c

Connected invariants:

p = 2 · · · (tr(Mn))

#{invariants of order 2n} ∼
(
3
2

)n
n!

⇒ Rapid growth of theory space for p ≥ 3. Universal features at large N?

6/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Tensors and invariants
Symmetric tensor:

· · ·
a1 a2 ap

Ta1a2···ap =
∑N

c=1 TabcTcde =
ba ed

c

Connected invariants:

p = 3

· · · · · ·

#{invariants of order 2n} ∼
(
3
2

)n
n!

⇒ Rapid growth of theory space for p ≥ 3. Universal features at large N?

6/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

QG in D ≥ 3 as a tensor integral?

F(–) = ln

∫
dT exp

(
−TabcTabc +

–

N¸
TaebTbf cTcedTdf a

)
a

b
cd

e

f

[Ambjørn, Durhuss, Jónsson '91; Gross '91; Sasakura '91;...]

I Challenges:
I matrix techniques not available (spectral representation)
I interplay between combinatorics and topology: nice global properties

from local Feynman rules?
I large-N expansion ?

I Path to progress: [Gurau '09; Gurau, Rivasseau, Bonzom,... '10s]

I more symmetry: U(N)D → colored tensor models
I tractable combinatorics, mapping to su�ciently regular topological

spaces. �� ��⇒ universal large-N expansion, in any D ≥ 3
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Melons [Bonzom, Gurau, Riello, Rivasseau ’11...]

!(∆) = 0 ⇔ ∆ is melonic

→ special triangulations of the D-sphere, with a
tree-like combinatorial structure.

Closed equation for their generating function:�� ��G(–) = 1 + –G(–)D+1 (Fuss-Catalan)

Critical regime / continuum limit:

Melons are branched polymers [Gurau, Ryan '13]

i.e. they converge to the continuous random tree [Aldous '91].

dspectral = 4=3

⇒ strong universality: limit independent of D!
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The melonic limit in large-N QFT�� ��Vector �eld ffia(x)

Bubble diagrams

Easy

�� ��Tensor �eld Tabc(x)

Melon diagrams

Tractable

�� ��Matrix �eld Mab(x)

Planar diagrams

Hard
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The melonic limit in large-N QFT�� ��Vector �eld ffia(x)

Bubble diagrams

Easy

�� ��Tensor �eld Tabc(x)

Melon diagrams

Tractable

�� ��Matrix �eld Mab(x)

Planar diagrams

Hard

I Strong-coupling regime of the SYK model: disordered model of
Majorana fermions [Kitaev; Maldacena, Stanford; Gross, Rosenhaus;...]

I Tensor model realization: fermionic tensor �eld Ψabc(t)
I no disorder [Witten '16; Klebanov, Tarnopolsky '16]
I natural QFT generalizations

[Klebanov et al., Gurau, Benedetti, Harribey, Suzuki, Lettera,...]
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Models
p-index tensor Ta1:::ap , with p odd and measure of the form:

d�(T ) = d—PPP (T )e−SN(T )

I PPP = orthogonal projector on an irreducible representation of O(N);

I SN = − –
N¸

Inv(T ), where Inv(T ) is a complete-graph invariant
(graph Kp+1).

K4 (p = 3) K6 (p = 5)

Does this model admit a large N expansion? Is it melonic?
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Precursors: colored O(N) models

Ta1a2:::ap , in fundamental representation of O(N)× O(N)× · · · × O(N):

I PPP a1a2:::ap ;b1b2:::bp = ‹a1b1‹a2;b2 · · · ‹ap ;bp ...
I The complete-graph Kp+1 is p-edge-colorable

K4 (p = 3) K6 (p = 5)

�



�
	Theorem: (Ferrari, Rivasseau, Valette '17)

A melonic large N limit exists for prime p.

(p = 3: [Tanasa, SC '15])
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Precursors: colored O(N) models

(p = 3) –
N3=2 TaebTcf bTcedTaf d�

�
�



I A(G) ∼ N−! with ! = 3 + 3
2V − F ≥ 0

I G leading order ⇔ ! = 0 ⇔ G is a melon diagram

Idea of proof:

I Euler relation: ! := g13 + g12 + g23 ∈ N
2 , where gi j = genus of the

jacket (i j).

I melons are "super-planar" i.e. they have planar jackets

→

g13 = 0
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→
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�
�

�
�

Conjecture (Klebanov�Tarnopolsky '17)

For p = 3, ∃ melonic large N limit for O(N) symmetric traceless tensors.

Evidence. Explicit numerical
check of all diagrams up to order
–8.

[Klebanov, Tarnopolsky, JHEP '17]

Proof and further generalizations.

1. O(N) irreducible, p = 3
[Benedetti, SC, Gurau, Kolanowski, Commun. Math. Phys. '19; SC, JHEP '18]

2. Sp(N) irreducible, p = 3 [SC, Pozsgay, Nucl. Phys. B '19]

3. O(N) irreducible, p = 5 [SC, Harribey '21]

Much more involved and subtle constructions than in the colored case.
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Irreducible tensors – propagator

P = orthogonal projector on one of the irreducible tensor spaces.

example: for traceless tensors with symmetry
1 2

3
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Irreducible tensors – propagator

P = orthogonal projector on one of the irreducible tensor spaces.

example: for traceless tensors with symmetry
1 2

3

∫
d—P(T )Ta1a2a3Tb1b2b3 = Pa1a2a3;b1b2b3 =

1

3
(‹a1b1‹a2b2‹a3b3 − ‹a1b3‹a2b2‹a3b1)

+
1

6
(‹a1b2‹a2b1‹a3b3 + ‹a1b1‹a2b3‹a3b2)

− 1

6
(‹a1b2‹a2b3‹a3b1 + ‹a1b3‹a2b1‹a3b2)

+
1

2(N − 1)
(‹a1b3‹a2a3‹b1b2 + ‹a1a2‹a3b1‹b2b3)

− 1

2(N − 1)
(‹a1b1‹a2a3‹b2b3 + ‹a1a2‹a3b3‹b1b2)
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Irreducible tensors – propagator

P = orthogonal projector on one of the irreducible tensor spaces.

example: for traceless tensors with symmetry
1 2

3

Ta1a2a3
Tb1b2b3 a2

a3

a1
b2
b3

b1 −1
3 ( )

+1
6 ( )

+1
6 ( )

+( )1
2(N−1)+

+( )1
2(N−1)−

+

−

=

15/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Irreducible tensors – maps and stranded graphs
I Feynman expansion → combinatorial maps G:

I Decomposition of propagators → stranded graphs G:

broken

16/30
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Irreducible tensors – Feynman amplitudes
Vertex Propagator

(broken)

(unbroken)

G

G

FN(–) =
∑

connected maps G

–V (G)

s(G)
A(G)

G decomposes into up to 15E(G) stranded graphs G:#

"

 

!

A(G) =
∑
G

A(G) ; A(G) ∼ N−!(G)

!(G) = 3 +
3

2
V (G) + B(G)− F (G)

V = #{vertices}, B = #{broken edges}, F = #{faces}
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Irreducible tensors – 5-index tensors

Unbroken Broken Doubly-broken

Map G decomposes into up to 945E(G) stranded graphs G:#

"

 

!

A(G) =
∑
G

A(G) ; A(G) ∼ N−!(G)

!(G) = 5 + 5V (G) + B1(G) + 2B2(G)− F (G)

B1 = #{broken edges}, B2 = #{doubly − broken edges}
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Main theorems

ZPPP (–;N) =

∫
d—PPP exp

(
–

6N5

)
FPPP (–;N) =

6

N5
–@– lnZPPP (–;N)

�

�

�

�
Theorem 1 (SC, Harribey '21) In the sense of formal power series:

FPPP (–;N) =
∑
!∈N

N−!F
(!)
PPP (–)

#

"

 

!

Theorem 2 (SC, Harribey '21) For su�ciently small –, F
(0)
PPP (–) is the unique

continuous solution of the polynomial equation

1− X +mPPP–
2X6 = 0

such that F
(0)
PPP (0) = 1, and where mPPP is a model-speci�c real constant.

Example. For the symmetric traceless and antisymmetric reps, mPPP =
(

1
5!

)4
.
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Main difficulties

�� ��Natural conjecture: For any stranded graph G, !(G) ≥ 0.

× Incorrect ! × Counter-example: chain of "bad double-tadpoles"

I Subclass of graphs with good scaling properties: stranded graphs
containing no melon or double-tadpole subgraphs.

I No global constraint such as Euler's relation available ⇒ analysis of
local combinatorial structure of G.
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Proof strategy

1. Eliminate melon and double-tadpole 2-point functions at the
Feynman map level:

= O
(

1

N

)
= O(1)

This is where the irreducibility assumption plays a crucial role.

2. Obtain G with no melon and no double-tadpole.�� ��Proposition: For any stranded con�guration G of G, !(G) ≥ 0.

Proof. Induction on V = #{vertices}. Conceptually straightforward but
challenging by its complexity.
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Idea of proof – combinatorial moves

Find local combinatorial moves that:

I decrease V ;

I decrease !;

I preserve constraints: connectedness, ∅ melon, ∅ double-tadpole.
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a
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3

2
5

8

6

7

1

2

3

4

5

6

7

8
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2

3

4

5

6

7

8

1

2

3

4

5

6

7
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1

2

3
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y

x

t

za

b

c d

v1 v2

x

y

z

t

x

y

z

t

x

y

z

t
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y

z
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Idea of proof – combinatorial moves

Find local combinatorial moves that:
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S1 S2 S1 S2

G G1 G2

e1 e2
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Idea of proof – combinatorial moves

Find local combinatorial moves that:

I decrease V ;

I decrease !;

I preserve constraints: connectedness, ∅ melon, ∅ double-tadpole.

End graphs

I Ring graphs (V = 0): · · ·

I G with no face of length 1 or 2 ⇒ !(G) > 0.

I Special cases that need to be treated separately.

23/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Idea of proof – combinatorial moves

Find local combinatorial moves that:

I decrease V ;

I decrease !;

I preserve constraints: connectedness, ∅ melon, ∅ double-tadpole.

23/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Idea of proof – boundary graphs

1

2

3

4

−→
@

1

2

3

4
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Idea of proof – boundary graphs

1

2

3

4

−→
@

1

2

3

4
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Idea of proof – boundary graphs

1

2

3

4

−→
@

1

2

3

4

One can recast recursive bounds on ! into bounds on �ip distance

between boundary graphs:

1

2

3

4

1

2

3

4
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1
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−→
cut

−→
glue

24/30



INTRODUCTION O(N) IRREDUCIBLE TENSORS LARGE N LIMIT LEADING ORDER

Main theorems
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�

�

�
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N−!F
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PPP (–)

#
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!
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(0)
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Melonic dominance

�� ��Proposition: G is leading order ⇔ G is melonic.

→

Proof. Cauchy-Schwarz inequalities on maps for which we do not already
have strict bounds e.g.

A
(

S

)2

≤ A
(

S S

)
︸ ︷︷ ︸

bounded

A
( )

︸ ︷︷ ︸
subleading
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S

)2

︸ ︷︷ ︸
subleading

≤ A
(

S S

)
︸ ︷︷ ︸

bounded

A
( )

︸ ︷︷ ︸
subleading
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Schwinger–Dyson equation

Hallmark of melonic limit: the 2-point function veri�es a closed SDE

K

K

K

K

K

K

+=K

⇒ F
(0)
PPP is a solution of the polynomial equation

1− X +mPPP–
2X6 = 0
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Main theorems

ZPPP (–;N) =

∫
d—PPP exp

(
–

6N5

)
FPPP (–;N) =

6

N5
–@– lnZPPP (–;N)

�

�

�

�
Theorem 1 (SC, Harribey '21) In the sense of formal power series:

X FPPP (–;N) =
∑
!∈N

N−!F
(!)
PPP (–)

#

"

 

!

Theorem 2 (SC, Harribey '21) For su�ciently small –, F
(0)
PPP (–) is the unique

continuous solution of the polynomial equation

X 1− X +mPPP–
2X6 = 0

such that F
(0)
PPP (0) = 1, and where mPPP is a model-speci�c real constant.

Example. For the symmetric traceless and antisymmetric reps, mPPP =
(

1
5!

)4
.
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Conclusion and outlook

Large N limit of p-index irreducible random tensors with p = 5:

Complete graph interaction + O(N) symmetry ⇒ melonic limit.

I In contrast to the matrix case, the irreducibility condition is essential.

I Other interactions, other symmetry groups (e.g. Sp(N)), as well as
fermionic tensors can be analyzed with the same method.

I Subleading orders can in principle be characterized as well.

Open questions:

I Generalization to arbitrary (prime) p?

I Useful applications to strongly-coupled QFT?

I Towards a general theory of random tensors?
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