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1 — Motivations



The Harish-Chandra-ltzykson-Zuber (HCIZ) integral

e U:NxN unitary matrix

1N (A, B; t) — / dU BtTr[AUBUT] « dU : Haar measure

U(N)
o A, B: N x N matrices (self-adjoint)

- Study random matrix models whose measure is invariant upon conjugation by unitary
matrices [=unitarily invariant], apart from a term of the form exp(A? BY)

- 2-matrix models, models with external source, Kontsevitch-like models, etc...

- Properties of unitarily invariant matrix-valued functions through Fourier transform...

- also quantum physics, optimization/sampling, data analysis, and so on...see arxiv...

Through graph expansion:
- Generating function for monotone Hurwitz numbers (enumerative geometry)...

- A, Bgeneric of rank N + large N limit: identify the class of planar graphs...
- A of small rank, B generic of rank N + large N limit: derive some of the key results of

free-probability, which describes the distribution of random matrices in the limit of
infinite size... 1



Generalization: the tensor HCIZ integral

With Benoit Collins and Razvan Gurau in: 2010.13661 & 2201.12778.

Generalization adapted to “colored” random tensor models, whose distribution is
invariant upon conjugation by tensor products of unitary matrices [LU-invariant].

Ip,n(4,B;t) = / dU] AU
U(N)P

U=U,®---Up
« U, : N x N unitary matrix
. [dU] : product of D Haar measures

o A, B:tensors with D inputs and D outputs, each of size N

Generalization of the points of the previous slide for colored tensor models...?

- Today: large N limit and graph expansion (the last 2 points), and maybe some
guantum physics.



2 — First asymptotics and graphs



Labeled (D+1)-colored graphs (“bubbles”..)

2 [3] Labeled (D+1)-

9 colored graph
2]
1]

e Black and white vertices
* Edges colored from 1 to D+1, only link black and white vertices
» Edges of color D+1 are labeled from 1 to n (= thick edges)




Labeled (D+1)-colored graphs (“bubbles”..)

2 (| [3]

1 2

1]

Labeled (D+1)-

< > D permutations:

colored graph d=(01,...,0p) € 57?

(

Thick edge has color D+1

]

< > 0.(1) =
7]
Here: 01 = (123) & o092 = (12)(3)

- Also use the notation & to denote the labeled graph



Labeled (D+1)-colored graphs (“bubbles”..)

3
2] 3] Labeled (D+1)- S D permutations:
5 colored graph d=(01,...,0p) € 57?

: 2l 0
: : < > 0.(i) =
1] | 1]

Here: 01 = (123) & o092 = (12)(3)

Thick edge has color D+1

- Also use the notation & to denote the labeled graph

Trace-invariants

polynomial obtained by taking n labeled copies of the tensor A and summing
Trg(A)

the indices according to the permutations o1,...,0p
AW) N
(2) (4)
1 D ZAkl,...,kD ;p,lg,...,lDAp,kzé,...k:’D N

A®)



First asymptotics

 Moments (easy).
D —1 D
/ [dU)(Tr(AUBUT))" = N—2nP Z Trz(A) Trz—1(B) N2e=1 #0e7 ) T M[oer, (1 4+ O(1/N?))
c=1
#(v) : number of cycles of the permutation

M[v] :a signed product of Catalan numbers



First asymptotics

* Moments (easy).

D
/ [dU)(Te(AUBU))" = N~ 2”DZT1"U ) Trz—1 (B) NZeo #(oer) [ [ Mloer (1 + O(1/N?))

c=1

#(v) : number of cycles of the permutation

M[v] :a signed product of Catalan numbers

e Cumulants (hard). Uses Weingarten calculus and a good dose of combinatorics.

With the notation: log/[dU] etTr(AUBUT) _ Z _T: C, (Tr[AUBUT])
n!

n>1

C, (Te(AUBUT)) = N72"P Y " Trz(A) Tre—1(B) N #oere )= 2<CC<f =Y 17, 7(1 4+ O(N™2))
&7 A

Number of transitivity classes of
the group generated by all
permutations

A generalization of connected genus 0
monotone double Hurwitz numbers
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Labeled (D+2)-colored graphs (Feynman graphs)




Labeled (D+2)-colored graphs (Feynman graphs)

ool N — - —
- - —[1—] - = Also use the notation 7, T to denote the

_______ labeled (D+2)-colored graph

Dashed edges have color 0

Then in the formula:

C,, (Tr(AUBU)) = N~ Q"DZTI'U ) Tryo1 (B) NZemi #(oee )=2(ce(@7) 1) ¢15 2(1 + O(N~2))

> cc(d, T) : number of connected components of the graph &, 7

> Z #(o.1 1) = Fy(@,7) :total number of bicolored cycles of color Oc (some of the faces)

5



Feynman graphs in D=1

For D=1 (matrices), the labeled (D+2)-colored graphs
(Feynman graphs) are in bijection with non-
necessarily connected labeled bipartite maps

F, : number of faces



3 —Large N limits



Scaling ansatz for the trace-invariants

Cp (Tr(AUBUT)) = N7 " Trz(A) Tre— @NFO(E’F>_2(CC<E’F)_1) £, 7(1 + o(1))

Depends on size
N of the tensors

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:



Scaling ansatz for the trace-invariants

i

Cy, (Tr(AUBUT)) = N72"P % ;63@1) Tr=—: (B/\)NFO(E’F)Q(CC(E’F)U £, 7(1 + o(1))

Depends on size
N of the tensors

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:

D=1| Tro(A)= ] Tr(A'*"e™D) vy o NOFOT 1, (a)

v cycle of o

...for a matrix of rank N” whose non-vanishing

. . Rescaled trace-invariant
eigenvalues have the same orderin N

e.g.:
* Normalized identity: Tr, (id/N) = N#(o)—n

»  Wishart random matrix:  (Tro (W/N?))y ~n_soe N7 077 Z Rl
TeNC(n)

The linear part in n does not play any role in the asymptotics and we leave it aside



Scaling ansatz for the trace-invariants

Cpn (Tt(AUBUT)) = N~ 2nD§ ;/A Tr /NFO(E ) =2ec@N=D £17, 7](1 4 o(1))

U=U;® --®Up l_, Depends on size

N of the tensors

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:
Trz(A) ~N oo N3al@) trz(a)

Rescaled trace-invariant

The scaling s4 (&) a priori depends on the properties of the graph o...

—

We choose: sa @42# oc) +€a Z #(0e,0..") = Ba Fpy1(8) + ea F(3PTT)
c1<ce
2] 3]
2
1 2]
q:, Thick edges have color D+1
1 o



Scaling ansatz for the trace-invariants

T

Cy, (Tr(AUBUT)) = N72"P % ;6U(A) Tr-- 1(3/\)NF0(5’F)2(CC(E’F)1> £, 7(1 + o(1))

o,T

Depends on size
N of the tensors

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:

Trs(A) ~Nooo N34 trz(a)

Rescaled trace-invariant

The scaling s4 (&) a priori depends on the properties of the graph o...

—

We choose: sa zﬁAZ# oc) +€a Z #(0e,0..") = Ba Fpy1(8) + ea F(3PTT)

c1<co

—

N.B. Other well-motivated choice: s4(&) = B4 Fpi1(5) + €4 cc(P1)

N.N.B. These assumptions are also motivated by applications to quantum information,
see the last part.



Moments

With these assumptions and for any €4,€gp, 84,6 > 0:

/ [dU] (Tr[AUBUT))" ~n oo (Tr( A]gf( B))”

U=U1®---®Up

Only dominant graph is the one with n connected components (all sigmas and taus
are the identity):

Qi
I
ol
!
I
ol



Large N limits of the cumulants - 1

log/[dU] tTr(AUBUT) Z '@r AUB@

n>1

10



Large N limits of the cumulants - 1

2201.12778
Symmetric Microscopic A
Trg(A) ~ NOFD41(8)+eF(EPT) trz(a), Trz(A) ~ trz(a),
Teg(B) ~ NOFori@+F@E) () Ty (B) ~ NOFpr@+F@E7T) 0y

€4 €4

o ' > :
S-VI 1/D 1 S VI 1/D 1 B

I, IV, V, VI: same dominant graphs for both

10



Large N limits of the cumulants - 2

For both scaling ansatze:

Not expected to
be realizable

Realizable

Should think that
B=T®T
is here, where T

random tensor

Tensor products of generic
rank N (random) matrices

B=B®...% Bp

11



Large N limits of the cumulants - 2

For both scaling ansatze:

Not expected to
be realizable

Realizable

Should think that
B=T®T
is here, where T

random tensor

Tensor products of generic
rank N (random) matrices

B=B®...% Bp

€ Rather interesting but
T should not be realizable

1 /

Not interesting and
should not be realizable

D=1 *\Trlwalz
one.graph

RICH
] /

~

Exponentially many
non-interesting graphs

N Y

Super-exponentially many
non-interesting graphs

o

11



Large N limits of the cumulants in D=1

Symmetric
Try (A) ~ NO#) tr (a),

Try(B) ~ NP#) tr (b),

not-realizable
{ ] —

0  onegraph 1 B

Bipartite planar maps

- 2d random geometry

Microscopic A

Try(A) ~ try(a)
Tr,(B) ~ N#(9) 1 (b)),

not-realizable
L J —

0 one graph 1 B

non-crossing partitions

- The values of the cumulants of the
HCIZ integral at this point allow defining
free-cumulants for random matrices
and deriving their additivity for sums of

independent random matrices
12



Large N limits of the cumulants - 3

Symmetric Microscopic A

Richer generalization
of planar maps
(NOT melonic)

partitions
1 1
D—1 +._ D—1 .

Richer generalization
of non-crossing

oo | S I
S-11 I1
o ! B | T~
1
Generalization of 6 Generalization of non- 1 6
planar maps crossing partitions

(NOT melonic)

13



Graph invariants

DD-1 _ piz >0

Degree: w(d) = Dcc(d)+n 5 >

* For D=1, automatically O

* For D=2, twice the genus of the graph

* For D>2, graphs of vanishing degree are well-known (melonic), and have a tree-like
structure.

Large N limits of “colored” random tensor models usually selects melonic graphs

New invariants:

N
BN
N}
o
v
N
b
N
o

14



Graph invariants

DD —1
Degree: w(d) = Dcc(d)+n ( 5 ) _ F(&)>0
* For D=1, automatically O
* For D=2, twice the genus of the graph

* For D>2, graphs of vanishing degree are well-known (melonic), and have a tree-like
structure.

Large N limits of “colored” random tensor models usually selects melonic graphs

s D s D
T —> T
New invariants: 1AlB@ (0¢, Te) lAlBD
D
Delta: A(&,7) =n(D — 1) + cc(d,7) — » _cc(Fe,72) > 0
c=1
D
Box: (&, 7) = 2cc(3, 7) — cc(F) — cc(7) — 2 Y cc(Fe, 7o) + Fp41(5) + Fpsa(F) > 0
c=1

Both are automatically O for D=1, which is the matrix case (usual HCIZ integral)
14



Large N limits of the cumulants - 4

—C,

Richer generalization
of planar maps
(NOT melonic)

Symmetric
li L
1m
€ N—o0 N2
1 ‘
1
D—1 ¢
TS
\
/ 1 B

Generalization of planar maps (NOT melonic)

1
lim —C

N — o0 N2 "

N
ND(D-1)(%—¢)

(NTr [AUBUT]) =

Tr [AUBUT}) =

2.

- =

T
w(d)=w(T)=0
L(a,7)=0
Ve, g(oe,me)=0

trg(a) tr7—_»—1(b) f[57 7_-)]

trz(a) trz-1(b) f[0, 7]

2.

g7
A(G,7)=0

Ve, g(oc,me)=0 15



Large N limits of the cumulants - 4

Symmetric
: 1 -
. A}gnoo an (NTr [AUBUT]) = Z trz(a) trz-1(b) f[&, 7]
w(F)=w(7)=0
I Richer generalization 0(&,7)=0
of planar maps Ve, g(oe,m)=0

(NOT melonic)

T fsd
: In both cases, planar graphs are

S-I1 ’
recovered for the matrix case D=1

‘/\ (i.e. the usual HCIZ integral)
1 g

Generalization of planar maps (NOT melonic)

1 N
1 _ T — . o —- =
s On (ND(D—l)(%—e) Tr [AUBU }) 2 ; trz(a) trz—1(b) f[o,7]
A(F,7)=0

Ve, g(oe,me)=0 15



Large N limits of the cumulants - 5

Symmetric

Regime S-ll (vanishing Delta, etc):

Regime S-I (vanishing Box, etc): ...

dominant graphs should be in the universality
class of trees (numerical estimate of counting
exponent by Guillaume Chapuy)

unknown. o _ _ _ ____
a8
34 35
)
24___ .28
Au_ 1

16



Preliminary conclusions

Study of the large N asymptotics of the cumulants of the tensor HCIZ integral reveals rich
“phase-diagram”’.

Application to (random) geometry in dimension >2 for symmetric scalings:
Interesting combinatorics in two regions, with two new generalizations of planar graphs
for (D+2)-colored graphs (known to be dual to (D+1)-dimensional triangulations).

Universality class of trees expected for one region, unknown for the “triple-point”’, where
the richest combinatorics is found.

Application to free-probability for random tensors for microscopic A:

One may use these results to define a generalization of free-cumulants for random
tensors, and prove their additivity for sums of independent tensors. This is the property
needed in free-probability to compute the asymptotic spectrum of the sum of two
independent random matrices, a consequence of the asymptotic freeness (Voiculescu).

Application to quantum information for microscopic A (randomized measurements):
- Next slides

17



4 — Application to the detection of entanglement



The tensor HCIZ integral and randomized measurements

D-partite quantum system = tensor product of Hilbert spaces H=H; Q@ --- @ Hp

dim(H.) = N
State B (density matrix) and observable A = operators on H ... tensors : A :
D=3

Entanglement > ‘how far’ is B from a convex sum of tensor products of the form:

K K
B=Y pip’®..0p) sz:l pi € My, (C)  pi,p) >0
=1 =1 - Separable state

18



The tensor HCIZ integral and randomized measurements

D-partite quantum system = tensor product of Hilbert spaces H=H; Q@ --- @ Hp

dim(H.) = N
State B (density matrix) and observable A = operators on H ... tensors : A :
D=3

Entanglement > ‘how far’ is B from a convex sum of tensor products of the form:

K K
B=Y pip’®..0p) Zpizl p{ € My, (C) pipl >0
=1 =1 - Separable state

Expectation value of observable A on state B (A)p = Tr(AB)

Randomized measurements

- distribution (A ) g for Ay = (U1 ® ... ® Up) AU ®...® U};), U.c U(N) Haar

- Accessible experimentally (and solves experimental issue of alighment of reference
frames). Known that for small D, N, the knowledge of the first moments allows
detecting even weak forms of entanglement.

— The previous slides concern the large N moments and cumulants of this distribution! 18



Ansatz and interpretation of results

* Take:A=A; ®...® Ap (local observable), where A_is of small rank,
e.g. a projectoron astate A, = |V,.)(V¥,|

- Ais microscopic  Trz(A) ~ trz(a),

e Assume that B is unknown but that:

/-\

52#00+ez#% ol) = 8 Fpi (&) + ¢ F(@0)

c1<co

The parameters of the scaling are chosen to represent:

- N®: common “local rank” of the density matrix B (rank of B_ if B is a tensor product
B=B®...®Bp)
- IN “: how much exchange there is between the different subsystems (pairwise)

At this preliminary stage, it’s not so clear what properties of the state B these parameters
encode, but €, 3 should respectively have something to do with how entangled or mixed

the state B is...

19



Ansatz and interpretation of results

- N?: common “local rank”’ of the density matrix B (rank of B_ if B is a tensor product
B=B®...2 Bp)
- N “: how much exchange there is between the different subsystems (pairwise)

€ A

1 One graph
D—T1 ¢t

Some maximally e Theoretically possible to recognize

entangled (pure) 1/D if an unknown B has 1
states such as

A

N

Maximally mixed
state (the identity)

Axis 8 = 0: contains

pure states B = | W) <\I" Axis € = 0 : product states and

separable states satisfying
certain assumptions

20



Thank you for your attention!



