Large N limits of the tensor HCIZ integral

Luca Lionni Universität Heidelberg - Germany

Virtual Tensor Journal Club – 20/04/22

Joint work with Benoit Collins and Razvan Gurau

1 – Motivations

2 – First asymptotics and graphs

3 – Large N limits

4 – Application to the detection of entanglement

1 – Motivations

The Harish-Chandra–Itzykson–Zuber (HCIZ) integral

$$I_N(A,B;t) = \int_{U(N)} dU \ e^{t \operatorname{Tr}[AUBU^{\dagger}]}$$

- U : N x N unitary matrix
 dU : Haar measure
 A, B : N x N matrices (self-adjoint)
- Study random matrix models whose measure is invariant upon conjugation by unitary matrices [=unitarily invariant], apart from a term of the form $exp(A^pB^q)$
- \rightarrow 2-matrix models, models with external source, Kontsevitch-like models, etc...
- Properties of unitarily invariant matrix-valued functions through Fourier transform...
- also quantum physics, optimization/sampling, data analysis, and so on...see arxiv...

Through graph expansion:

- Generating function for monotone Hurwitz numbers (enumerative geometry)...
- A, B generic of rank N + large N limit: identify the class of planar graphs...
- A of small rank, B generic of rank N + large N limit: derive some of the key results of free-probability, which describes the distribution of random matrices in the limit of infinite size...

Generalization: the tensor HCIZ integral

With Benoit Collins and Razvan Gurau in: 2010.13661 & 2201.12778.

Generalization adapted to "colored" random tensor models, whose distribution is invariant upon conjugation by tensor products of unitary matrices [LU-invariant].

$$I_{D,N}(A,B;t) = \int_{U(N)^D} [dU] \ e^{t \operatorname{Tr}[AUBU^{\dagger}]}$$

- $U = U_1 \otimes \cdots \otimes U_D$
- $U_c: \mathit{N} imes \mathit{N}$ unitary matrix
- $\left[dU
 ight]$: product of D Haar measures
- A, B : tensors with D inputs and D outputs, each of size N

Generalization of the points of the previous slide for colored tensor models...?

 \rightarrow Today: large N limit and graph expansion (the last 2 points), and maybe some quantum physics.

2 – First asymptotics and graphs

Labeled (D+1)-colored graphs ("bubbles"...)

D=2

- Black and white vertices
- Edges colored from 1 to D+1, only link black and white vertices
- Edges of color D+1 are labeled from 1 to n (\rightarrow thick edges)

Labeled (D+1)-colored graphs ("bubbles"...)

Thick edge has color D+1

ightarrow Also use the notation $\vec{\sigma}$ to denote the labeled graph

Labeled (D+1)-colored graphs ("bubbles"...)

Thick edge has color D+1

${\bf \rightarrow}$ Also use the notation $\vec{\sigma}$ to denote the labeled graph

Trace-invariants

 $\operatorname{Tr}_{\vec{\sigma}}(A)$ polynomial obtained by taking *n* labeled copies of the tensor *A* and summing the indices according to the permutations $\sigma_1, \ldots, \sigma_D$

$$1 \xrightarrow{P} A^{(j)} \xrightarrow{P} A^{(i)} \xrightarrow{P} A^{(i)}_{k_1, \dots, k_D \ ; \ p, l_2, \dots, l_D} A^{(j)}_{p, k'_2, \dots, k'_D \ ; \ l'_1, \dots, l'_D}$$

First asymptotics

$$U = U_1 \otimes \cdots \otimes U_D$$

• Moments (easy).

$$\int [dU] (\operatorname{Tr}(AUBU^{\dagger}))^{n} = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{\sum_{c=1}^{D} \#(\sigma_{c}\tau_{c}^{-1})} \prod_{c=1}^{D} \mathsf{M}[\sigma_{c}\tau_{c}^{-1}](1 + O(1/N^{2}))$$

#(
u) : number of cycles of the permutation

 $M[\nu]$: a signed product of Catalan numbers

First asymptotics

$$U = U_1 \otimes \cdots \otimes U_D$$

• Moments (easy).

$$\int [dU] (\operatorname{Tr}(AUBU^{\dagger}))^{n} = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{\sum_{c=1}^{D} \#(\sigma_{c}\tau_{c}^{-1})} \prod_{c=1}^{D} \mathsf{M}[\sigma_{c}\tau_{c}^{-1}](1 + O(1/N^{2}))$$

 $\#(\nu)$: number of cycles of the permutation $M[\nu]$: a signed product of Catalan numbers

• Cumulants (hard). Uses Weingarten calculus and a good dose of combinatorics.

With the notation:

$$\log \int [dU] e^{t \operatorname{Tr}(AUBU^{\dagger})} = \sum_{n \ge 1} \frac{t^n}{n!} C_n \left(\operatorname{Tr}[AUBU^{\dagger}] \right)$$

$$C_{n}\left(\operatorname{Tr}(AUBU^{\dagger})\right) = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{\sum_{c=1}^{D} \#(\sigma_{c}\tau_{c}^{-1}) - 2(\operatorname{cc}(\vec{\sigma},\vec{\tau}) - 1)} f[\vec{\sigma},\vec{\tau}](1 + O(N^{-2}))$$
Number of transitivity classes of the group generated by all permutations
A generalization of connected genus 0 monotone double Hurwitz numbers

Labeled (D+2)-colored graphs (Feynman graphs)

Labeled (D+2)-colored graphs (Feynman graphs)

Then in the formula:

 $C_n\left(\text{Tr}(AUBU^{\dagger})\right) = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \text{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{\sum_{c=1}^{D} \#(\sigma_c \tau_c^{-1}) - 2(\operatorname{cc}(\vec{\sigma},\vec{\tau}) - 1)} f[\vec{\sigma},\vec{\tau}](1 + O(N^{-2}))$

→ $cc(\vec{\sigma}, \vec{\tau})$: number of connected components of the graph $\vec{\sigma}, \vec{\tau}$

 $\Rightarrow \sum_{c=1}^{D} \#(\sigma_c \tau_c^{-1}) = F_0(\vec{\sigma}, \vec{\tau}) : \text{total number of bicolored cycles of color 0c (some of the faces)}$

Feynman graphs in D=1

 F_0 : number of faces

3 – Large *N* limits

$$C_n \left(\operatorname{Tr}(AUBU^{\dagger}) \right) = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{F_0(\vec{\sigma},\vec{\tau}) - 2(\operatorname{cc}(\vec{\sigma},\vec{\tau}) - 1)} f[\vec{\sigma},\vec{\tau}] (1 + o(1))$$

$$U = U_1 \otimes \cdots \otimes U_D$$
Depends on size
$$N \text{ of the tensors}$$

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:

$$C_n\left(\operatorname{Tr}(AUBU^{\dagger})\right) = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{F_0(\vec{\sigma},\vec{\tau}) - 2(\operatorname{cc}(\vec{\sigma},\vec{\tau}) - 1)} f[\vec{\sigma},\vec{\tau}](1 + o(1))$$

$$\square Depends \text{ on size}$$

$$N \text{ of the tensors}$$

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:

D=1
$$\operatorname{Tr}_{\sigma}(A) = \prod_{\gamma \text{ cycle of } \sigma} \operatorname{Tr}(A^{\operatorname{length}(\gamma)}) \sim_{N \to \infty} N^{\beta \#(\sigma) + \delta n} \operatorname{tr}_{\sigma}(a)$$

... for a matrix of rank N^{β} , whose non-vanishing eigenvalues have the same order in N

Rescaled trace-invariant

e.g.:

- Normalized identity: $\operatorname{Tr}_{\sigma}(\operatorname{id}/N) = N^{\#(\sigma)-n}$
- Wishart random matrix: $\langle \operatorname{Tr}_{\sigma}(W/N^2) \rangle_W \sim_{N \to \infty} N^{\#(\sigma)-n} \sum_{\pi \in \operatorname{NC}(n)} c^{\#(\pi)}$

The linear part in *n* does not play any role in the asymptotics and we leave it aside

$$C_n \left(\operatorname{Tr}(AUBU^{\dagger}) \right) = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{F_0(\vec{\sigma},\vec{\tau}) - 2(\operatorname{cc}(\vec{\sigma},\vec{\tau}) - 1)} f[\vec{\sigma},\vec{\tau}] (1 + o(1))$$

$$U = U_1 \otimes \cdots \otimes U_D$$
Depends on size
$$N \text{ of the tensors}$$

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:

$$\operatorname{Tr}_{\vec{\sigma}}(A) \sim_{N \to \infty} N^{s_A(\vec{\sigma})} \operatorname{tr}_{\vec{\sigma}}(a)$$

Rescaled trace-invariant

The scaling $s_A(\vec{\sigma})$ a priori depends on the properties of the graph $\vec{\sigma}$...

$$C_n \left(\operatorname{Tr}(AUBU^{\dagger}) \right) = N^{-2nD} \sum_{\vec{\sigma},\vec{\tau}} \operatorname{Tr}_{\vec{\sigma}}(A) \operatorname{Tr}_{\vec{\tau}^{-1}}(B) N^{F_0(\vec{\sigma},\vec{\tau}) - 2(\operatorname{cc}(\vec{\sigma},\vec{\tau}) - 1)} f[\vec{\sigma},\vec{\tau}] (1 + o(1))$$

$$U = U_1 \otimes \cdots \otimes U_D$$
Depends on size
$$N \text{ of the tensors}$$

We have to make an ansatz regarding the asymptotic scaling in N of the trace-invariant:

$$\operatorname{Tr}_{\vec{\sigma}}(A) \sim_{N \to \infty} N^{s_A(\vec{\sigma})} \operatorname{tr}_{\vec{\sigma}}(a)$$

Rescaled trace-invariant

The scaling $s_A(\vec{\sigma})$ a priori depends on the properties of the graph $\vec{\sigma}$...

We choose:
$$s_A(\vec{\sigma}) = \beta_A \sum_{c=1}^{D} \#(\sigma_c) + \epsilon_A \sum_{c_1 < c_2} \#(\sigma_{c_1} \sigma_{c_2}^{-1}) = \beta_A F_{D+1}(\vec{\sigma}) + \epsilon_A F(\vec{\sigma}^{\widehat{D+1}})$$

N.B. Other well-motivated choice:
$$s_A(ec{\sigma}) = eta_A \; F_{D+1}(ec{\sigma}) + \epsilon_A \; \mathsf{cc}(ec{\sigma}^{\widehat{D+1}})$$

N.N.B. These assumptions are also motivated by applications to quantum information, see the last part.

Moments

With these assumptions and for any $\epsilon_A, \epsilon_B, \beta_A, \beta_B \ge 0$:

$$\int [dU] \left(\operatorname{Tr}[AUBU^{\dagger}] \right)^{n} \sim_{N \to \infty} \left(\frac{\operatorname{Tr}(A)\operatorname{Tr}(B)}{N^{D}} \right)^{n}$$
$$U = U_{1} \otimes \cdots \otimes U_{D}$$

Only dominant graph is the one with *n* connected components (all sigmas and taus are the identity):

$$\log \int [dU] e^{t \operatorname{Tr}(AUBU^{\dagger})} = \sum_{n \ge 1} \frac{t^n}{n!} C_n \left(\operatorname{Tr}[AUBU^{\dagger}] \right)$$

2201.12778

For both scaling ansätze:

Tensor products of generic rank N (random) matrices $B = B_1 \otimes \ldots \otimes B_D$

Symmetric

$$\operatorname{Tr}_{\sigma}(A) \sim N^{\beta \#(\sigma)} \operatorname{tr}_{\sigma}(a),$$

 $\operatorname{Tr}_{\sigma}(B) \sim N^{\beta \#(\sigma)} \operatorname{tr}_{\sigma}(b),$

 \rightarrow 2d random geometry

Microscopic A

$$\operatorname{Tr}_{\sigma}(A) \sim \operatorname{tr}_{\sigma}(a)$$

 $\operatorname{Tr}_{\sigma}(B) \sim N^{\beta \#(\sigma)} \operatorname{tr}_{\sigma}(b),$

non-crossing partitions

 \rightarrow The values of the cumulants of the HCIZ integral at this point allow defining free-cumulants for random matrices and deriving their additivity for sums of independent random matrices

Graph invariants

Degree:
$$\omega(\vec{\sigma}) = D \operatorname{cc}(\vec{\sigma}) + n \frac{D(D-1)}{2} - F(\vec{\sigma}) \ge 0$$

- For D=1, automatically 0
- For D=2, twice the genus of the graph
- For D>2, graphs of vanishing degree are well-known (melonic), and have a tree-like structure.

Large *N* limits of "colored" random tensor models usually selects melonic graphs

New invariants:

Graph invariants

Degree:
$$\omega(\vec{\sigma}) = D \operatorname{cc}(\vec{\sigma}) + n \frac{D(D-1)}{2} - F(\vec{\sigma}) \ge 0$$

- For D=1, automatically 0
- For D=2, twice the genus of the graph
- For D>2, graphs of vanishing degree are well-known (melonic), and have a tree-like structure.

Large N limits of "colored" random tensor models usually selects melonic graphs

New invariants:

$$\underbrace{Delta}: \quad \Delta(\vec{\sigma}, \vec{\tau}) = n(D-1) + \operatorname{cc}(\vec{\sigma}, \vec{\tau}) - \sum_{c=1}^{D} \operatorname{cc}(\vec{\sigma}_{c}, \vec{\tau}_{c}) \ge 0$$
Box:
$$\Box(\vec{\sigma}, \vec{\tau}) = 2\operatorname{cc}(\vec{\sigma}, \vec{\tau}) - \operatorname{cc}(\vec{\sigma}) - \operatorname{cc}(\vec{\tau}) - 2\sum_{c=1}^{D} \operatorname{cc}(\vec{\sigma}_{c}, \vec{\tau}_{c}) + F_{D+1}(\vec{\sigma}) + F_{D+1}(\vec{\tau}) \ge 0$$

Both are automatically 0 for D=1, which is the matrix case (usual HCIZ integral)

Generalization of planar maps (NOT melonic)

$$\lim_{N \to \infty} \frac{1}{N^2} C_n \left(\frac{N}{N^{D(D-1)(\frac{1}{D} - \epsilon)}} \operatorname{Tr} \left[A U B U^{\dagger} \right] \right) = \sum_{\substack{\vec{\sigma}, \vec{\tau} \\ \Delta(\vec{\sigma}, \vec{\tau}) = 0 \\ \forall c, \ g(\sigma_c, \tau_c) = 0}} \operatorname{tr}_{\vec{\sigma}}(a) \operatorname{tr}_{\vec{\tau}^{-1}}(b) \ f[\vec{\sigma}, \vec{\tau}]$$
15

Generalization of planar maps (NOT melonic)

$$\lim_{N \to \infty} \frac{1}{N^2} C_n \left(\frac{N}{N^{D(D-1)(\frac{1}{D} - \epsilon)}} \operatorname{Tr} \left[AUBU^{\dagger} \right] \right) = \sum_{\substack{\vec{\sigma}, \vec{\tau} \\ \Delta(\vec{\sigma}, \vec{\tau}) = 0 \\ \forall c, \ g(\sigma_c, \tau_c) = 0}} \operatorname{tr}_{\vec{\sigma}}(a) \ \operatorname{tr}_{\vec{\tau}^{-1}}(b) \ f[\vec{\sigma}, \vec{\tau}]$$
15

Symmetric

Regime S-II (vanishing Delta, etc): dominant graphs should be in the universality class of trees (numerical estimate of counting exponent by Guillaume Chapuy)

Regime S-I (vanishing Box, etc): ... unknown.

Preliminary conclusions

Study of the large *N* asymptotics of the cumulants of the tensor HCIZ integral reveals rich "phase-diagram".

Application to (random) geometry in dimension >2 for symmetric scalings:

Interesting combinatorics in two regions, with two new generalizations of planar graphs for (D+2)-colored graphs (known to be dual to (D+1)-dimensional triangulations). Universality class of trees expected for one region, unknown for the "triple-point", where the richest combinatorics is found.

Application to free-probability for random tensors for microscopic A:

One may use these results to define a generalization of free-cumulants for random tensors, and prove their additivity for sums of independent tensors. This is the property needed in free-probability to compute the asymptotic spectrum of the sum of two independent random matrices, a consequence of the asymptotic freeness (Voiculescu).

Application to quantum information for microscopic A (randomized measurements): → Next slides

4 – Application to the detection of entanglement

The tensor HCIZ integral and randomized measurements

D-partite quantum system \rightarrow tensor product of Hilbert spaces $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_D$ $\dim(\mathcal{H}_c) = N$

State *B* (density matrix) and observable $A \rightarrow$ operators on \mathcal{H} ... tensors

$$A$$
 $D=3$

Entanglement \rightarrow 'how far' is *B* from a convex sum of tensor products of the form: $B = \sum_{i=1}^{K} p_i \rho_1^{(i)} \otimes \ldots \otimes \rho_D^{(i)} \qquad \sum_{i=1}^{K} p_i = 1 \qquad \rho_c^{(i)} \in \mathcal{M}_{N_c}(\mathbb{C}) \qquad p_i, \rho_c^{(i)} \ge 0$ \rightarrow Separable state

The tensor HCIZ integral and randomized measurements

D-partite quantum system \rightarrow tensor product of Hilbert spaces $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_D$ dim $(\mathcal{H}_c) = N$

State *B* (density matrix) and observable $A \rightarrow$ operators on \mathcal{H} ... tensors

$$A \longrightarrow D=3$$

Entanglement \rightarrow 'how far' is *B* from a convex sum of tensor products of the form: $B = \sum_{i=1}^{K} p_i \rho_1^{(i)} \otimes \ldots \otimes \rho_D^{(i)} \qquad \sum_{i=1}^{K} p_i = 1 \qquad \rho_c^{(i)} \in \mathcal{M}_{N_c}(\mathbb{C}) \qquad p_i, \rho_c^{(i)} \ge 0$ \rightarrow Separable state

Expectation value of observable A on state $B \langle A \rangle_B = \text{Tr}(AB)$

Randomized measurements

- → distribution $\langle A_U \rangle_B$ for $A_U = (U_1 \otimes \ldots \otimes U_D) A (U_1^{\dagger} \otimes \ldots \otimes U_D^{\dagger})$, $U_c \in U(N)$ Haar
- → Accessible experimentally (and solves experimental issue of alignment of reference frames). Known that for small D, N, the knowledge of the first moments allows detecting even weak forms of entanglement.

 \rightarrow The previous slides concern the large N moments and cumulants of this distribution!

Ansatz and interpretation of results

• Take: $A = A_1 \otimes \ldots \otimes A_D$ (local observable), where A_c is of small rank, e.g. a projector on a state $A_c = |\Psi_c\rangle\langle\Psi_c|$

→ A is microscopic $\operatorname{Tr}_{\vec{\sigma}}(A) \sim \operatorname{tr}_{\vec{\sigma}}(a)$,

• Assume that *B* is unknown but that:

$$s_B(\vec{\sigma}) = \beta \sum_{c=1}^{D} \#(\sigma_c) + \epsilon \sum_{c_1 < c_2} \#(\sigma_{c_1} \sigma_{c_2}^{-1}) = \beta F_{D+1}(\vec{\sigma}) + \epsilon F(\vec{\sigma}^{\widehat{D+1}})$$

The parameters of the scaling are chosen to represent:

- N^{β} : common "local rank" of the density matrix B (rank of B_c if B is a tensor product $B = B_1 \otimes \ldots \otimes B_D$)

- N^ϵ : how much exchange there is between the different subsystems (pairwise)

At this preliminary stage, it's not so clear what properties of the state B these parameters encode, but ϵ , β should respectively have something to do with how entangled or mixed the state B is...

Ansatz and interpretation of results

- N^{β} : common "local rank" of the density matrix B (rank of B_c if B is a tensor product $B = B_1 \otimes \ldots \otimes B_D$)

- N^{ϵ} : how much exchange there is between the different subsystems (pairwise)

Thank you for your attention!