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1	–	MoHvaHons	



The	Harish-Chandra–Itzykson–Zuber	(HCIZ)	integral		
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U	:	N	x	N	unitary	matrix	

dU	:	Haar	measure	

A,	B	:	N	x	N	matrices	(self-adjoint)	

-  Study	random	matrix	models	whose	measure	is	invariant	upon	conjugaHon	by	unitary	
matrices	[=unitarily	invariant],	apart	from	a	term	of	the	form		

à	2-matrix	models,	models	with	external	source,	Kontsevitch-like	models,	etc…	

-  ProperHes	of	unitarily	invariant	matrix-valued	funcHons	through	Fourier	transform…	

-  also	quantum	physics,	opHmizaHon/sampling,	data	analysis,	and	so	on…see	arxiv…	

Through	graph	expansion:	
-  GeneraHng	funcHon	for	monotone	Hurwitz	numbers	(enumeraHve	geometry)…	

-  A,	B	generic	of	rank	N	+	large	N	limit:	idenHfy	the	class	of	planar	graphs…	

-  A	of	small	rank,	B	generic	of	rank	N	+	large	N	limit:	derive	some	of	the	key	results	of	
free-probability,	which	describes	the	distribuHon	of	random	matrices	in	the	limit	of	
infinite	size…	

	

•  		

•  		

•  		

IN (A,B; t) =

Z

U(N)
dU etTr[AUBU†]

exp(ApBq
)



GeneralizaHon:	the	tensor	HCIZ	integral	
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ID,N (A,B; t) =

Z

U(N)D
[dU ] etTr[AUBU†]

U = U1 ⌦ · · ·⌦ UD

Uc :	N	x	N	unitary	matrix	

[dU ] :	product	of	D	Haar	measures	

A,	B	:	tensors	with	D	inputs	and	D	outputs,	each	of	size	N	

•  		

•  		

•  		

•  		

GeneralizaHon	adapted	to	‘’colored’’	random	tensor	models,	whose	distribuHon	is	
invariant	upon	conjugaHon	by	tensor	products	of	unitary	matrices	[LU-invariant].	

GeneralizaHon	of	the	points	of	the	previous	slide	for	colored	tensor	models…?	
	
à	Today:	large	N	limit	and	graph	expansion	(the	last	2	points),	and	maybe	some	
quantum	physics.	

With	Benoit	Collins	and	Razvan	Gurau	in:	2010.13661	&	2201.12778.	



2	–	First	asymptoHcs	and	graphs	



Labeled	(D+1)-colored	graphs	(‘’bubbles’’…)	

3	

[1]

[2]

[3]

1
2

2 Labeled	(D+1)-
colored	graph	

•  Black	and	white	verHces	
•  Edges	colored	from	1	to	D+1,	only	link	black	and	white	verHces	
•  Edges	of	color	D+1	are	labeled	from	1	to	n	(à	thick	edges)	

D=2	



Labeled	(D+1)-colored	graphs	(‘’bubbles’’…)	
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[1]

[2]

[3]

1
2

2

[j]

[i]

c �c(i) = j

D	permutaHons:	
~� = (�1, . . . ,�D) 2 SD

n

à	Also	use	the	notaHon						to	denote	the	labeled	graph 	 		~�

Labeled	(D+1)-
colored	graph	

Here:		�1 = (123) & �2 = (12)(3)

Thick	edge	has	color	D+1	



Labeled	(D+1)-colored	graphs	(‘’bubbles’’…)	
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[1]

[2]

[3]

1
2

2 D	permutaHons:	
~� = (�1, . . . ,�D) 2 SD

n

à	Also	use	the	notaHon						to	denote	the	labeled	graph 	 		~�

Labeled	(D+1)-
colored	graph	

Trace-invariants		

�1, . . . ,�D

polynomial	obtained	by	taking	n	labeled	copies	of	the	tensor	A	and	summing	
the	indices	according	to	the	permutaHons		
	

Tr~�(A)

NX

p=1

A(i)
k1,...,kD ; p,l2,...,lD

A(j)
p,k0

2,...k
0
D ; l01,...,l

0
D

A(i)

A(j)

1

Thick	edge	has	color	D+1	

[j]

[i]

c �c(i) = j

�1 = (123) & �2 = (12)(3)Here:		



First	asymptoHcs		
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•  Moments	(easy).	
Z

[dU ](Tr(AUBU †))n = N�2nD
X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)N
PD

c=1 #(�c⌧
�1
c )

DY

c=1

M[�c⌧
�1
c ](1 +O(1/N2))

#(⌫)

M[⌫]

:	number	of	cycles	of	the	permutaHon	
:	a	signed	product	of	Catalan	numbers		

U = U1 ⌦ · · ·⌦ UD



First	asymptoHcs		
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•  Cumulants	(hard).	Uses	Weingarten	calculus	and	a	good	dose	of	combinatorics.	

•  Moments	(easy).	
Z

[dU ](Tr(AUBU †))n = N�2nD
X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)N
PD

c=1 #(�c⌧
�1
c )

DY

c=1

M[�c⌧
�1
c ](1 +O(1/N2))

#(⌫)

M[⌫]

:	number	of	cycles	of	the	permutaHon	
:	a	signed	product	of	Catalan	numbers		

Cn

�
Tr(AUBU †)

�
= N�2nD

X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)N
PD

c=1 #(�c⌧
�1
c )�2(cc(~�,~⌧)�1) f [~�,~⌧ ](1 +O(N�2))

With	the	notaHon:		

U = U1 ⌦ · · ·⌦ UD

Number	of	transiHvity	classes	of	
the	group	generated	by	all	
permutaHons		 A	generalizaHon	of	connected	genus	0	

monotone	double	Hurwitz	numbers	

log

Z
[dU ] e

tTr
(

AUBU†
)

=

X

n�1

tn

n!
Cn

�
Tr[AUBU †

]

�



Labeled	(D+2)-colored	graphs	(Feynman	graphs)	
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1A

2A

3A 3B

2B

1B

~� ~⌧ ~�,~⌧



Labeled	(D+2)-colored	graphs	(Feynman	graphs)	
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[3]

[2]

[1]

~� ~⌧

à Also	use	the	notaHon									to	denote	the	
labeled	(D+2)-colored	graph 	 		

~�,~⌧

~�,~⌧

Then	in	the	formula:		

Dashed	edges	have	color	0	

DX

c=1

#(�c⌧
�1
c ) = F0(~�,~⌧)

cc(~�,~⌧) :	number	of	connected	components	of	the	graph		~�,~⌧

:	total	number	of	bicolored	cycles	of	color	0c	(some	of	the	faces)	

Cn

�
Tr(AUBU †)

�
= N�2nD

X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)N
PD

c=1 #(�c⌧
�1
c )�2(cc(~�,~⌧)�1) f [~�,~⌧ ](1 +O(N�2))

à	

à	



Feynman	graphs	in	D=1	
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[3]

[2]

[1]

� ⌧

1
2

3

For	D=1	(matrices),	the	labeled	(D+2)-colored	graphs	
(Feynman	graphs)	are	in	bijecHon	with	non-
necessarily	connected	labeled	biparHte	maps	
	
F0	:	number	of	faces	
	



3	–	Large	N	limits	



Scaling	ansatz	for	the	trace-invariants	

Cn

�
Tr(AUBU

†)
�
= N

�2nD
X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)NF0(~�,~⌧)�2(cc(~�,~⌧)�1)
f [~�,~⌧ ](1 + o(1))

Depends	on	size	
N	of	the	tensors	

We	have	to	make	an	ansatz	regarding	the	asymptoHc	scaling	in	N	of	the	trace-invariant:	

U = U1 ⌦ · · ·⌦ UD

7	



Scaling	ansatz	for	the	trace-invariants	
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Cn

�
Tr(AUBU

†)
�
= N

�2nD
X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)NF0(~�,~⌧)�2(cc(~�,~⌧)�1)
f [~�,~⌧ ](1 + o(1))

Rescaled	trace-invariant	

D=1	

…for	a	matrix	of	rank						,	whose	non-vanishing	
eigenvalues	have	the	same	order	in	N			
	
e.g.:		
•  Normalized	idenHty:	

•  Wishart	random	matrix:		

Tr�(A) =
Y

� cycle of �

Tr(Alength(�)) ⇠N!1 N�#(�)+�n tr�(a)

The	linear	part	in	n	does	not	play	any	role	in	the	asymptoHcs	and	we	leave	it	aside	

Tr�(id/N) = N#(�)�n

hTr�(W/N2)iW ⇠N!1 N#(�)�n
X

⇡2NC(n)

c#(⇡)

N�

Depends	on	size	
N	of	the	tensors	

We	have	to	make	an	ansatz	regarding	the	asymptoHc	scaling	in	N	of	the	trace-invariant:	



Scaling	ansatz	for	the	trace-invariants	
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Cn

�
Tr(AUBU

†)
�
= N

�2nD
X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)NF0(~�,~⌧)�2(cc(~�,~⌧)�1)
f [~�,~⌧ ](1 + o(1))

Tr~�(A) ⇠N!1 NsA(~�) tr~�(a)

Rescaled	trace-invariant	

The	scaling														a	priori	depends	on	the	properHes	of	the	graph					…	
	
	
We	choose:		
	
	

sA(~�) ~�

sA(~�) = �A

DX

c=1

#(�c) + ✏A
X

c1<c2

#(�c1�
�1
c2 ) = �A FD+1(~�) + ✏A F (~�

[D+1)

[1]

[2]

[3]

1
2

2

U = U1 ⌦ · · ·⌦ UD
Depends	on	size	
N	of	the	tensors	

We	have	to	make	an	ansatz	regarding	the	asymptoHc	scaling	in	N	of	the	trace-invariant:	

Thick	edges	have	color	D+1	



Scaling	ansatz	for	the	trace-invariants	
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Cn

�
Tr(AUBU

†)
�
= N

�2nD
X

~�,~⌧

Tr~�(A) Tr~⌧�1(B)NF0(~�,~⌧)�2(cc(~�,~⌧)�1)
f [~�,~⌧ ](1 + o(1))

Tr~�(A) ⇠N!1 NsA(~�) tr~�(a)

Rescaled	trace-invariant	

The	scaling														a	priori	depends	on	the	properHes	of	the	graph					…	
	
	
We	choose:		
	
	
N.B.	Other	well-moHvated	choice:		
	
N.N.B.	These	assumpHons	are	also	moHvated	by	applicaHons	to	quantum	informaHon,		

					see	the	last	part.	

sA(~�) ~�

sA(~�) = �A

DX

c=1

#(�c) + ✏A
X

c1<c2

#(�c1�
�1
c2 ) = �A FD+1(~�) + ✏A F (~�

[D+1)

sA(~�) = �A FD+1(~�) + ✏A cc(~�
[D+1)

U = U1 ⌦ · · ·⌦ UD
Depends	on	size	
N	of	the	tensors	

We	have	to	make	an	ansatz	regarding	the	asymptoHc	scaling	in	N	of	the	trace-invariant:	



Moments	

9	

With	these	assumpHons	and	for	any 	 	 														: 	 			✏A, ✏B ,�A,�B � 0

Z
[dU ]

�
Tr[AUBU †]

�n ⇠N!1

✓
Tr(A)Tr(B)

ND

◆n

Only	dominant	graph	is	the	one	with	n	connected	components	(all	sigmas	and	taus	
are	the	idenHty):	

~� = ~id ~⌧ = ~id

1A

2A

3A

4A 4B

3B

2B

1B

U = U1 ⌦ · · ·⌦ UD



Large	N	limits	of	the	cumulants	-	1	

10	

log

Z
[dU ] e

tTr
(

AUBU†
)

=

X

n�1

tn

n!
Cn

�
Tr[AUBU †

]

�



Large	N	limits	of	the	cumulants	-	1	
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1

1
D�1

1/D 1

1/D

✏

�

II

I

III

IV

VI

VIIIV

VII
1

1
D�1

1/D 1

1/D

✏

�

S-II

S-I

S-III
S-IV

S-VI

S-VIIIS-V

S-VII

Microscopic		A	Symmetric	

III,	IV,	V,	VI:	same	dominant	graphs	for	both	

Tr~�(A) ⇠ N�FD+1(~�)+✏F (~�
[D+1) tr~�(a),

Tr~�(B) ⇠ N�FD+1(~�)+✏F (~�
[D+1) tr~�(b), Tr~�(B) ⇠ N�FD+1(~�)+✏F (~�

[D+1) tr~�(b),

Tr~�(A) ⇠ tr~�(a),

2201.12778	



Large	N	limits	of	the	cumulants	-	2	
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For	both	scaling	ansätze:	

1

1

✏

�

II

I

1
D�1

Not	expected	to	
be	realizable	

Realizable	

Tensor	products	of	generic	
rank	N	(random)	matrices	

Should	think	that		
	
is	here,	where	T	
random	tensor		

B = T ⌦ T̄

B = B1 ⌦ . . .⌦BD



Large	N	limits	of	the	cumulants	-	2	
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1

1

✏

�

II

I

1
D�1

For	both	scaling	ansätze:	

Not	expected	to	
be	realizable	

Realizable	

Tensor	products	of	generic	
rank	N	(random)	matrices	

Should	think	that		
	
is	here,	where	T	
random	tensor		

B = T ⌦ T̄

1

1

✏

�

II

I

1
D�1

B = B1 ⌦ . . .⌦BD

Trivial:	
one	graph	

Rather	interesHng	but	
should	not	be	realizable	

Not	interesHng	and	
should	not	be	realizable	

ExponenHally	many		
non-interesHng	graphs	

Super-exponenHally	many	
non-interesHng	graphs	

RICH	

1A

2A

3A 3B

2B

1B



Large	N	limits	of	the	cumulants	in	D=1	
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non-crossing	parHHons	BiparHte	planar	maps	

Microscopic	A	Symmetric	

1 �0 1 �0

à	2d	random	geometry	
à	The	values	of	the	cumulants	of	the	
HCIZ	integral	at	this	point	allow	defining	
free-cumulants	for	random	matrices	
and	deriving	their	addiHvity	for	sums	of	
independent	random	matrices	

Tr�(A) ⇠ N�#(�) tr�(a),

Tr�(B) ⇠ N�#(�) tr�(b),

Tr�(A) ⇠ tr�(a)

Tr�(B) ⇠ N�#(�) tr�(b),

one	graph	 one	graph	

not-realizable	 not-realizable	



Large	N	limits	of	the	cumulants	-	3	
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1

1
D�1

1

✏

�

S-II

S-I

Richer	generalizaHon	
of	non-crossing	

parHHons	

GeneralizaHon	of	non-
crossing	parHHons	

Richer	generalizaHon	
of	planar	maps	
(NOT	melonic)	

	

GeneralizaHon	of	
planar	maps	
(NOT	melonic)	

Microscopic	A	Symmetric	

1

1

✏

�

II

I

1
D�1



Graph	invariants	
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Degree:	
	
•  For	D=1,	automaHcally	0	
•  For	D=2,	twice	the	genus	of	the	graph	
•  For	D>2,	graphs	of	vanishing	degree	are	well-known	(melonic),	and	have	a	tree-like	

structure.	
	
Large	N	limits	of	“colored”	random	tensor	models	usually	selects	melonic	graphs	
	
	
	
New	invariants:	
		
	
	
	
	

!(~�) = D cc(~�) + n
D(D � 1)

2
� F (~�) � 0

1A

2A

3A 3B

2B

1B

(�c, ⌧c)

1A

2A

3A 3B

2B

1B



Graph	invariants	

14	

Degree:	
	
•  For	D=1,	automaHcally	0	
•  For	D=2,	twice	the	genus	of	the	graph	
•  For	D>2,	graphs	of	vanishing	degree	are	well-known	(melonic),	and	have	a	tree-like	

structure.	
	
Large	N	limits	of	“colored”	random	tensor	models	usually	selects	melonic	graphs	
	
	
	
New	invariants:	
		
Delta:	
	
		
Box:	
	
	
Both	are	automaHcally	0	for	D=1,	which	is	the	matrix	case	(usual	HCIZ	integral)	

⇤(~�,~⌧) = 2cc(~�,~⌧)� cc(~�)� cc(~⌧)� 2
DX

c=1

cc(~�c,~⌧c) + FD+1(~�) + FD+1(~⌧) � 0

�(~�,~⌧) = n(D � 1) + cc(~�,~⌧)�
DX

c=1

cc(~�c,~⌧c) � 0

!(~�) = D cc(~�) + n
D(D � 1)

2
� F (~�) � 0

1A

2A

3A 3B

2B

1B1A

2A

3A 3B

2B

1B (�c, ⌧c)



Large	N	limits	of	the	cumulants	-	4	
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1

1
D�1

1

✏

�

S-II

S-I

GeneralizaHon	of	planar	maps	(NOT	melonic)	

Symmetric	

lim
N!1

1

N2
Cn

✓
N

ND(D�1)( 1
D�✏)

Tr
⇥
AUBU †⇤

◆
=

X

~�,~⌧
�(~�,~⌧)=0

8c, g(�c,⌧c)=0

tr~�(a) tr~⌧�1(b) f [~�,~⌧ ]

lim
N!1

1

N2
Cn

�
NTr

⇥
AUBU †⇤� =

X

~�,~⌧
!(~�)=!(~⌧)=0

⇤(~�,~⌧)=0
8c, g(�c,⌧c)=0

tr~�(a) tr~⌧�1(b) f [~�,~⌧ ]

Richer	generalizaHon	
of	planar	maps	
(NOT	melonic)	

	



Large	N	limits	of	the	cumulants	-	4	
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1

1
D�1

1

✏

�

S-II

S-I

GeneralizaHon	of	planar	maps	(NOT	melonic)	

Symmetric	

In	both	cases,	planar	graphs	are	
recovered	for	the	matrix	case	D=1	

(i.e.	the	usual	HCIZ	integral)		

Richer	generalizaHon	
of	planar	maps	
(NOT	melonic)	

	

lim
N!1

1

N2
Cn

✓
N

ND(D�1)( 1
D�✏)

Tr
⇥
AUBU †⇤

◆
=

X

~�,~⌧
�(~�,~⌧)=0

8c, g(�c,⌧c)=0

tr~�(a) tr~⌧�1(b) f [~�,~⌧ ]

lim
N!1

1

N2
Cn

�
NTr

⇥
AUBU †⇤� =

X

~�,~⌧
!(~�)=!(~⌧)=0

⇤(~�,~⌧)=0
8c, g(�c,⌧c)=0

tr~�(a) tr~⌧�1(b) f [~�,~⌧ ]



Large	N	limits	of	the	cumulants	-	5	
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Symmetric	

Regime	S-II	(vanishing	Delta,	etc):		dominant	graphs	should	be	in	the	universality	
	 	 	 	 	 	 	class	of	trees	(numerical	esHmate	of	counHng	
	 	 	 	 	 	 	exponent	by	Guillaume	Chapuy)	

	
	
Regime	S-I	(vanishing	Box,	etc):	… unknown.		
	
	

1A

2A

3A

4A 4B

3B

2B

1B



Study	of	the	large	N	asymptoHcs	of	the	cumulants	of	the	tensor	HCIZ	integral	reveals	rich	
‘’phase-diagram’’.	
	
	
ApplicaFon	to	(random)	geometry	in	dimension	>2	for	symmetric	scalings:		
InteresHng	combinatorics	in	two	regions,	with	two	new	generalizaHons	of	planar	graphs	
for	(D+2)-colored	graphs	(known	to	be	dual	to	(D+1)-dimensional	triangulaHons).	
Universality	class	of	trees	expected	for	one	region,	unknown	for	the	‘’triple-point’’,	where	
the	richest	combinatorics	is	found.	

	
	
ApplicaFon	to	free-probability	for	random	tensors	for	microscopic	A:		
One	may	use	these	results	to	define	a	generalizaHon	of	free-cumulants	for	random	
tensors,	and	prove	their	addiHvity	for	sums	of	independent	tensors.	This	is	the	property	
needed	in	free-probability	to	compute	the	asymptoHc	spectrum	of	the	sum	of	two	
independent	random	matrices,	a	consequence	of	the	asymptoHc	freeness	(Voiculescu).		

	
ApplicaFon	to	quantum	informaFon	for	microscopic	A	(randomized	measurements):	
à	Next	slides	

Preliminary	conclusions	

17	



4	–	ApplicaHon	to	the	detecHon	of	entanglement	
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D-parHte	quantum	system 	à 	tensor	product	of	Hilbert	spaces	
	
	

State	B	(density	matrix)	and	observable		A				à			operators	on	 		… tensors		
	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 		

	

Entanglement			à 	‘how	far’	is	B	from	a	convex	sum	of	tensor	products	of	the	form:	

	
	
	

H = H1 ⌦ · · ·⌦HD

dim(Hc) = N

H A

D=3	

B =
KX

i=1

pi ⇢
(i)
1 ⌦ . . .⌦ ⇢(i)D

KX

i=1

pi = 1 ⇢(i)c 2 MNc(C) pi, ⇢
(i)
c � 0

à	Separable	state	

The	tensor	HCIZ	integral	and	randomized	measurements		



The	tensor	HCIZ	integral	and	randomized	measurements		

18	

D-parHte	quantum	system 	à 	tensor	product	of	Hilbert	spaces	
	
	

State	B	(density	matrix)	and	observable		A				à			operators	on	 		… tensors		
	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 		

	

Entanglement			à 	‘how	far’	is	B	from	a	convex	sum	of	tensor	products	of	the	form:	

	
	
	
ExpectaHon	value	of	observable	A	on	state	B		
	
Randomized	measurements 				
	

à distribuHon																	for 	 	 	 	 	 	 	 	 			, 	 	 	Haar		

à Accessible	experimentally	(and	solves	experimental	issue	of	alignment	of	reference	
frames).	Known	that	for	small										,	the	knowledge	of	the	first	moments	allows	
detecHng	even	weak	forms	of	entanglement.	

	
à The	previous	slides	concern	the	large	N	moments	and	cumulants	of	this	distribuHon!	

H = H1 ⌦ · · ·⌦HD

dim(Hc) = N

B =
KX

i=1

pi ⇢
(i)
1 ⌦ . . .⌦ ⇢(i)D

KX

i=1

pi = 1 ⇢(i)c 2 MNc(C)

hAU iB AU = (U1 ⌦ . . .⌦ UD)A (U†
1 ⌦ . . .⌦ U†

D)

D,N

Uc 2 U(N)

hAiB = Tr(AB)

H A

pi, ⇢
(i)
c � 0

D=3	

à	Separable	state	



Ansatz	and	interpretaHon	of	results	

The	parameters	of	the	scaling	are	chosen	to	represent:	
	
-  			:	common	‘’local	rank’’	of	the	density	matrix	B	(rank	of	Bc	if	B	is	a	tensor	product			
		 	 	 	 	 				)	
-  			:	how	much	exchange	there	is	between	the	different	subsystems	(pairwise)	
	
	

At	this	preliminary	stage,	it’s	not	so	clear	what	properHes	of	the	state	B	these	parameters	
encode,	but										should	respecHvely	have	something	to	do	with	how	entangled	or	mixed	
the	state	B	is…	

sB(~�) = �
DX

c=1

#(�c) + ✏
X

c1<c2

#(�c1�
�1
c2 ) = � FD+1(~�) + ✏ F (~�

[D+1)

B = B1 ⌦ . . .⌦BD

•  Take:																																						(local	observable),	where	Ac	is	of	small	rank,			
e.g.	a	projector	on	a	state	

à A	is	microscopic	
	

A = A1 ⌦ . . .⌦AD

Ac = | cih c|

Tr~�(A) ⇠ tr~�(a),

•  Assume	that	B	is	unknown	but	that:	

N ✏

N�

✏,�
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-  			:	common	‘’local	rank’’	of	the	density	matrix	B	(rank	of	Bc	if	B	is	a	tensor	product			
		 	 	 	 	 				)	
-  			:	how	much	exchange	there	is	between	the	different	subsystems	(pairwise)	

1

✏

�

1
D�1

1/D

One	graph	

ExponenFally	many	graphs	

TheoreHcally	possible	to	recognize	
if	an	unknown	B	has			

✏ � 1

D

Some	maximally	
entangled	(pure)	
states	such	as	
GHZ		

Axis														:	product	states	and	
separable	states	saHsfying	
certain	assumpHons		

✏ = 0
Axis												:	contains		
pure	states		

� = 0

B = | ih | Maximally	mixed	
state	(the	idenHty)	

B = B1 ⌦ . . .⌦BD

N ✏

N�



Thank	you	for	your	atenHon!	


