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Introduction

Strongly coupled physics is notoriously difficult to
access.

We do not have small parameters in which to do a
perturbative expansion. Our most basic notions of field
theory are of a perturbative nature.

Make use of symmetries, look at special limits/
subsectors where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!



Introduction

Conformal field theories play an important role in
theoretical physics: N RN
» fixed points in RG flows :If*f/fff&\:

- critical phenomena i
* quantum gravity (via AdS/CFT) .
» string theory (WS theory
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But: CFTs do not have any intrinsic scales, most have by
naturalness couplings of O(1).

Possibilities: analytic (2d), conformal bootstrap (d>2),
lattice calculations, non-perturbative methods...

Prime candidate for the large-charge approach.
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Overview

Introduction

The O(2) model

- semi-classical treatment

* quantum treatment

» results and lattice comparison
O(2N) vector model

- Finite N results

- Large N limit + resurgence

» Leaving the conformal point
Summary/Outlook
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The O(2) model



The O(2) model

Consider simple model: O(2) model in (2+1) dimensions
Loy = 0,¢" "¢ — g° (")

Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

orr = ae®™  Global U(l) symmetry: x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(l) charge Q: »*/? ~ Q'/?/R
Study the CFT at the fixed point in a sector with
UV scal
lcax Q7 < g2 T

R R
N cut-off of effective theory

Write Wilsonian (linear sigma model) action.
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The O(2) model

LSM: Assume large vev for a: A < ¢® < ¢°
scalar curvature (w. conf. coupling)

1 L 172 2 L R‘2/ A 6 . : .

Lir = 5 0,a0"a+ 50%a 0, x 0" x — TGYJECL + higher derivative terms
dimensionless constants

¢ has approximately mass dimension |/2 and the action

has a potential term o |¢|°

Lagrangian is approximately scale-invariant.

Semi-classical analysis: solve classical e.o.m. at fixed
Noether charge.

Solution must be homogeneous in space.



The O(2) model

Charge density: »="b%"x, Q = p- Vol(S5?)
Lowest-energy solution: a = v = const.
non-const. vev
X = pt e = bzpvz
Determine radial vev v by minimizing the classical
otential: 2
Va(v) G TA\V) 202 160 6
™ cen rifugal term
U~ Q1/4
large condensate is
compatible with our
assumption a > 1
) o ptl?
U




The O(2) model

Energy of classical ground state at fixed charge:

cannot be
2 dimensionless parameters calculated within
/ K EFT!
C
Fxy(Q) = “3/2 Q3/2 - C1/2 R\/VQl/Q L OQ 1/2)

dependence on manifold

Classical solution at lowest energy and fixed global
charge becomes the vacuum of the quantum theory.

Quantum story: study the low-energy spectrum
Parametrize fluctuations on top of the classical vacuum

a=1v-+a Y = Mt+&‘_G°|d5t0ne
v

massive mode, not relevant

for low-energy spectrum m ~ O(1/Q)
10



The O(2) model

Ground state at fixed charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Go to NLSM: Integrate out a (saddle point for LO).
Dynamics is described by a single Goldstone field X:

L0 = ks /2 (9,x 0"x)?/? «—Can get this purely by
dimensional analysis

Beyond LO: use dimensional analysis, parity and scale
invariance to determine (tree-level) operators in
effective action (Lorentz scalars of scaling dimension 3,
including couplings to geometric invariants)

Use p-scaling to determine which terms are not
suppressed: I ~ pt/2, B... 0y~ pL/4
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The O(2) model

Result for NLSM action in d=3: scale-inv. but NOT
. LO Lagrangian /conformally inv.

L = ks /5(0,x0"x)*? + k12 R(0,x0"x)** + O(Q~Y/?)

\

dimensionless parameters suppressed by inverse
powers of Q

To be understood as an expansion around the classical
ground state ut + X

Expand action around GS to second order in fields:
L = k‘3/2,U,3 -+ kl/gR,U, + (815)2)2 — %(VS2>A<)2 + ...

Compute zeros of inverse propagator for fluctuations
and get dispersion relation:

N

Wy NoR e dictated by conf. invariance 1/vd

= X is indeed a Goldstone (type |)
12



The O(2) model

Are also the quantum effects controlled?

Yes! All effects except Casimir energy of X are
suppressed (negative p-scaling).

Evaluate Casimir energy from Coleman-Weinberg
formula:

L 1 5 1 1 1/2
EC&S_IJI—EEO Tlogdet( 67_—dA52> —2\/ETI‘(—ASQ)

1
T 2V2
Effective theory at large Q:

<(8|52)}S:_1/2 = —0.0937. ..

vacuum + Goldstone + |/Q-suppressed corrections

Let’s calculate observables: CFT data!
Scaling dimensions, fusion coefficients.
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The O(2) model

Use state-operator correspondence of CFT:

R R x S
conformal s3-1.-" Hy > orer
dimension —™——| / &Y
N
Sd—1

Scaling dimension of lowest operator of charge Q:
/energy of class. ground state
D(Q) = Ro(Eo + Ecas) = c3/2Q%% + ¢1/2QY* — 0.0937 - - + O(Q™'/?)

N

quantum correction from Casimir energy of Goldstone
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]
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The O(2) model

What about excited states’

. . . 1 [BEa, 1 \/l(l+d—1)
Dispersion relation: w, = 2V 4 T & y
Energy of an excited state:

(n1,m2,...) D(Q) i
EQ — Ro + Ro zl:nlwl
Take I=1: lowest excited state, D=D(Q)+ 1. Descendant

state! n1 =0:conformal primary
Lowest spin=1| state: one mode with |=2.

Lowest excited scalar: tensor product of two |1=2 oscillators:

MM =T Xe ()
Lowest vector: product of one |=2 and one |=3 oscillators:
THe M =001 deTHeC

States with large charge and arbitrary spin (below unitarity
bound): use particle-vortex duality.

G. Cuomo, A e la Fuente, A. Monin, D. Pirtskhalava, R. Rattazzi, arXiv:1711.02108 [hep-th]



The O(2) model

Testing our prediction:

C3/2 _
D(Q) =5 ZQ" + 2T e1/0Q!/ ~ 0.094+ 0(Q /%)
Independent calculation on the lattice:
14 | | . .
12 +
10 1 Excellent
5 8F { agreement!!
o 51
4 r ] 01/2 — 0075(10)
2 |
MC da}ta —=—
it ———
O I I I I I
works for small—" 2 4 6 8 10
C h d rge * W h)” 7 Q D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
Where else? s



The O(2) model

Let’s look at states with a one-phonon (type | Goldstone)

ST ,
excitation: |€(§1> =al_|Q),
To leading order, the 2-pt function on the cylinder of two
such states is /time-evolution operator on cylinder
<€2m2 | 31%1> = <Q | A m, € _(Tz Tl)D/RaJrlml | Q> = RA ~(Forwe)(ma- Tl)/Réelfzémﬂﬂz
A = Eo+wy

R

Next, we look at the 3-pt function of two such states with a

current insertion: /tree-level contribution (homogeneous)

O, ]T(T n)0, m1> = _iQD(]gD—l

{ AAQ +Rwe2 (T]_I TZ) 521 225m1m2

Ag+Rwy, B \/ ¢, Wy, Yg mZ(n) aiYelml(n)
Anqrray (7172 | V(D =D =2)00 =757 Vioms (Yo, () - R2(D — Dwe,we, [
™\ from fluctuations (4.6)

_ (D-2)  Ag+Rwy, Wy
<Oe§m]1('c'“)® )= Z%ORD 5 AZ:Rze (T1, T2 | T) w; m, (M) i Y m,(n) — (1 & 2)°|.

*~_ quantum piece only since class. part of
insertion is 0
Aa(T1,T2) = e~ AMTa—T1) .Aii(’tl,’tz |T)=¢

17
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The O(2) model

The 3-pt coefficient is

c 9% _ (Ot mOZ) . Q
08 J B -Q9Q -~ T'QLRDI
em T <O€mO€m> b

These results can be easily generalized to states with more
phonon excitations, insertions of T, ]], TT, T] etc.

When studying loop corrections to the scaling dimension,

we find in even D contributions of the form

1
> QU-1D/D-D)

A (00 + o1 log Q + ... + aq(log Q)') .

N. Dondi, R. Moser, I. Kalogerakis, D. Orlando, S. R., arXiv:2203.12624 [hep-th]

Other 3- and 4 pt correlators (mostly involving just the
scalar ground state), both with current insertions and of the
for HLH have appeared in the literature (Rattazzi et al,
Cuomo, Komargodski et all, Jafferis et al.)

18
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Beyond O(2):
3d O(2N) vector model
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The O(2n) vector model

Generalize to O(2n) LSM action (2+1 dim):
L——Mgba’@“gb —%Z( Ro" " + — (gbgb)) a=1,...,2n R; x R?

=1
Conserved current is matrix-valued and transforms

under O(2n): ()9 = (67 960 — 6P )

Charge can be decomposed on generators of so(2n):

B 0 can fix only the n
Q= /di’?] - Zqé\ Cartan generators!
fix th

ese coefficients
Introduce complex coordinates: U(n) C O(2n)

o' =9+, I=1,...,n
Find classical ground state (ansatz: homogeneous):

ny\ 1 2
p= (A", .. AM)e lo||? = v?




The O(2n) vector model

Fixing n charges explicitly breaks O(2n) to U(n).
Can do a basis transformation (U(n) rotation) in which
the ground state has the form

© = (v,0,..., 0)e*H

In this basis, the charge matrix has the form

(0 q \
—q 0
Qab:quﬂlz q O

\ "/

Vacuum breaks symmetry spontaneously to U(n-1).

We see that all homogeneous states of minimal energy
with fixed total charge q are related by a U(n)
transformation and have the same energies (and
conformal dimensions).

21



The O(2n) vector model

What happens if instead, we choose a configuration with

n different chemical potentials that cannot be rotated
into the state ¢ = (v,0,...,0)e**?

Ground state must be inhomogeneous!

For quantum description, study fluctuations around the

ground state: wi (L s
o (t.a) = (oAl 4l t,2) )
Expand action to quadratic order in fluctuations.

In the rotated basis, the fluctuation in the O-direction

decouples from the others:

same as for conformal 0 ;
Goldstone in O(2)! L = L]+ ;[’[W | :
\L[WO: — DO D7 — ijﬂo — 1?70 + %V”(UZ/Q)(T(‘O + )2,

[,[7?:\: DomiDn' — V,;mVI " — p?r'r
new! Dom! = é?o—Fiﬂ)?TI



The O(2n) vector model

New sector contains n-|I massive modes with m=2p and
n-1 massless fields with dispersion relation

We find all in all: 24
» a universal sector already present for n = | governed

by a conformal type | Goldstone

- a sector of n-| massless modes with quadratic
dispersion relation typical of non-relativistic type |l
Goldstones. They are paired with n-1 massive modes.
The non-relativistic Goldstones count double.

Nielsen and Chadha; Murayama and Watanabe

The symmetry-breaking pattern is

S0O(3,2) x O(2n) — SO(3) x D x U(n) ~ SO3) x D' x U(n — 1)

We expect thus dim[U(n)/U(n-1)] = n-1 Goldstone d.o.f.

23



The O(2n) vector model

Counting type | and type |l modes, indeed,
142(n—1)=2n—1=dim(U(n)/U(n— 1))

Non-relativistic Goldstones have no zero-point energy
in flat space and contribute to the conformal dimensions
only at higher order.

The ground-state energy is again determined by a single
relativistic Goldstone!

Same formula for anomalous dimensions as for O(2):

n-dependent universal for O(2n)

/
233623/2 + 2f\c1‘/zcz Y2 —0.094 +0O(Q?)

L. Alvarez-Gaume, O\Loukas, D. Orlando and S. R., arXiv:1610.04495 [hep-th]
verified at large n for
CP(n_ | ) mOdel de la Fuente

D(Q) =

24



The O(2N) vector model

Testing our prediction:

D(Q) = ;%QS/Q + 2\/E01/2Ql/2 —0.094 + O(Q~'/?)
New lattice data for O(4) model:

12 — - . . . . .

10 ¢

8 N

03/2 = 1068(4)
61/2 — 0083(3)

05 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!
25



The O(2N) vector model

Let’s take the large N limit!

Standard large-N methods (Stratonovich transformation,
integrating out fields + charge fixing)

Start from first principles, expand path integral around
saddle point (no EFT!)

Leading order: theory is solvable and we find the same
powers in the large-Q expansion of the scaling dimension.

NLO in N: reproduce dispersion relations of Goldstones.

Since we have an extra control parameter at large N, we
can go beyond simply verifying known results!

26



The O(2N) vector model

Find coefficients of the expansion (leading order in N):

c3jo = 4/3\/7/n

C1/2 = 1/12\/ n/7r

L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571

Within 10% of the lattice measurements for O(4):

63/2 = 1.18
01/2 —0094

New lattice data:

0.501 *
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63/2 = 1068(4)
61/2 — OOSB(S)

Subleading coupling c1),

0.50 .-« Large-N: (1/6) N1/

@ Lattice MC, this work ‘."‘
0.45 4 T Lattice MC, literature I
0.40
0.35 [)
0.30 i
0.25 #
0204 °

2 4 6 8 10
N

Singh, arXiv:2203.00059 [hep-lat]



The O(2N) vector model

Small charge limit: At large N, we now have more control
and can also take the limit of @/Nv <« 1.

In this limit, the operator of charge Q whose dimension we
are calculating is ¢

engineering dimension of ¢

NOIRCER: O(Q)2
Q@ 2 mENT

2N

one-loop
tree-level

Jack, Jones; Antipin et al.

Can be verified by a perturbative (loop) calculation around
the zero-charge vacuum (Benvenuti, unpublished)!

28



The O(2N) vector model

We can interpolate between the large-Q and small Q limits
of the O(2N) vector model using resurgence.

The large-Q expansion is an asymptotic series which
diverges as (2L)!

The optimal truncation is 0(v/Q) terms.This explains why
the comparison to the lattice calculation works so well.

We can write the transseries and the non-perturbative
corrections go like
6—27Tk\/Q/2n

The result for the scaling dimension in the small-Q

expansion and the resurgence result agree at least to |10
digits.

A. Dondi, I. Kalogerakis, D.Orlando, S.R, arXiv: 2102.12488 [hep-th]
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The O(2N) vector model

Leaving the conformal point: start in the UV with

N
Slpi] = Z/dtdE {QMV@Z@)T(%@) +r(plei) +
i—1

u

o (#16)*

For r=R/8, this flows to the WF fixed pt in the IR, v — o
Instead: keep u finite.

Perform Stratonovich transform and add a chemical
potential (= introduce covariant derivative) Dy = (9o+m)

5[ Z / s | (D) (D) + -+ N(ol6) — 5.

2U

Can integrate out ¢:. Because of the chemical potential, A
gets a vev m?

Adding the chemical potential gives us more structure to
work with!
30



The O(2N) vector model

Leading order in N: in flat space
2 /m3 2

L 1 1 (m? —r)? L (m? —r)?
oN ~ aptTelEm T —[m+ ™ ]

This is exactly the NLSM for m* = 8,x8"x

This expression contains the full information about the
model. More transparent, if we extract the effective
potential. The LSM has the fOI:m/vev of radial mode
Lism = &*m® — V(D)
E.o.m.for radial mode: = 4 N vev of angular mode
m- — d(<I>2)V =0

Plugging the solution back in, we must recover

d*m? — V() = L(m)
d=P(m?2)

L is the Legendre transform of V in #2
31



The O(2N) vector model

Pay attention to convexity! Use more general definition of
Legendre transform: f*(y) =sup(zy — f(2))
V(®?) = sup(m?®* — L(m))
u 3 3 @]
V(¢)=3.210W4 <1+§77+Z,72_(1+77)3/2) N = 6472 (Nu+ )

There are three cases, depending on the value of r:

F\\
50j )
L \
40 - \
30

20

r>0 r=0

ET
60 -

] il
40y
L L

unbroken phase critical point
N2 for 0 < Jp| < 4/
V(e =1 . °

(lp])  for [p] > /= u Orlando, Reffert, Schmidt 2110.07616



The O(2N) vector model

In the critical case on the cylinder, if the take the Legendre
transform of L w.r.t. m, we get the free energy which
corresponds to the scaling dimension of the lowest
operator of a given charge.

A(Q) = sup(m@ — L(m))

A(Q) 2 0 3/2 e 1/2 - 0 —1/2 -1 0 —3/2
2N _§(ﬁ> +E(ﬁ> _ﬁ()(ﬁ) 181440 <2N> e

L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571

This is always convex thanks to the supremum.

All these results are straightforwardly obtained thanks to
the interplay between large Q and large N - no Feynman
diagrams needed!



The O(2N) vector model

Repeat the above analysis for general dimension.

I'(-D/2) p  (m*—r)°
£:(2N>[2(47T)D/2m L ]

F(—D/?)

;ﬂ P

We see that for 4<D<6 L is unt;ouiwded from below.
Instability!

If we formally compute the conformal dimension for D=5:

branch1 branch2 branch3 branch 4

AQ) = 1oFs(Q) = 2N fl%_ (ﬁ)4 32_(2%)4 , f, elm/d o im/4 37l /4 =37 /4
3 f5 e3i7r/4 e—3i7r/4 eni/4 e—Tti/4
Interpretation as non-unitary CFT. Giombi, Hyman:

Moser, Orlando, Reffert 2110.07617






Summary

We studied some CFTs in sectors of large global charge

Concrete examples where a (strongly-coupled) CFT
simplifies in a special sector.

O(2N) model in 3d:in the limit of large U(Il) charge Q,
we computed the conformal dimensions in a controlled
perturbative expansion:

D(Q) = ;3?;2%@3/2 + 2\/%01/2621/2 —0.094+0(Q"/?)

Excellent agreement with lattice results for O(2), O(4)

large Q and large N: path integral at saddle pt., more
control than in EFT, can calculate coefficients

can follow the flow away from conformal point

find the full effective potential

36



Summary

Q&A:
* Does the large-Q expansion work?
- For all the examples, we tried, yes! Confirmation
from lattice data (O(2) and O(4))
* For what kinds of theories does it work!?
- (S)CFTs and non-relativistic CFTs
* In how many space-time dimensions!

d>=1 space dimensions
* For what kinds of global symmetries does it work?

- we checked U(l), O(2n) vector models, SU(N)
matrix models

37



Summary

* What happens if we fix several charges!?

- k charges with same chemical potential:
homogeneous solution with type | and type |l
Goldstones.

- different chemical potentials: inhomogeneous
solutions

* What can we learn via this approach?
- calculate CFT data of strongly coupled CFTs at

large charge!

- in conjunction with large N we can follow RG
flow, calculate eff. potential exactly (Ist order in
N) away from conformal point.
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Further directions

Further study of supersymmetric models at large R-
Charge (higher_dim. moduli Spaces) Hellerman, Maeda, Orlando, Reffert, Watanabe;

Argyres et al.
Loukas, Orlando, Reffert, Sarkar;

Connection to holography (gravity duals) petsFuene zoswo

Giombi, Komatsu, Offertaler.

Operators with spin; connection to large-spin results

Cuomo, de la Fuente, Monin, Pirtskhalava, Rattazzi; Cuomo

Understanding dualities semi-classically at large charge

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov

Further lattice simulations: inhomogeneous sector,
general O(N) Chandrasekharan et al.

CFTs in other dimensions (2,5,6) (it remn oo

Moser, Orlando, Reffert
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Further directions

Chern-Simons matter theories @large charge waans

Arias-Tamargo, Rodriguez-Gomez, Russo;

4- 8 expan S i O n @ I a r’ge c h ar'ge Badel, Cuomo, Monin, Rattazzi; Watanabe;

Antipin et al.

Orlando, Reffert, Sannino;

going away from the conformal point g peiizmn Reiter

Favrod, Orlando, Reffert; Kravec, Pal;

n O n - re I atiVi Sti C C FTS Orlando, Pellizzani, Reffert;

Hellerman, Swanson; Pellizzani

BO u n d a, ry C FTS a_t I a_ rge Q Cuomo, Mezei, Raviv-Moshe
Wea I( g raVit)’ CO nj c Ct ure Aharony, Palti; Antipin et al.

Study fermionic theories. Can large-charge approach
be used for QCD (e.g. large baryon number)!?

Komargodski, Mezei, Pal, Raviv-Moshe



Thank you for your
attention!



