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FRG for tensorial theories

What’s the phase structure of tensorial theories?

Understanding of large-N limits for tensors

allows to identify renormalizable tensorial field theories

some of which are asymptotically free

functional renormalization group (FRG) techniques can be applied

Still, the phase structure is poorly understood (new phases/fixed points??)

Local potential approximation (LPA)

results from φn truncation need stability check for larger n

LPA approximates to any order, even analytic results (O(N) theory)

hints for an LPA of melons [Carrozza,Lahoche1612] or necklaces [CaLaOriti1703]

NGFPs and dimensional flow in cyclic-melonic LPA [Pithis/JT2010]

But is it actually valid? What are the limits?

Result: LPA only for restricted regimes, but such exist at large N
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Functional renormalization group

Theory at scale k given by generating function with k-dep. IR-regulator Rk

eWk[J] =

∫
Dφe−S[φ]−(φ,Rkφ)+(J,φ)

Scale-dependent effective action via Legendre transform w.r.t. ϕ = δWk[J]
δJ

Γk[ϕ] = sup
J
{(J, ϕ)−Wk[J ]} − (ϕ,Rkϕ)

RG flow determined by functional equation [Wetterich’93, Morris’94]

k∂kΓk[ϕ] =
1

2
Tr

k∂kRk
Γ

(2)
k [ϕ] +Rk

Interpolates between microscopic theory k →∞ and full quantum effective action
Γ = limk→0 Γk
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Local potential approximation

Explicit FRG equation needs approximations

regulator Rk implies approximation, can be optimized

eff. action Γk can be truncated in various ways:
vertex expansion: expand Γk in powers ϕn

derivative expansion: expand in powers of derivatives

Γk[ϕ] =

∫
Rd

dxxx

[
Uk[ϕ(xxx)] +

1

2
Zk[ϕ(xxx)](∂ϕ)2(xxx) +

1

4
Yk[ϕ(xxx)](∂ϕ2)2(xxx) + ...

]
(coefficients Uk, Zk, Yk, ... still functionals of ϕ)

LPA is the 0’th order of the derivative expansion

Local QFT (point-like interactions):
Potential Uk completely determined evaluating on constant ϕ(xxx) = χ

Γk[χ] = Uk[χ]

∫
Rd

dxxx = adRUk[χ]

(still true in LPA′ with Zk constant but k-dependent)
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O(N) vector theory

Paradigmatic example: O(N)-symmetric scalar field theory

Γk[ϕ] =

∫
ddx

(
1

2
Zk∂ϕ

a∂ϕa + U(ϕaϕa)

)

Projection of the flow on constant average field ρ = 1
2
ϕaϕa:

k∂kUk(ρ) =cdZkk
d+1

(
N − 1

Zkk2 + U ′(ρ)
+

1

Zkk2 + U ′(ρ) + 2ρU ′′(ρ)

)
Rescaling u = Uk/cdZkk

d and ρ = 1
2
Zkk

2−dϕaϕa by canonical dimension:

k∂ku+ du− (d− 2)ρu′ =
N − 1

1 + u′
+

1

1 + u′ + 2ρ u′′

Can be solved exactly at large N , otherwise expansion in powers ρn
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Beta equations

Taylor expansion of u(ρ) = µ̃ρ+
∑ λ̃n

n!
ρn given by Faà-di-Bruno formula for

f ◦ g = 1
• ◦ (1 + u′), yields expansion in partial Bell polynomials Bn,l

bv1n (µ̃, λ̃j) =
n∑
l=1

(−1)ll!

(1 + µ̃)l+1
Bn,l(λ̃2, λ̃3, ..., λ̃n−l+2)

and for g(ρ) = 1 + u′(ρ) + 2ρu′′(ρ) shift bv2n (µ̃, λ̃j) = bv1n (µ̃, (2j − 1)λ̃j)

→ infinite tower of coupled equations (depend on λ̃n+1 at order n)

k∂kλ̃n = −dλ̃n + n(d− 2)λ̃n + (N − 1)bv1n (λ̃i) + bv2n (λ̃i)

*** anybody seen these Bell polynomials in the FRG literature? References??
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Large-N solutions

In the large-N limit, the u′′ term vanishes:

k∂ku+ du− (d− 2)ρu′ =
1

1 + u′

Flow equations for vacuum expansion u(ρ) =
∑
n≥2

gn
n!

(ρ− κ)n decouple:

∂tκ+ (d− 2)κ = 1

∂tgn + dgn + (d− 2)ngn = bv1n (1, g2, ..., gn, gn+1 = 0)

→ exact recursive fixed point solution (∂tgn = 0)

κ∗ =
1

d− 2
, g∗2 =

4− d
2

, g∗3 =
3

4

(d− 4)3

d− 6
, . . .

this is the Wilson-Fisher fixed point

non-vanishing vacuum (κ local minimum) for 2 < d < 4

converges to the Gaussian fixed point u = 0 for d→ 4

scaling exponents θn = d− 2n, only θ1 > 0
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Exact solutions

Possible to solve the flow for u′ exactly with method of characteristics:
[Busiello/DeCesare/Rabuffo ’81]...[Litim/Tetradis 9501]

k∂ku+ 2u′ − (d− 2)ρu′′ =
u′′

(1 + u′)2

has implicit 1-parameter fixed-point solutions

ρ =
1

d− 2
2F1

(
2,

2− d
2

,
4− d

2
,−u′

)
+ c(u′)

d−2
2

[Litim/Marchais/Mati 1702]
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LPA in non-local field theories??

Two ways beyond locality (point-like interactions):

derivatives ∂ϕ

combinatorially non-local interactions encoded by graphs γ, e.g.

trγ(ϕabc(x)) ∼= ∼=

Then even for single scalar field various interactions at given order ϕ2n!

→ projection to constant field ϕ(xxx) = χ does not determine potential Uk

Γk[χ] =

∫
Rd
Uk(χ) =

∫
Rd

dx
∑
γ

λγ;ktrγ(χ) = adR

∞∑
n=0

( ∑
γ;Vγ=2n

λγ;k

)
(apχ2)n
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Another way to Bell polynomials

PF expansion: split Gaussian part C in Γk such that with P−1
r = C +Rk

∂kΓk[ϕ] =
1

2
Tr

∂kRk
Γ

(2)
k [ϕ] +Rk

=
1

2
Tr

∂kRk
P−1
r + F [ϕ]

,

assume formal power series F [ϕ] =
∑
j≥1 ajϕ

2j and use geometric series

∂kRk
P−1
r + F [ϕ]

= Pr
∂kRk

1 + PrF [ϕ]
=
∑
l≥0

Pr(−PrF [ϕ])l

then multinomial expansion

(a1ϕ
2 + a2ϕ

4 + ...)l =
∑

s1+s2+...=l

(
l

s1, s2, ...

)
as11 a

s2
2 · · ·ϕ

2
∑
j≥1 jsj

→ at φ2n, sum over partitions σ ` n of length |σ| = l

∑
l≥1

Pr(−PrF [ϕ])l|φ2n =
∑
l≥1

(−1)lP l+1
r

∑
σ`n
|σ|=l

(
l

s1, s2, ..., sn

)
as11 a

s2
2 · · ·
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Another way to Bell polynomials II

These sums over partitions are (up to factor l!/n!)

partial ordinary Bell polynomials

B̂n,l (a1, a2, ..., an−l+1) =
∑
σ`n
|σ|=l

(
n

s1, s2, ..., sn−l+1

)
n−l+1∏
j=1

(aj)
sj

or for an exponential series aj = bj/j! partial exponential Bell polynomials

Bn,l (b1, b2, ..., bn−l+1) =
∑
σ

(
n

s1, s2, ..., sn−l+1

)
n−l+1∏
j=1

(
bj
j!

)sj
coefficients also found in [Carozza/Lahoche 1610], but there convention λj/j

General PF expansion for F a power series

∂kΓk[ϕ] = 1
2
Tr

[
Pr +

∑
n≥1

ϕ2n

n!

∑
l≥1(−1)ll!P l+1

r B̂n,l (a1, a2, ..., an−l+1)

]
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LPA from combinatorial perspective

Question: Conditions to treat F [ϕ] as such a power series?

Naive answer: “Tr[ϕ2n]” must have unique meaning.

this is a rephrasing of the LPA condition

if unique, then one can set “Tr[ϕ2n]” ∝ ρn

obviously true for a local scalar field

Tr[ϕ2n] = Tr[δ(x− y)ϕ2n(x)] =

∫
dxϕ2n(x)

but also true for cyclic case: if Tr[ϕ2n(x)] is an actual trace

Corollary: LPA expands in Bell polynomials in general

Could be an inverse strategy: finding Bell polynomials in PF expansion may hint at
possibility for constant-field projection method...
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Example O(N) theory

Instead of projection ρ = ϕ(x)2

2
, power series treatment yields same result:

Take second derivatives

δ2(ϕcϕc)
j(x)

δϕa(x)δϕb(y)
= 2j

[
δab(ϕϕ)j−1(x) + 2(j − 1)ϕa(x)ϕb(x)(ϕϕ)j−2(x)

]
δ(x−y)

thus possible to express F in terms of potential U

µ+ F [ϕ] = δabU
′[ϕ(x)2/2] + ϕa(x)ϕb(x)U ′′[ϕ(x)2/2]

Wetterich trace yields the same FRG equation as before

Tr[(δabU
′ + ϕaϕbU

′′)n] = Tr

n∑
k=0

(
n

k

)
(δabU

′)k(ϕbϕcU
′′)n−k

= (N − 1)Tr[U ′n] + Tr[(U ′ + ϕ2U ′′)n]

both Tr[δab(ϕϕ)n] and Tr[ϕaϕb(ϕϕ)n−1] yield again
∫

dx (ϕϕ)n(x),
but at different powers in N
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O(N) theory diagramatically

Index structure in the trace easier to grasp diagramatically:

green lines for index contractions at vertices

terms ∝ N have green line going through all “Wick contractions”:

Tr[(δabϕ
2)2] ∼= ∝ N

in all other terms, all green lines stop at some external vertex

Tr[(δabϕ
2)(ϕbϕa)] ∼= ∝

same for higher order interactions ϕ2j , and for higher order in (PrF )n

Vector theory: all diagrams yield again vector interactions (ϕcϕc)
j

thus LPA works for the complete theory at finite N
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General non-local diagrams

For tensors (more indices) usually new interactions are generated

cyclic melonic diagrams yield again cyclic melonic interactions

c c ∝ N3
c

but melons with different colours already yield others

c1 c2 ∝ N2

In fact, already c for different c generate any bipartite coloured graph

→ no LPA in general
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Stable regimes at large N

Still, at large N a given class of graphs may generate only themselves

Example: Cyclic-melonic potential approximation

advantage of RG flow: pick regime by UV boundary condition Γk=Λ

observation in [Carrozza/Lahoche1612]: cyclic melons dominate flow at large N

indeed easy to prove: Np−1 diagrams like

c c ∝ N3
c

yield always again cyclic melonic interactions

thus at large N this is an LPA (as Tr(ϕ2n) is unique, i.e. cyclic-melonic)

Strategy towards new phases: New LPA regimes from simple diagramatics

Cyclic necklaces already identified [CaLaOriti1703], there should be many more
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Meaning of large N

A) standard case: N size of internal indices

array of local fields ϕa1a2...ap(x) propagating on domain Rd 3 x
possibly some symmetry like O(N)p (not necessary)

examples: usual vector theories, SYK related tensor field theories

B) dynamic case: N = ak cutoff of propagating d.o.f.

fields ϕ(ggg) on compact domain Gp 3 ggg of volume a

thus discrete (countable) spectrum of momenta ϕa1a2...ap

combined fields ϕ(x,ggg) on Rd ×Gp possible, then again ϕa1a2...ap(x)

RG scale k leads then to momentum cutoff N = a · k
large N means either i) UV k →∞ or ii) “thermodynamic” limit a→∞

Main difference (in LPAs) only in scaling! Qualitatively similar results!
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Ex.: FRG equation in cyclic-melonic LPA

Full FRG equation in cyclic melonic (isotropic) LPA on Rd × U(1)p:

k∂kU =
I

(d,0)
η

k2Zk + U ′ + 2ρU ′′
+

pI
(d,1)
η

k2Zk + U ′
+

p∑
s=2

(
p

s

)
I

(d,s)
η

k2Zk +M
(s)
k

again potential U(ρ) = µkρ+
∑
n≥2

λn
n!
ρn = µkρ+ Vk(ρ)

at higher orders, comb. factors in eff. mass M
(s)
k (ρ) := µk + p−s

p
V ′k(ρ)

two (A) or three (B) types of threshold functions in

I(d,s)
η (k) = k2Zk

(
1− ηk

2

)
I

(d,s)
0 + Zk

ηk
2

(
I

(d,s)
1 + I

(d,s)
2

)
which all behave qualitatively like

I
(d,s)
0 ∝ I(d,s)

1 /k2 ∝ I(d,s)
2 /N2 ∝ kd ·Ns

therefore in case B) the FRGE is non-autonomous but in A) autonomous
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Beta equations

Terms still depend on U ′ and U ′ + 2ρU ′′, thus same exp. coefficients bv1n , b
v2
n :

βcm
n,k(µ, λi) = bv2n (µk, λi)I

(d,0)
η (N) + bv1n (µk, λi)I

(d,1)
η (N)

+

p−1∑
s=2

(
p

s

)
bv1n

(
µk,

p− s
p

λi

)
I(d,s)
η (N)

vector case included for p = 1

for p ≥ 3: relative factor p−s
p

between mass and couplings at order Ns

at large N equivalence to large-N vector-model (only bv1n occurs):

βcm
n,k(µ, λi) ∼ p bv1n

(
µk,

p− s
p

λi

)
kdNp−1

independent of whether theory class A) or B); difference only in scaling!

19 / 23



Rescaling and dimension

Dimensionless beta equations can be obtained:

Case A): Scaling like local field theory, independent of order in N :

λn = Znk k
d−(d−2)nλ̃n

Case B): at scale kdNs = askd+s rescaling:

λn = Znk k
d+s−(d+s−2)na(1−n)sλ̃n

thus, theory B) behaves there effectively like a (d+ s)-dim. local field theory

at large N = ak, this dimension is d+ p− 1 in the melonic case

in agreement with perturbative renormalization: divergence degree (d = 0)

ωs.d. = p− 1− (p− 1− 2)n− (δGurau +K∂ − 1)

different dimension in other regimes, e.g. d+ p
2

in necklace LPA
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Dimensional flow

Non-autonomy of equations B) at finite a: dimension changes continously!

0.001 0.010 0.100 1 10 100

3.0

3.5

4.0

4.5

5.0

k

deff

LPA is only valid at large N

still, the scaling results apply also to the
full FRG flow

qualitative result of dimensional flow is
valid in general

At each order l in expansion in Bell polynomials, k-dependence Fl(k) factorizes:

βcm
n,k(µ, λi) ∼=

n∑
l=1

F
(d,p)
l (k)

(−1)ll!

(Zkk2 + µk)l+1
Bn,l (λ2, λ3, ..., λn−l+2)

Continuous rescaling λn = Znk k
2n
(
F

(d,p)
1 (k)

)1−n
λ̃n yields effective dimension

deff(k) :=
∂ logF

(d,p)
1 (k)

∂ log k
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Summary

Insights:

LPA not meaningful for combinatorially non-local theories in general,

but possible at large N in some regimes

then beta equations expand in Bell polynomials, “LPA Universality class”

this explains equivalence of cyclic-melonic regime with vector theory

crucial difference: scaling and thus effective dimension

dynamic non-locality (B) has N = a · k, therm. limit ∼= large-N limit

in large-N cyclic-melonic regime, dimension d+ dg(p− 1)

at finite a, dimensional flow from d+ dg(p− 1) to d
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Outlook

Cyclic-melonic LPA only first step to understanding of non-local phase spaces:

proper argument for dimensional flow without reference to LPA

systematic exploration of LPA regimes, proof for universality

LPA regimes in the IR (stable theories at N0)?

better understanding of LPA′ (flowing anomalous dimension η)

analytic methods for more precise statements about NGFPs

non-compact groups, realistic models of quantum gravity

...

Thanks for your attention!
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