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Kondo Effect

* Consider free fermions in 1D dimensions interacting to a spin impurity
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* If we compute resistivity, we will see that perturbation theory breaks
down at small T.
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* 1/D is a length of a sample. What happens at IR?
* As Nozieres put it “Theorists ‘diverged’ from experiment



RG and Kondo Effect

* Let us consider an interaction T exp [—i/\ /S’(t) : w"gw(ﬁ', t)]

e At the second order of perturbation theory we have
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* It is a renormalization of the coupling constant N

* The electrons align with the impurity and make it stronger



Weak vs Strong coupling constant

e Just let us try to understand what’s happening?

* At zero coupling we don’t have any defect

* At any small coupling the effective interaction becomes strong
* It means that wave function must be set to zero at the origin

e Effective boundary condition



Large k appraoch

e Let us consider multi channel Kondo model
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Then doing the same type of computation we get
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So we clearly see that at large k we have a fixed point

The existence of such strongly coupled point could be proved via
bosonization



What does such a point describe?

* Very far from impurity we are getting a usual bulk CFT

* Very close to the impurity we are definitely not even a scale invariant
behavior

* At the intermediate regime we have some influence, but it forgets
about the boundary initial details. It could be just a boundary
condition, or some additional degrees of freedom.

* We can talk about the boundary universality class



BCFT

* In 2d we can map a boundary toIm z = 0.
e Still there is a large number of CT.

* In higher dimensions the symmetry is // / // / //

SO(p+1,1) x SO(d —p) C SO(d+1,1)

* That is still powerful to help us solve or bootstrap a theory.

* So CFTs could host some additional and interesting dynamical effects
connected to extended operators.

* Do Tensor Models have such interesting dynamical effects?



CTKT Tensor Models

* Let’s try to make a similar analysis in tensor models
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* Posses quite interesting large N limit, that allows to solve the theory
in IR.

* Thus we believe that in the IR it is a conformal field theory and
therefore we can ask a question whether BCFT or DCFT arise in this
model?



Localized Magnetic Field

* So let us consider the following action

e We want to check that such deformation would flow to some
Interesting point.

* Due to the simple large N structure, we can hope that we can solve
this problem using large N techniques.

* Thus if we consider the following limit
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Large N [imit

e Such diagrams we will call melonic trees.
* We will prove that this diagrams dominate in the large N limit

* First we consider a general feynman diagram. We can use again a trick
that we can forget about some of the colors and we would get a fat
graph.

* We can get the following relation
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Large N [imit

 Since any Edge terminates on a Source or Vertex we have
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 Combing together with Euler formula we get
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* From that we are getting a usual coupling scaling and source scaling



Maximal graphs

* Now let us consider a maximal graph. From the above relations we
see that graph must be flat and connected.
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Dyson Schwinger equation

Analogous with sourceless theory the bulk propagator still satisfy the same equation
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But now we have to take into account that the field could acquire some non-zero vev.

We are getting the following equation:
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If we consider small J we can replace the exact propagator with the effective IR propagator that would give
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Irrelevant deformations

* Let us first consider a situation when we couple to an irrelevant
deforamation
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* |t corresponds to a trivial defect. Notice an explicit dependence on the
parameters of the defect. It is not conformal!



Relevant deformation

 Let’s come back to the previous problem for d<4 the defect is relevant
* We can solve with the following ansatz
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* It is easy to check that it satisfy the equation cz, = E)LC

* Notice that the solution forgot about the details of the defect

* The first sentence of Leo Tolstoy's novel Anna Karenina Is:
"Happy conformal defects are all alike; every unhappy non-
conformal defect is unhappy in its own way."



Exact solution in the epsilon expansion

* In 4-d at first order of epsilon we can solve this equation

F=XF, J=X\'J By(—AL)TF + F3 = j§* Y (z.).

* We will use the following ansatz to solve the equation
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* This equation could be solved and at the end we are getting the
following solution
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Beta-Function

* We can cross check the previous results using conventional epsilon-
expansion
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Beta Functions at Large N

e Using usual large N assumptions we arrive at
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* So it is indeed a conformal point and we can apply a lot of interesting
approaches to solve the theory but it is outside of my talk



G-theorem

* We can prove an analog of the c-theorem for defects
* It is g-theorem and relates that the entropy of the defects decreases

Simp (T') = limi—oo[S(I, T) — So(l, T)],

* There are two pieces: regularization dependent and proportional to
the defect length and independent.

* The independent one decreases
* More general proof by Komargodski et al.



Defect Entropy of Tensor Line Defects

* We make a conformal transformation to a circle
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* We can notice that the defect entropy is
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e Easy to compute in the toroidal coordinates



Defect Entropy of Tensor Line Defects
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One point functions of bilinear operators
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Conclusion

* Line Defects are interesting dynamical phenomenon that provide
some additional tools for understanding the properties of Conformal
Field Theories.

* Tensor Models also allow to have such defects

* They satisfy usual unitary properties of line defects
* Check ANEC?

* More sophisticated defects?

* GW, SYK or higher tensor models?



Thank you for your attention!



