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What is LG theory? How does it relate to the RG?

[Kopietz, Bartosch, Schutz; Sachs, Sen, Sexton; Zinn-Justin; Goldenfeld]

- statistical field theory method to describe 1st and 2nd order phase transitions at mean-field level

- LG mean-field analysis clarifies phase structure of local field theories (coarse account)

- transition to condensate phase with non-trivial VEV (non-perturbative vacuum) (y) # 0
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LG RG

LG theory studies I \
fluctuations around I /\\ involved RG studies go

the Gaussian fixed point beyond small fluctuations

(free theory)
quasi-Gaussian distribution generally non-Gaussian distribution
{p) #0
—» coarse account of the phase diagram —» detailed account of the phase diagram
(good enough to start with...) (more difficult...)



What is LG theory? Setup (I)

[Kopietz, Bartosch, Schutz; Sachs, Sen, Sexton; Zinn-Justin; Goldenfeld]

start with free energy functional as an expansion in terms of even + odd powers of
the local field (order parameter) and its gradient

consider truncation of this functional assumed to be valid from mesoscale to macroscale

details on microphysics encoded in couplings and order parameter

order parameter features only universal properties of the system
(dimension of space, symmetries of the order parameter)

1 A
model/theory global Zg-symmetry Slp| = é/dda:gp(x)(—A—i—mQ)gp(m) + = 1 /dcfl’@( )t
order parameter dimension of underlying space

free energy functional

= goal: approximately evaluate /DCPG [¢]
(solve theory)

partition function (sums all configs)

allows to control thermodynamic phases of the system by studying long-range correlations of order
parameter fluctuations over the distance ¢ (correlation length)

beyond & correlations decay exponentially; it diverges at criticality



What is LG theory? Setup (ll)

[Kopietz, Bartosch, Schutz; Sachs, Sen, Sexton; Zinn-Justin; Goldenfeld]

The how to:

1) determine uniform field configurations which are minimizers of the free energy functional

—
[ 2

wo =0if m? > 0 and wo = :\I," - % ifm? <0

2) study correlations of fluctuations around this uniform background (aka Gaussian approximation)

2. a) linearize classical equations of motion using fluctuations over the background ¢(Z) — o + d¢(Z)

2
—> (A +m?)dp(Z) + %599(3?) =0
. . o3 - . :
2. b) solve for correlation function (—A +m? + ﬂ) C(£) = 6(£)  (go to Fourier representation)

2

2. ) correlator is exponentially decaying function —» determine correlation length £ = m~ <0

—2m?2’

3) determine domain of validity
— fluctuations and coupling should remain small then mean-field theory self-consistent

f ddxC'(f) critical dimension (on flat space) below
. _ J€ 4—d _ which MFT seizes to be accurate;
Ginzburg parameter @ fg ddx()p% QAT —de =4 accounts for coarse picture of phase

diagram (good enough)

(measures strength of fluctuations)

on the d-hyperboloid
Q~ e DY d. — 00 | MFTis sufficient . users




Why bother in Group Field Theory? Applicable?

YES!

What is GFT?



Motivation via Matrix models for 2d gravity

i Francesco, Ginsparg, Zinn-Justin 9306153]

e Matrix models generate 2d random lattices

e at criticality they give rise to continuum geometries of dimension d < 2

e phase diagram of simple matrix models obtainable via
diagonalization of matrices, computation of the partition function for
large matrixes and then checking the (non-) analyticity of the free energy

e alternative route: phase structure via functional renormalization group

e continuum limit of simple matrix models agrees with that of 2d Liouville gravity # of vertices
amplitude
for example l l
1 A A1)
S(M) = ~tr(M?) + S tr(M3 g = | dMe—S(M) — Z AR
combinatorics of a 2-simplex I
rank 2 / \

graph

snapshot of a triangulation

= a way to generalize to higher dimensions: Tensor Models and GFTs



Group Field Theory

[Boulatov, Ooguri, Oriti, Freidel, Rovelli, Livine, Gurau, Baratin,...]

classical theory (kinematics):

rank r

group field o(g1,.ygr) : GT = R,C, e L*(G")

|

Lie group G
parallel transport gy = Pefef A for I= 1,...,m, link e;, connection A

typically work with » = 4 and G = SL(2,C)

— to model 4-dimensional Lorentzian quantum geometries

supplement field with invariance property: o(gry-gr) = @(nh™ Y, . g.h7Y), YheEG

(known as closure constraint)
—» phase space: T*G? =~ G% x g° 4
—— dual formulation:  ¢(Bu, ..., Bs) Z/(d9)4<ﬂ(g1,gz,93,g4 1] s (B1)
I=1

~ (closure)

G By
\\\’ _____ - Ny
e.g. for r=4 invariant field corresponds to a ya = AN /B‘lv Z B, =0
3-simplex/tetrahedron a =a
/ i Bz/ | .
9 !
l



Group Field Theory

classical theory (dynamics):| Sqrr = / (dg)"@(g1)Ke(gr) + V[e(g1), ¢(g1)]

KC : kinetic operator, V : non-linear and non-local interaction term

model specified by: G, dimension d, IC, V and symmetries of ¢

crucial feature of GFT models: combinatorially non-local interaction

example in 3d:| ¢ / 3 2 A/ 6 B
= [ + 5 [/ + c.c., = .2,
(Boulatov) (dg)” 123 Al (dg)° 1231450256364 p123 = ©(91, 92, 93)

2
K
1 > 1
3

combinatorics of a 3-simplex
‘ v
v

A

example in 4d:
P S = /(dg)4\901234\2 + = /(dg)10901234<P456790738990962(10)90(10)851 + c.c. ‘ ‘

(Ooguri) 5!

combinatorics of a 4-simplex
[Ooguri 9205090]

4-simplex



“quantum theory” (dynamics):

AVE

7 — | DDGeScrrle:pl — _~ A -
GFT / pLpe ; Sym(T) I GFT Feynman amplitude Ar

graph corresponds to discrete geometries

Curiously: Boulatov and Ooguri model provide GFT quantizations of BF-theory in 3d & 4d

=P build models starting with BF-theory (TFT)

BF-theory:

S[LU,B]: B[J/\FIJ(W)

BF-action l
connection 1-form

2-form curvature/field
strength
/= / DwDBeiS[w,B] — / Dw5(F(w)) (integral over flat connections, i.e. no local dof)

(=volume of space of flat connection, infinitely large?!)

ill-defined in the continuum ———» quantization on a regulating lattice structure

» quantisation of BF-theory on a lattice: “GFT does the job”

[Ooguri 9205090]

» Rather: GFT prescription has become better in getting the job done (e.g. color dof) ,.....;



But: need to link with theory for gravity

> How to yield a model for Lorentzian gravitational degrees of freedom?
= mpose so-called simplicity constraints (s. next slides)
= How to? Classically and at GFT (quantum) level?

= in Lorentzian setting: what info for the lattice is needed be in accordance with microcausality?

= want a lattice model for Lorentzian quantum gravity: difficulty to map Lorentzian structure faithfully

= does that impact continuum limit? (see e.g. CDT)

Summary: How to properly generate/decorate the lattice such that causality, topology etc nice?

—  Attempt: Lorentzian Barrett-Crane model

1) Link with (classical) gravi
To this aim first more on: ) ( )o b

2) disambiguation what we mean here by causal structure
10



Link with Einstein gravity

= via constrained BF-theory:

1
S[M,B,M] — / [BIJ /\FIJ(W) + §M[JKLBIJ A\ BKL]

|

v Lagrange multiplier

s[(2,C) — valued 1-form

s[(2,C) — valued 2-form
v
field strength: F'/(w) = dw!” + W) A W™’

variation wrt 4 ———  “simplicity constraint” on B:

1
B A BEL — gl VKL — EEIJKLBIJ A BEL

solve for B —— solutions in two sectors: (1) topological sector vs.

(2) gravitational sector (Palatini)
first-order formulation

: 1 J KL
SPalatini[eyw] — /EIJKLG Ne’ N F

tetrad field
0.5 = 0 — Einstein field eqns. 0,5 = 0 — 1st Cartan: dye! +wiAne! =0

N\

spin connection 11

N | —



Lorentzian structure

classical level: Lorentzian structure/causality plays an important role in continuum spacetime physics
What do we mean here by causal structure?

= pbare causality + time orientation

e.g. [Bianchi, Martin-Dussaud 2109.00986; Jercher, Oriti, Pithis 2206.15442]

Causal A
structure

bare causality time orientation

—

tangent vectors: timelike tangent - ] /
local level timelike, lightlike  vectors either past or SEms L
spacelike future pointing TG £ <

two points (events)

. . H k
global level | ©ine! have spacelke, el soparated ST L T o
timelike or lightlike boints e

separation

> Encoded by the Lorentz group G = SL(2, C)

12



Lorentzian structure

quantum level: either encode causal structure directly or demonstrate how it emerges in the continuum
here: intend to impose causal structure at quantum and discrete geometric level

» more refined imposition may be required (see for instance Lorentzian Regge Calculus and locally CDT)
> here focus on bare causal aspects: G = SL(2,C)

> time orientation aspect would require: G = Pin(1, 3)

[Livine, Oriti 0210064; Bianchi, Martin-Dussaud 2109.00986]

Rough status of models:

e standard formulation of Lorentzian spin foam and GFT models (BC and EPRL models)
focusses mostly on the glueing of spacelike building DIOCKS et ciane sooiozs: ot perera. movet, ine 0711 0120

problems: 1) how does continuum bare causal structure emerge?

2) how to deal with lightlike and timelike boundaries?

» notable exceptions (EPRL-CH extension with spacelike and timelike tetrahedra; BC-PR with spacelike or timelike tetrahedra)

[Conrady, Hnybida 1002.1959 & 1003.5652;
Perez, Rovelli 0009021 & 0011037]

goal: formulate spin foam and GFT model which treats spacelike, timelike and lightlike tetrahedra
with all possible interactions (simplicial) ... o e so06 15060

13



complete Barrett-Crane GFT model

Oriti, Baratin 1108.1178; Jercher, Oriti, Pithis 2112.00091 & 2206.15442]

a model for Lorentzian quantum gravity in 4d Lierener ILAGS tak 097221

Barrett, Crane 9904025; Perez, Rovelli 0009021 & 0011037;

 start with Ooguri model: GFT model for BF-theory in 4d (topological field theory)

« impose so-called simplicity constraints to turn it into a theory of gravity (first-order Palatini)

= for this add non-dynamical timelike, spacelike and lightlike normal vector X to domain

—Pp allows to impose closure and simplicity covariantly and commutatively

(g1, ..., ga: Xo) : SL(2,C)* x SL(2,C) /U™ — C  with  ac{+0,-}

= (0,0,0,1)

spacelike

UH) =8U(2), U® =1S0(2), U™) =SU(1,1) stabilizersof X, =(1,0,0,0), Xo= %(1,0,0, 1), X

timelike lightlike

SL(2,C)/SU(2) = H? SL(2,C)/1SO(2) = C

distinguished v +

hypersurfaces in
Minkowski space > ; -
y c RLB / N

a : skirt radius

z-axis suppressed -

SL(2,C)/SU(1,1) = H"?
t

Yy, = a®

X, =(1,0,0,0) € H® Xo=—12(1,0,0,1) e C X_ =(0,0,0,1) € H"?

14



g Xa) = o(gih o gah=Y k- X.).  Vh € SL(2,C |
symmetries: ].) Sp(gla » 945 ) 90(91 s ey g4 X ) = ( ) (closure)

2) (g1, s 915 Xo) = p(grut, ..., gata; Xo),  Vuq,...,us € Ux, (simplicity)

Geometric interpretation:

= Go to bi-vector representation

By
4 AN \ \\ B,
_ \ D—" bi-vectors close to form a tetrahedron

1) & B, =0 /_\ X

/ -/

t=1 By S | &,
Byl

2) <:> X A(* B)AB =0 geometric information in bi-vectors is “orthogonal” to respective normal

Lorentz index A € {0,1,2,3}

— fields correspond to spacelike, timelike and lightlike tetrahedra

15



imposition in the dynamics:

- unique model

(no ambiguous amplitudes as in previous formulations, X’s drop from dynamical amplitudes)

Slp, o]l = Klp,p] + Ve, @]

_ 4 _ g1 g1
Ked =Y [ gt AXo@ (g1, -003 X )01, -0 Xo) 7 b6l :
~ JsL(2,0)4 SL(2,C/U(e) % 9

a€{+,0,-}

Ve, @] = /(dg)10 Z /anl---/an5901234(Xa1)<P4567(Xa2)@7389(Xa3)90962(10)(Xa4)90(10)851(Xa5)+C-C

a1...05

H(_J
21 vertices (!) e.g.:

- 5 spacelike tets (standard BC and EPRL models)
- 1 spacelike tet, 4 timelike tets & 5 timelike tets (CDT-like)

more refined causality imposition may be required

kernels computed using
. . integral geometry methods in
(e.g. locally CDT/Lorentzian Regge Calculus: vertex causality) |, o 12054562 aralg Y

Asante, Dittrich, Padua-Argielles 2112.15387] [Jercher, Oriti, Pithis 2112.00091 & 2206.15442]

» can be straightforwardly formulated as a colored model ... 10050714, 10112726, 11025750, 11056072

Gurau, Rivasseau 1101.4182; Gurau, Ryan 1109.4812;
Bonzom, Gurau, Rivasseau 1202.3637]

» introduction of r+1=5 colored fields reduces combinatorial complexity
» generated coloured graphs bijective to 4-dimensional simplicial pseudo-manifolds
> keep it simple here: work with ordinary simplicial (and tensor-invariant interactions)

» based on colored model reduction to causal tensor model can be given: 2 CDT vertices + dual weighting

= generates causal dynamical triangulations in 3+1d ... on pinis 2208, 150021 16



Back to Landau-Ginzburg method

Applicable in GFT?

17



Why bother in GFT? Applicable?

transition to condensate phase in GFT with non-trivial VEV?!

LG RG

m2 m2
I problem of the continuum limit in GFT/spin
foam models
'a :a A mapping phases/phase structure of
N such models
I to this aim: exploit field theory character of GFTs
—A
e.g. GFTon R3
<90> ?é O [Ben Geloun, Martini, Oriti 1508.01855 & 1601.08211]

condensate remains hypothesis for realistic models (but getting there); test with LG theory applied to GFT

important for group field theory condensate cosmology: condensate phase is important pillar

e.g. [Gielen, Oriti, Sindoni 1303.3576 & 1311.1238; Gielen, Sindoni 1602.08104; Oriti 1612.09521; Pithis, Sakellariadou 1904.00598]

upshot: LG MFT applicable to GFT in spite of non-locality of its interactions, gauge invariance and simplicity

18



Landau-Ginzburg mean-field theory of GFTs

[Thurigen, Pithis 1808.09765; Marchetti, Oriti, Thurigen, Pithis 2110.15336 & 2209.04297]

(goal: determine ingredients to realize phase transition)

local scalar field LG theory gives coarse picture of phase structure thus sufficient to
theory: point to the formation of a condensate phase; fully accurate only
above critical dimension

—» method works also for GFTs (non-local)

(shown for simplified models on Abelian compact/non-compact group with/out closure constraint
with/out additional local dof; wip on Lorentz group and simplicity constraints imposed)

mean-field analysis for ¢(g) : G" - R,C  take G =R
devise regularisation scheme due to non-locality together with projection onto uniform fields: G — U(1)
specifies

rank of group combinatorics
coupling field

=
S

double-trace melon

extract critical dimension via Ginzburg quantity >}W§‘4—(T—fg)

quartic melonic
non-local (} ()
correlation / contribution
length .
quartic quartic necklace @
interaction
H H . L) . . ~d l. .'1

various interactions (power and combinatorics) checked and result generalized stmphcia @

impose closure constraint  r—r—1  (orequally sp — so +1)
19



More realistic scenario - kinematics

[Marchetti, Oriti, Thurigen, Pithis 2209.04297]

work within context of the complete Barrett-Crane model
» caveat here:

> restrict to BF-quantization of first-order Palatini gravity with spacelike hypersurfaces

» BC model restricted to spacelike tetrahedra/timelike normals

©(g9,X) = (91,92, g3, 91, X) = SL(2,C)* x ]I-|]I3 —R,C

v

SL(2,C)/SU(2) = H?

decomposition of the field in terms of irreducible representations

Sp(g’X) = H (/ dpzpz Z D] m;00 gl ) Spjpfﬁlpjz%z]am314m4
=1 Ji 77

Wigner matrices of SL(2,C) in the so-called unitary principal series Dl )( ) (e xR

jmln Sle{vhlvl+1,), me{—j i, ne{-l..0}

integration over normal to get rid of irrelevant information on embedding
2 is
w(g) N /HS ngO(g’ X) - H /dpipi Z Dg)zm 00(91) Bﬁlrfflgigllsnslzxml90511%21[?732%2]37”3]4”%4
1:1 j’L7m17l’L7nl

Barrett-Crane intertwiner  Bf1F2F3P4 = / dX HD(" 0)

Jimijamajzmajama Jirmg 00

20



More realistic scenario - dynamics

S[Spa 95] = S0 [907 95] + S1A [907 95]

GFT action kinetic term  interaction(s)

4
Solep, @] =/ dg/ dX (g, X) <—ZAH‘#> v(g,X)
SL(2,C)4 H3 i=1

consider interactions of type: @ @ (‘) (‘) (<>Q) »
[ @

double-trace melon simple melon necklace simplicial

e.g.

A

S1A simplex[P; §] = 5l /SL(2 . [dg] ™ /Has[dX]5801234(Xl)804567(X2)907389(XS)(PQGZO(XAL)(POSM(X5> + c.c.

21



More realistic scenario - regularization

* due to closure constraint together with projection onto uniform fields %0 one has infinite volume factors as SL(2,C)
is non-compact

— have to regularize models: done by analytic continuation and compactification of SL(2, C) to Spin(4)

[Dona, Gozzini, Nicotra 2106.14672]

concretely:

* at local level it amounts to map between corresponding Lie algebras spin(4) = su(2) & su(2) <> s((2,C) = su(2) ¢ isu(2)

» at global level it amounts to map between corresponding Lie groups
via mapping respective Cartan decompositions into each other:

SL(2,C) Spin(4)
SU(2) x A* x SU(2) — SL(2,C)

1ln 1 — 1t
(u,e20%% v) > ueza%y~! a%3

SU(2) x TT x SU(2) — Spin(4)
(u,e72a% v) > (ue_’%%"?’v ,ue'2a3y 1)

1 introduce regulator ICK rotate F compacti .
AY ={erap € Ry} —————p A = {e2 iy € [0.4)} — 55 T = {e 27|t € [0.4)) ————> T* = {¢" 23|t € [0, 2ma)}

n— —it A — 27a

« essentially amounts to mapping of respective homogeneous spaces into each other

H® = SL(2,C) éSU(z) 5% = Spin(4)/SU(2)
_ dn - 12(7N 2

urey (GESNOEY a5 = (%) s (£)an.
skirt radius

« map representation labels p — —ip —P |work with Spin(4)-representation theory instead

22



More realistic scenario -
correlation function and length

Starting from regularized action:
— linearize equations of motion over non-trivial background 0

— solve for regularized correlation function:

4
§ : § : (pi,0) P1P2P3P4 AP1P2P3P4
H vol T+) Djlmll ng (gz) Bl1n1l2n2l3n3l4n4Cj1m1j2m2j3m3j4m4

=1 .]'L:mi;
li,m;

CP1P2P3P4 1
Jimijamajzmajama 1 .
oz Zz (‘Caslmi) + bp,j,m

/

encapsulates remaining non-locality of interactions after projection onto ®

—» analyze correlation function mode-by-mode

— turns out that only the zero-mode behaviour of the correlator is important for us; there we can Wick rotate back and

decompactify to SL(2, C)

— only these zero-modes contribute to the correlation length and determine the behaviour of the Ginzburg Q-parameter

— result for correlation length (via asymptotic analysis or second-moment-method):

1 l flat limit: 52 ~ l
CLQ,M2 % a — 00 o

modification due to hyperbolicity of domain

see also [Benedetti 1403.6712]

£~

23



More realistic scenario - Ginzburg Q

e results for local scalar :
) 2 —2-1>
fleld theory on Q ~ Avg e ¢ [Benedetti 1403.6712]

one 3-hyperboloid T
coupling \

exponential suppression due to hyperbolicity of domain

rank of the group field

. . : ) 2 —2(4—sp) >
for finite skirt radius a : Q ~ )\75 e a |
combinatorics of interaction sg < 4

dimension of 3-hyperboloid

flat limit: Q ~ A gr3M=s0)

a — o0 [agrees with our results 2110.15336]

. . extended formalism:
impact of closure constraint r—r-— or equally so — so + 1) domain has one more slot

via the BC intertwiner:

2 2

. . . . Vy—2 % —2(4—80)§ flat limit: Vy—2

« can be generalized to arbitrary interactions Q~ N7 "EV e a atlimit: Q ~ X\, "€
a — o0

2V,
T:/z_3(4—50)

—» Ginzburg Q always very small

—» LG MFT can self-consistently describe phase transition (w0 =0 vs. ¢g # 0) "



Summary & Conclusions
LG MFT theory is also applicable to GFT models in spite of their non-local interactions
* it informs us about the coarse phase structure of different models

* here applied to: > BC model for Lorentzian (first order Palatini) guantum gravity
> restricted to spacelike hypersurfaces =» spacelike tetrahedra

* results: » MFT description gives accurate account of phase structure
= full phase structure inferable from GFP

i, Oriti, Pithis, Thurigen]

» non-compactness of Lorentz group prerequisite for non-perturbative vacuum
=important for continuum limit

Extensions

* local dof (free massless scalar matter) can be added on the lattice structure

ttttttttt Oriti, Pithis, Thurigen 2209.04297]

 consider all the bare causal structure (spacelike, timelike and lightlike tetrahedra) ........ ...
» consider local causality conditions (like in locally CDT)
 extension to other relevant models (EPRL)

« complement by full-fledged (functional) RG and 1/N analyses

 devise observables & tools to characterize different phases wrt their geometric properties
25



Thank you for your attention!



Backup slides



Recovery of metric information from tetrahedron
G = SL(2,C)

= relate metric and bivector variables

1
A kl AB npm CD pn
(Br. By, By) > gij = €1}l = g p et Sjmn (Bi. " Bip) (B " Bép) AN

bivectors BB :eijkefekB el tetrads e

Lorentz index A € {0,1,2,3}

B; €51(2,C), i € {1,2,3}



Criticism against the BC model and alleviations

BC vertex does not yield tensorial structure of lattice graviton propagator wes roveii o7os osss)

» Obvious mismatch of LQG boundary states and BC boundary states arain, ori 1108.117g)

Area-length constraints are missing exancrov osoz sss)

» Recently it was shown (on a hypercubical lattice) that the BC model is still viable and potentially lies in the same universality
class as the EPRL model in an effective continuum limit ioitricn 2105. 108081

What is the role of degenerate geometries in the BC model? et steeie 02000221

> Need further analysis including timelike and lightlike configurations.

Constraints are “too strongly” imposed (e, pereira, roveii 0705 238)
» Closure and simplicity are imposed in a non-covariant and non-commuting manner (ein oriiooe 4723

» Problems resolved in extended BC model aratin, orit 110811781

EPRL model favored since boundary states are closer to canonical LQG, the Barbero-Immirzi parameter is incorporated

» Absence of Bl parameter does not rule out the BC model. At the same time,
questions wrt the precise value and running of the Bl parameter and parity
violation issues should be addressed [Charles 1705.10984; Benedetti, Speziale 1111.0884]

For now, criticisms are not conclusive and the BC model deserves further attention.



