Random tensor network states & Holography

Based on joint work with Newton Cheng, Geoff Penington, Michael Walter and Freek Witteveen, available at arXiv:2206.10482

Cécilia Lancien

Institut Fourier Grenoble & CNRS

Tensor Journal Club - November 9 2022

Outline

- Background and motivations
- Interlude: Free probability, random matrices and combinatorics of permutations
- Main results

System with 1 subsystem: Complex Hilbert space H ≡ C^d.
 System with N subsystems: Complex Hilbert space H₁ ⊗ ··· ⊗ H_N ≡ C^{d₁} ⊗ ··· ⊗ C^{d_N}.
 tensor product of the spaces corresponding to each subsystem ←

- System with 1 subsystem: Complex Hilbert space H ≡ C^d.
 System with N subsystems: Complex Hilbert space H₁ ⊗ ··· ⊗ H_N ≡ C^{d₁} ⊗ ··· ⊗ C^{d_N}.
 tensor product of the spaces corresponding to each subsystem ←
- Pure state of H: unit vector $|\phi\rangle$ in H (or rather associated rank 1 projector $|\phi\rangle\langle\phi|$ on H). Mixed state of H: convex combination of pure states $\rho = \sum_{k=1}^{r} \lambda_k |\phi_k\rangle\langle\phi_k|$. Equivalently, ρ is a Hermitian positive semidefinite and trace 1 operator on H.

- System with 1 subsystem: Complex Hilbert space H ≡ C^d.
 System with N subsystems: Complex Hilbert space H₁ ⊗ ··· ⊗ H_N ≡ C^{d₁} ⊗ ··· ⊗ C^{d_N}.
 tensor product of the spaces corresponding to each subsystem ←
- Pure state of H: unit vector $|\phi\rangle$ in H (or rather associated rank 1 projector $|\phi\rangle\langle\phi|$ on H). Mixed state of H: convex combination of pure states $\rho = \sum_{k=1}^r \lambda_k |\phi_k\rangle\langle\phi_k|$. Equivalently, ρ is a Hermitian positive semidefinite and trace 1 operator on H.
- Entanglement/Separability: A state ρ on $H_1 \otimes \cdots \otimes H_N$ is separable if it is a convex combination of product states, i.e. $\rho = \sum_{k=1}^r \lambda_k \, \rho_k^1 \otimes \cdots \otimes \rho_k^N$. Otherwise it is entangled.

- System with 1 subsystem: Complex Hilbert space $H \equiv \mathbf{C}^d$. System with N subsystems: Complex Hilbert space $H_1 \otimes \cdots \otimes H_N \equiv \mathbf{C}^{d_1} \otimes \cdots \otimes \mathbf{C}^{d_N}$. tensor product of the spaces corresponding to each subsystem \blacktriangleleft
- Pure state of H: unit vector $|\phi\rangle$ in H (or rather associated rank 1 projector $|\phi\rangle\langle\phi|$ on H). Mixed state of H: convex combination of pure states $\rho = \sum_{k=1}^r \lambda_k |\phi_k\rangle\langle\phi_k|$. Equivalently, ρ is a Hermitian positive semidefinite and trace 1 operator on H.
 - Entanglement/Separability: A state ρ on $H_1 \otimes \cdots \otimes H_N$ is separable if it is a convex combination of product states, i.e. $\rho = \sum_{k=1}^r \lambda_k \, \rho_k^1 \otimes \cdots \otimes \rho_k^N$. Otherwise it is entangled.

Particular case: If $\rho = |\phi\rangle\langle\phi|$ for some $|\phi\rangle \in H_1 \otimes H_2$, then ρ is separable iff $|\phi\rangle$ is product, i.e. $|\phi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$ for some $|\phi_1\rangle \in H_1$ and $|\phi_2\rangle \in H_2$. Equivalently, ρ is separable iff its *reduced state* ρ_1 on H_1 is pure.

- \longrightarrow How to quantify the amount of entanglement in ρ ?
- Simplest idea: $rank(\rho_1)$, which is between 1 and $min(d_1, d_2)$. \longrightarrow i.e. tensor rank of $|\phi\rangle$
- Smoother version: $S(\rho_1)$, which is between 0 and $\log \min(d_1, d_2)$. $\mathrel{\sqsubseteq} := -\operatorname{Tr}(\rho_1 \log \rho_1)$ (von Neumann entropy of ρ_1)

Tensor network states: construction

Underlying graph: set of vertices V, set of edges E.

We write $V = V_0 \sqcup \partial V$, with V_0 the set of *bulk vertices* and ∂V the set of *boundary vertices*.

$$\vdash$$
 $\forall v \in V_0, d(v) > 1$ \vdash $\forall v \in \partial V, d(v) = 1$

We associate to each $e \in E$ a space $H_e \equiv (\mathbf{C}^D)^{\otimes 2}$ and to each $v \in V$ a space $H_v \equiv (\mathbf{C}^D)^{\otimes d(v)}$. $\longrightarrow \text{We can identify } \mathrm{H}_{\mathcal{E}} := \, \bigotimes \mathrm{H}_{e} \text{ with } \mathrm{H}_{\mathcal{V}} := \, \bigotimes \mathrm{H}_{\nu}, \text{since } \mathrm{H}_{\mathcal{E}} \equiv \mathrm{H}_{\mathcal{V}} \equiv (\mathbf{C}^{D})^{\otimes 2|\mathcal{E}|}.$

$$\longrightarrow$$
 we can identify $\Pi_E := \bigcup_{e \in E} \Pi_e$ with $\Pi_V := \bigcup_{v \in V} \Pi_V$, sin

 $\text{For each } e \in \textit{E}, \, \text{pick } |\psi_e\rangle \in H_e, \, \text{and set } |\psi_{\textit{E}}\rangle := \, \bigotimes |\psi_e\rangle \in H_{\textit{E}}.$

For each $v \in V_0$, pick $|\phi_v\rangle \in H_v$, and set $|\phi_{V_0}\rangle := \bigotimes |\phi_v\rangle \in H_{V_0}$.

Construct $|\phi_{\partial V}\rangle := \langle \phi_{V_0} | \psi_E \rangle \in H_{\partial V} \equiv (\mathbf{C}^D)^{\otimes |\partial V|}$.

 $\longrightarrow |\phi_{\lambda V}\rangle$ is a multipartite pure state constructed from an underlying graph (up to normalization).

$$|\phi_{V_{\alpha}}\rangle\in(\mathbf{C}^{D})^{\otimes(2|E|-|\partial V|)}$$

$$|\phi_{\partial V}\rangle\in (\mathbf{C}^D)^{\otimes |\partial V|}$$

Tensor network states: construction

Underlying graph: set of vertices V, set of edges E.

We write $V = V_0 \sqcup \partial V$, with V_0 the set of *bulk vertices* and ∂V the set of *boundary vertices*.

$$\vdash \forall v \in V_0, d(v) > 1$$
 $\vdash \forall v \in \partial V, d(v) = 1$

We associate to each $e \in E$ a space $H_e \equiv (\mathbf{C}^D)^{\otimes 2}$ and to each $v \in V$ a space $H_v \equiv (\mathbf{C}^D)^{\otimes d(v)}$.

$$\longrightarrow \text{We can identify } \mathrm{H}_E := \bigotimes_{e \in E} \mathrm{H}_e \text{ with } \mathrm{H}_V := \bigotimes_{v \in V} \mathrm{H}_v \text{, since } \mathrm{H}_E \equiv \mathrm{H}_V \equiv (\mathbf{C}^D)^{\otimes 2^|E|}.$$

For each $e \in E$, pick $|\psi_e\rangle \in H_e$, and set $|\psi_E\rangle := \bigotimes_{e \in E} |\psi_e\rangle \in H_E$.

For each $v \in V_0$, pick $|\phi_v\rangle \in H_v$, and set $|\phi_{V_0}\rangle := \bigotimes_{v \in V_0} |\phi_v\rangle \in H_{V_0}$.

$$\text{Construct } |\phi_{\partial V}\rangle := \langle \phi_{V_0} | \psi_{\textit{E}} \rangle \in H_{\partial V} \equiv (\textbf{C}^D)^{\otimes |\partial V|}.$$

 $\longrightarrow |\phi_{\partial V}\rangle$ is a multipartite pure state constructed from an underlying graph (up to normalization).

$$|\psi_{E}
angle \in (\mathbf{C}^{D})^{\otimes 2|E|}$$

$$|\phi_{V_0}
angle \in (\mathbf{C}^D)^{\otimes (2|E|-|\partial V|)}$$

General problem: How is the geometry of the bulk reflected in the entanglement-related properties of the resulting boundary state?

Minimal cut / Maximal flow

Given $A \subset \partial V$, its *min-cut* $\delta(A)$ and the number of ways of achieving it N(A) are

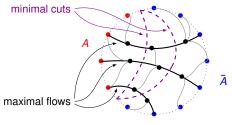
$$\delta(A) := \min \left\{ \delta(AX: \bar{A}\bar{X}), \; X \subset V_0 \right\} \text{ and } N(A) := \left| \left\{ X \subset V_0, \; \delta(AX: \bar{A}\bar{X}) = \delta(A) \right\} \right|,$$

with $\delta(Y:Y')$ the number of edges having one end in Y and one end in Y', for $Y,Y'\subset V$ disjoint.

Fact: There exist exactly $\delta(A)$ edge-disjoint paths going from A to \bar{A} , called the *max-flows*.

Assumption: Min-cuts are *non-crossing*. This means that, for any $A \subset \partial V$, if N(A) > 1, then two distinct ways of achieving $\delta(A)$ have no edge in common.

 \longrightarrow Min-cuts can be ordered and $V = \bigsqcup_{i=0}^{N(A)} V_i$, with V_i the vertices 'between' min-cuts i and i+1.



$$\delta(A) = 3$$
, $N(A) = 2$

Example: Graphs that define a Riemannian geometry in the continuum limit.

 \longrightarrow 'Pipe' from A to \bar{A} , where distinct 'bottlenecks' are disjoint.

Tensor network states: motivation

- AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of dimension d+1 and quantum conformal field theory of dimension d.
- \longrightarrow Holographic principle that conjectures quantitative relations between geometric properties of the bulk and entanglement properties of the boundary.
- Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically rigorous and tractable, (2) reproduce several of the conjectured formulas.

Tensor network states: motivation

- AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of dimension d+1 and quantum conformal field theory of dimension d.
- \longrightarrow Holographic principle that conjectures quantitative relations between geometric properties of the bulk and entanglement properties of the boundary.
- Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically rigorous and tractable, (2) reproduce several of the conjectured formulas.

Example: Holographic states are expected to satisfy an *area law of entanglement* (e.g. the Ryu-Takayanagi formula), which tensor network states (TNS) do by construction.

Indeed: Let $|\phi_{\partial V}\rangle \in (\mathbf{C}^D)^{\otimes |\partial V|}$ be a TNS. Given a subset of boundary vertices $A \subset \partial V$, let ρ_A be the reduced state of $|\phi_{\partial V}\rangle$ on $(\mathbf{C}^D)^{\otimes |A|}$, i.e. $\rho_A := \text{Tr}_{\bar{A}}(|\phi_{\partial V}\rangle\langle\phi_{\partial V}|)$.

By construction, $\operatorname{rank}(\rho_A) \leqslant D^{\delta(A)} \ll D^{|A|}$, i.e. $S(\rho_A) \leqslant \delta(A) \log D \ll |A| \log D$. \vdash tensor rank of $|\phi_{\partial V}\rangle$ across the bipartition $A : \bar{A}$

 \longrightarrow The entropy of ρ_A scales proportionally to the 'area' $\delta(A)$ and not to the 'volume' |A|.

Tensor network states: motivation

- AdS/CFT correspondence: Duality between quantum gravity theory in anti-de-Sitter space of dimension d+1 and quantum conformal field theory of dimension d.
- \longrightarrow Holographic principle that conjectures quantitative relations between geometric properties of the bulk and entanglement properties of the boundary.
- Tensor networks: Discrete toy-models for AdS/CFT correspondence that (1) are mathematically rigorous and tractable, (2) reproduce several of the conjectured formulas.

Example: Holographic states are expected to satisfy an *area law of entanglement* (e.g. the Ryu-Takayanagi formula), which tensor network states (TNS) do by construction.

Indeed: Let $|\phi_{\partial V}\rangle \in (\mathbf{C}^D)^{\otimes |\partial V|}$ be a TNS. Given a subset of boundary vertices $A \subset \partial V$, let ρ_A be the reduced state of $|\phi_{\partial V}\rangle$ on $(\mathbf{C}^D)^{\otimes |A|}$, i.e. $\rho_A := \text{Tr}_{\bar{A}}(|\phi_{\partial V}\rangle\langle\phi_{\partial V}|)$.

By construction,
$$\operatorname{rank}(\rho_A) \leqslant D^{\delta(A)} \ll D^{|A|}$$
, i.e. $S(\rho_A) \leqslant \delta(A) \log D \ll |A| \log D$.
 \vdash tensor rank of $|\phi_{\partial V}\rangle$ across the bipartition $A : \bar{A}$

 \longrightarrow The entropy of ρ_A scales proportionally to the 'area' $\delta(A)$ and not to the 'volume' |A|.

Remark: TNS are useful in many other fields, e.g. in *quantum condensed matter physics*, where physically relevant states (such as ground states of gapped local Hamiltonians) are also expected to satisfy an area law of entanglement (Hastings, Landau/Vazirani/Vidick).

Random tensor network states

$$|\Psi_{\theta}\rangle = \frac{1}{\sqrt{D}}\sum_{i=1}^{D}|u_i\rangle\otimes|u_i\rangle$$

- Edge tensors $|\psi_e\rangle \in (\mathbf{C}^D)^{\otimes 2}$ are fixed. E.g. maximally entangled states. Vertex tensors $|\phi_v\rangle \in (\mathbf{C}^D)^{\otimes d(v)}$ are picked at random. E.g. independent Gaussian tensors. $|\phi_{\nu}\rangle$ has independent complex Gaussian entries with mean 0 and variance 1 \blacktriangleleft
- \longrightarrow Resulting random boundary tensor $|\phi_{\partial V}\rangle \in (\mathbf{C}^D)^{\otimes |\partial V|}$.

Note: We can show that: $\forall \ \epsilon > 0, \ \mathbf{P}(|\|\phi_{\partial \mathcal{V}}\| - 1| > \epsilon) \leqslant e^{-c|\mathcal{V}_0|(\sqrt{D}\epsilon)^{1/|\mathcal{V}_0|}}$

by a concentration inequality for polynomials in Gaussian variables

This means that $|\phi_{\partial U}\rangle$ is typically close to having norm 1, i.e. to actually being a state.

Random tensor network states

$$|\Psi_{\theta}\rangle = \frac{1}{\sqrt{D}} \sum_{i=1}^{D} |u_i\rangle \otimes |u_i\rangle$$

- \bullet Edge tensors $|\psi_e\rangle\in (\textbf{C}^D)^{\otimes 2}$ are fixed. E.g. maximally entangled states.
- Vertex tensors $|\phi_{\nu}\rangle \in (\mathbf{C}^{\acute{D}})^{\otimes d(\nu)}$ are picked at random. E.g. independent Gaussian tensors. $|\phi_{\nu}\rangle$ has independent complex Gaussian entries with mean 0 and variance 1 \longleftarrow
- \longrightarrow Resulting random boundary tensor $|\phi_{\partial V}\rangle \in (\mathbf{C}^D)^{\otimes |\partial V|}$.

Note: We can show that: $\forall \ \epsilon > 0, \ \mathbf{P}(|\|\phi_{\partial V}\| - 1| > \epsilon) \leqslant e^{-c|V_0|(\sqrt{D}\epsilon)^{1/|V_0|}}$

by a concentration inequality for polynomials in Gaussian variables

This means that $|\phi_{\partial V}\rangle$ is typically close to having norm 1, i.e. to actually being a state.

Question: Given a subset of boundary vertices $A \subset \partial V$, what is the distribution of the random reduced state $\rho_A := \text{Tr}_{\bar{A}}(|\phi_{\partial V}\rangle\langle\phi_{\partial V}|)$? In particular, for large D, what is typically its spectrum and hence its entropy?

Known: In the case where N(A) = 1, for large D, ρ_A is expected to have close to maximal entropy, i.e. $\mathbf{E}(S(\rho_A)) = S(A) \log D - o(1)$ (Hayden/Nezami/Qi/Thomas/Walter/Yang, Hastings).

 \longrightarrow What about the case where N(A) > 1? Is the asymptotic spectrum of ρ_A richer?

Motivation: Not all holographic states are expected to have a flat spectrum.

Outline

- Background and motivations
- 2 Interlude: Free probability, random matrices and combinatorics of permutations
- Main results

A few definitions from free probability

Definition (S-transform)

Given a probability distribution μ with density $d\mu$ on \mathbf{R} , its *S-transform* is the formal power series

$$S_{\mu}(z) := \frac{1+z}{z} M_{\mu}^{-1}(z), \text{ where } M_{\mu}(z) := \sum_{\rho=1}^{\infty} M_{\mu}^{(\rho)} z^{\rho} \text{ for } M_{\mu}^{(\rho)} := \int_{\mathbf{R}} x^{\rho} d\mu(x).$$

Fact: One-to-one correspondence between μ with compactly supported density and S_{μ} .

Definition (Free product)

Given probability distributions μ , ν with compactly supported densities on \mathbf{R} , their *free product* $\mu \boxtimes \nu$ is the unique probability distribution on \mathbf{R} satisfying

$$S_{\mu\boxtimes_{\mathcal{V}}}(z)=S_{\mu}(z)S_{\mathcal{V}}(z).$$

A few definitions from free probability

Definition (S-transform)

Given a probability distribution μ with density $d\mu$ on \mathbf{R} , its *S-transform* is the formal power series

$$S_{\mu}(z) := \frac{1+z}{z} M_{\mu}^{-1}(z), \text{ where } M_{\mu}(z) := \sum_{\rho=1}^{\infty} M_{\mu}^{(\rho)} z^{\rho} \text{ for } M_{\mu}^{(\rho)} := \int_{\mathbf{R}} x^{\rho} d\mu(x).$$

Fact: One-to-one correspondence between μ with compactly supported density and S_{μ} .

Definition (Free product)

Given probability distributions μ , ν with compactly supported densities on \mathbf{R} , their *free product* $\mu \boxtimes \nu$ is the unique probability distribution on \mathbf{R} satisfying

$$S_{\mu\boxtimes V}(z)=S_{\mu}(z)S_{V}(z).$$

- ullet Marčenko-Pastur distribution μ_{MP} : characterized by $S_{\mu_{MP}}(z)=rac{1}{1+z}.$
- It is supported on]0,4] and has density $d\mu_{MP}(x):=rac{\sqrt{4/x-1}}{2\pi}\mathbf{1}_{]0,4]}(x)dx.$
- Free product of *N* Marčenko-Pastur distributions $\mu_{MP}^{\boxtimes N}$: characterized by $S_{\mu_{MP}^{\boxtimes N}}(z) = \left(\frac{1}{1+z}\right)^N$.

It is supported on $]0,(N+1)^{N+1}/N^N]$ (Banica/Belinschi/Capitaine/Collins, Collins/Nechita/Žyczkowski).

Connections with random matrices and combinatorics of permutations

Given a Hermitian matrix M on \mathbf{C}^d , denote by $\mu_M := \frac{1}{d} \sum_{\lambda \in \operatorname{spec}(M)} \delta_{\lambda}$ its spectral distribution.

- Let $W_d = GG^*$ with G a $d \times d$ matrix whose entries are independent complex Gaussians with mean 0 and variance 1/d (i.e. W_d is a normalized Wishart matrix of size and parameter d).
- Let $W_{d,N} = HH^*$ with $H = G_1 \times \cdots \times G_N$ and G_1, \ldots, G_N independent $d \times d$ matrices whose entries are independent complex Gaussians with mean 0 and variance 1/d.

This actually implies convergence in probability of the spectral distribution ('weak' convergence).

Connections with random matrices and combinatorics of permutations

Given a Hermitian matrix M on \mathbf{C}^d , denote by $\mu_M := \frac{1}{d} \sum_{\lambda \in \operatorname{spec}(M)} \delta_\lambda$ its spectral distribution.

- Let $W_d = GG^*$ with G a $d \times d$ matrix whose entries are independent complex Gaussians with mean 0 and variance 1/d (i.e. W_d is a normalized Wishart matrix of size and parameter d).
- Let $W_{d,N} = HH^*$ with $H = G_1 \times \cdots \times G_N$ and G_1, \ldots, G_N independent $d \times d$ matrices whose entries are independent complex Gaussians with mean 0 and variance 1/d.

$$\begin{aligned} & \textbf{Fact:} \ \mu_{W_d} \underset{d \to \infty}{\longrightarrow} \mu_{MP} \ \text{and} \ \mu_{W_{d,N}} \underset{d \to \infty}{\longrightarrow} \mu_{MP}^{\boxtimes N}. \end{aligned} \qquad \qquad \begin{aligned} & \overset{\bullet}{\longleftarrow} \text{Catalan numbers} \\ & \text{Convergence in moments:} \ \forall \ p \in \textbf{N}, \begin{cases} \frac{1}{d} \textbf{E} \operatorname{Tr}(W_d^p) \underset{d \to \infty}{\longrightarrow} M_{\mu_{MP}}^{(p)} = \operatorname{Cat}_p := \frac{1}{p+1} \binom{2p}{p} \\ \frac{1}{d} \textbf{E} \operatorname{Tr}(W_{d,N}^p) \underset{d \to \infty}{\longrightarrow} M_{\mu_{MP}}^{(p)} = \operatorname{FCat}_{p,N} := \frac{1}{Np+1} \binom{Np+p}{p} \\ & \overset{\bullet}{\longleftarrow} \text{Fuss-Catalan numbers} \end{aligned} \end{aligned}.$$

This actually implies convergence in probability of the spectral distribution ('weak' convergence).

remark: $(\pi_1, \pi_2) \in \mathcal{S}(p) \times \mathcal{S}(p) \mapsto |\pi_1^{-1}\pi_2| \in \{0, \dots, p-1\}$ is a distance.

Hence by the triangle inequality, for any $\pi_1, \pi_2, \pi_3 \in \mathcal{S}(p), |\pi_1^{-1}\pi_2| + |\pi_2^{-1}\pi_3| \geqslant |\pi_1^{-1}\pi_3|$, with equality iff $\pi_1 \to \pi_2 \to \pi_3$ is a geodesic.

 Cat_{p} counts the number of $\pi \in \mathcal{S}(p)$ s.t. $\operatorname{id} \to \pi \to \gamma$ is a geodesic.

 $FCat_{\rho,N} \text{ counts the number of } (\pi_1,\dots,\pi_N) \in \mathcal{S}(\rho)^N \text{ s.t. } \mathrm{id} \to \pi_1 \to \dots \to \pi_N \to \gamma \text{ is a geodesic.}$

Outline

- Background and motivations
- Interlude: Free probability, random matrices and combinatorics of permutations
- Main results

Limiting spectral distribution of random tensor network states

Lemma (Limiting moments of random TNS)

Let $|\phi_{\partial V}\rangle$ be a random TNS. For any $A \subset \partial V$, the random reduced state ρ_A is s.t.

$$\forall p \in \mathbf{N}, \ \mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right) \underset{D \to \infty}{\sim} \operatorname{FCat}_{p,N(A)-1} D^{-\delta(A)(p-1)}.$$

Remark: In addition, $\frac{\operatorname{Var}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)}{\left[\operatorname{\mathbf{E}}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right)\right]^{2}}\underset{D\to\infty}{=}O\left(\frac{1}{D}\right)$. So $\operatorname{Tr}\left(\rho_{A}^{p}\right)$ concentrates around its average.

Limiting spectral distribution of random tensor network states

Lemma (Limiting moments of random TNS)

Let $|\phi_{\partial V}\rangle$ be a random TNS. For any $A \subset \partial V$, the random reduced state ρ_A is s.t.

$$\forall p \in \mathbf{N}, \ \mathbf{E}\left(\operatorname{Tr}\left(\rho_A^p\right)\right) \underset{D \to \infty}{\sim} \operatorname{FCat}_{p,N(A)-1} D^{-\delta(A)(p-1)}.$$

Remark: In addition, $\frac{\operatorname{Var}\left(\operatorname{Tr}\left(\rho_{A}^{\rho}\right)\right)}{\left[\operatorname{\mathbf{E}}\left(\operatorname{Tr}\left(\rho_{A}^{\rho}\right)\right)\right]^{2}}\underset{D\to\infty}{=}O\left(\frac{1}{D}\right)$. So $\operatorname{Tr}\left(\rho_{A}^{\rho}\right)$ concentrates around its average.

Theorem (Limiting spectral distribution of random TNS)

Let $|\phi_{\partial V}\rangle$ be a random TNS. For any $A\subset\partial V$, let ρ_A be the random reduced state and $\hat{\rho}_A$ be the restriction of ρ_A to its support. Set $\mu_A^{(D)}:=\frac{1}{D^{\delta(A)}}\sum_{\lambda\in\operatorname{snec}(\hat{\rho}_A)}\delta_{D^{\delta(A)}\lambda}$. Then,

$$\mu_A^{(D)} \underset{D \to \infty}{\longrightarrow} \mu_{MP}^{\boxtimes (N(A)-1)}$$
 weakly.

Remark: This means that, for any $f : \mathbf{R} \to \mathbf{R}$ continuous,

$$\forall \ \epsilon > 0, \ \lim_{D \to +\infty} \mathbf{P} \left(\left| \int_{\mathbf{R}} f(x) d\mu_A^{(D)}(x) - \int_{\mathbf{R}} f(x) d\mu_{MP}^{\boxtimes (N(A)-1)}(x) \right| \leqslant \epsilon \right) = 1.$$

Interpretation and consequences

Particular cases:

• If N(A) = 1: $\mu_A^{(D)} \xrightarrow[D \to \infty]{} \delta_1$, i.e. spec $(\hat{\rho}_A) \underset{D \to \infty}{\simeq} \operatorname{spec} \left(\frac{I}{D^{\delta(A)}} \right)$, with I the identity of size $D^{\delta(A)}$. Note: In this case we can actually show strong convergence, i.e.

$$\forall \; \epsilon > 0, \; \lim_{D \to \infty} \textbf{P} \left(\operatorname{supp} \left(\mu_A^{(D)} \right) \subset [1 - \epsilon, 1 + \epsilon] \right) = 1.$$

- If N(A) = 2: $\mu_A^{(D)} \xrightarrow[D \to \infty]{} \mu_{MP}$, i.e. $\operatorname{spec}(\hat{p}_A) \underset{D \to \infty}{\sim} \operatorname{spec}\left(\frac{W}{D^{\delta(A)}}\right)$, with W a normalized Wishart matrix of size and parameter $D^{\delta(A)}$.
- \longrightarrow If N(A) > 1, the asymptotic spectrum of $\hat{\rho}_A$ is not flat.

Interpretation and consequences

Particular cases:

• If N(A) = 1: $\mu_A^{(D)} \xrightarrow[D \to \infty]{} \delta_1$, i.e. $\operatorname{spec}(\hat{\rho}_A) \underset{D \to \infty}{\simeq} \operatorname{spec}\left(\frac{I}{D^{\delta(A)}}\right)$, with I the identity of size $D^{\delta(A)}$. Note: In this case we can actually show strong convergence, i.e.

$$\forall \; \epsilon > 0, \; \lim_{D \to \infty} \textbf{P} \left(\operatorname{supp} \left(\mu_A^{(D)} \right) \subset [1 - \epsilon, 1 + \epsilon] \right) = 1.$$

- If N(A) = 2: $\mu_A^{(D)} \xrightarrow[D \to \infty]{} \mu_{MP}$, i.e. $\operatorname{spec}(\hat{p}_A) \underset{D \to \infty}{\simeq} \operatorname{spec}\left(\frac{W}{D^{\delta(A)}}\right)$, with W a normalized Wishart matrix of size and parameter $D^{\delta(A)}$.
- \longrightarrow If N(A) > 1, the asymptotic spectrum of $\hat{\rho}_A$ is not flat.

Corollary (Limiting entropy of random TNS)

Let $|\phi_{\partial V}\rangle$ be a random TNS. For any $A \subset \partial V$, the random reduced state ρ_A is s.t.

$$\mathbf{E}(S(\rho_A)) \underset{D\to\infty}{=} \delta(A) \log D - \sum_{k=2}^{N(A)} \frac{1}{k} + o(1).$$

 \longrightarrow Area law of entanglement, with finite correction when N(A) > 1.

Ingredients in the proof

Given $\pi \in \mathcal{S}(p)$, denote by U^{π} the associated unitary on $(\mathbf{C}^d)^{\otimes p}$.

$$\bullet \operatorname{\mathsf{Tr}} \left(\rho_A^\rho \right) = \operatorname{\mathsf{Tr}} \left(U_{A^\rho}^\gamma \rho_A^{\otimes \rho} \right) = \operatorname{\mathsf{Tr}} \left(U_{A^\rho}^\gamma \otimes U_{\bar{A}^\rho}^{\operatorname{id}} \left| \phi \right\rangle \langle \phi |_{\partial V}^{\otimes \rho} \right) = \operatorname{\mathsf{Tr}} \left(U_{A^\rho}^\gamma \otimes U_{\bar{A}^\rho}^{\operatorname{id}} \otimes \left| \phi \right\rangle \langle \phi |_{V_0}^{\otimes \rho} \left| \psi \right\rangle \langle \psi |_E^{\otimes \rho} \right) \\ \vdash \operatorname{\mathsf{replica}} \operatorname{\mathsf{trick'}} \quad \vdash \rho_A = \operatorname{\mathsf{Tr}}_{\bar{A}} (|\phi \rangle \langle \phi |_{\partial V}) \quad \vdash |\phi_{\partial V}\rangle = \langle \phi_{V_0} | \psi_E \rangle$$

• For $|\phi\rangle \in \mathbf{C}^d$ a Gaussian vector, $\mathbf{E}\left(|\phi\rangle\langle\phi|^{\otimes p}\right) = \sum_{\pi \in \mathcal{S}(p)} U^{\pi}$.

Hence:
$$\mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right) = \sum_{\substack{\pi_{x} \in \mathcal{S}(p), x \in V \\ \pi_{x} = \gamma, x \in A \\ \pi_{x} = \operatorname{id}, x \in \bar{A}}} \operatorname{Tr}\left(\bigotimes_{x \in V} U_{x^{p}}^{\pi_{x}} |\psi\rangle\langle\psi|_{E}^{\otimes p}\right) = \sum_{\substack{\pi_{x} \in \mathcal{S}(p), x \in V \\ \pi_{x} = \gamma, x \in A \\ \pi_{x} = \operatorname{id}, x \in \bar{A}}} D^{-w((\pi_{x})_{x \in V})},$$
with $w((\pi_{x})_{x \in V}) = \sum_{x \in \mathcal{S}(p), x \in V} \operatorname{Tr}\left(\bigcup_{x \in V} U_{x}^{\pi_{x}} |\psi\rangle\langle\psi|_{E}^{\otimes p}\right) = D^{-|\pi_{x}^{-1}|}.$

with
$$w((\pi_x)_{x\in V}) = \sum_{(x,y)\in E} |\pi_x^{-1}\pi_y|$$
, since $\forall (x,y)\in E$, $\operatorname{Tr}\left(U_{x^p}^{\pi_x}\otimes U_{y^p}^{\pi_y}|\psi\rangle\langle\psi|_{xy}^{\otimes p}\right) = D^{-|\pi_x^{-1}\pi_y|}$.

Now, for any $(\pi_x)_{x\in V}$, $w((\pi_x)_{x\in V})\geqslant \delta(A)(p-1)$, with equality iff there is a geodesic path $\gamma=\pi_0\to\pi_1\to\cdots\to\pi_{N(A)-1}\to\pi_{N(A)}=\mathrm{id}$ s.t. for all $0\leqslant i\leqslant N(A)$ and all $x\in V_i,\,\pi_x=\pi_i.$

Therefore: $\mathbf{E}\left(\operatorname{Tr}\left(\rho_{A}^{p}\right)\right) \underset{D \to \infty}{\sim} \operatorname{FCat}_{p,N(A)-1} D^{-\delta(A)(p-1)}.$

Generalizations

• What about the case where the edge tensors have different local dimensions D_e ? If all of them are of the same order D, i.e. $D_e = \alpha_e D$, then the results can be quite straightforwardly generalized.

Generalizations

- What about the case where the edge tensors have different local dimensions D_e ? If all of them are of the same order D, i.e. $D_e = \alpha_e D$, then the results can be quite straightforwardly generalized.
- What about the case where the edge tensors $|\psi_e\rangle\in (\mathbf{C}^D)^{\otimes 2}$ are not maximally entangled? If they have bounded entanglement spectrum, i.e. (almost) all their Schmidt coefficients are of order $1/\sqrt{D}$, then the results can be quite straightforwardly generalized. To understand the regime of unbounded entanglement spectrum, different tools are needed.

Generalizations

- What about the case where the edge tensors have different local dimensions D_e ? If all of them are of the same order D, i.e. $D_e = \alpha_e D$, then the results can be quite straightforwardly generalized.
- If they have bounded entanglement spectrum, i.e. (almost) all their Schmidt coefficients are of order $1/\sqrt{D}$, then the results can be quite straightforwardly generalized. To understand the regime of unbounded entanglement spectrum, different tools are needed.

• What about the case where the edge tensors $|\psi_e\rangle \in (\mathbf{C}^D)^{\otimes 2}$ are not maximally entangled?

What about the case where the minimal cuts are not necessarily edge-disjoint?
 The minimizing configurations of permutations can still be identified, but counting them may become cumbersome.

Future directions

• What about estimating other quantities than entropies of random boundary states?

Example: For $A, B \subset \partial V$ with $A \cap B = \emptyset$ and $A \cup B \neq \partial V$, it is known that the average *mutual information* and *entanglement negativity* of the random bipartite boundary state ρ_{AB} are non-vanishing as D grows iff $\delta(AB) < \delta(A) + \delta(B)$.

But what are the conditions for ρ_{AB} to be typically *entangled or separable*, satisfying or not a given *entanglement criterion*, etc?

In the simplest case of a 'network' having one bulk vertex, i.e. a (normalized) Gaussian tensor $|\phi_{ABC}\rangle \in \mathbf{C}^{d_B} \otimes \mathbf{C}^{d_B} \otimes \mathbf{C}^{d_C}$ as boundary state, *threshold phenomena* have been identified for properties such as separability, PPT, realignment, reduction, extendibility, etc (Aubrun/Szarek/Ye, Aubrun, Aubrun/Nechita, Jivulescu/Lupa/Nechita, Lancien).

→ Can these results be generalized to more complicated networks?

Future directions

- What about estimating other quantities than entropies of random boundary states?
 - **Example:** For $A, B \subset \partial V$ with $A \cap B = \emptyset$ and $A \cup B \neq \partial V$, it is known that the average *mutual information* and *entanglement negativity* of the random bipartite boundary state ρ_{AB} are non-vanishing as D grows iff $\delta(AB) < \delta(A) + \delta(B)$.
 - But what are the conditions for ρ_{AB} to be typically *entangled or separable*, satisfying or not a given *entanglement criterion*, etc?
 - In the simplest case of a 'network' having one bulk vertex, i.e. a (normalized) Gaussian tensor $|\phi_{ABC}\rangle\in \mathbf{C}^{d_A}\otimes \mathbf{C}^{d_B}\otimes \mathbf{C}^{d_C}$ as boundary state, *threshold phenomena* have been identified for properties such as separability, PPT, realignment, reduction, extendibility, etc (Aubrun/Szarek/Ye, Aubrun, Aubrun/Nechita, Jivulescu/Lupa/Nechita, Lancien).
 - → Can these results be generalized to more complicated networks?
- What about implications in terms of quantum error-correcting codes?
 - **Setting:** Add one non-contracted leg to each bulk vertex tensor, and view the resulting tensor as a map from the bulk ('logical') space to the boundary ('physical') space. It is known that, if N(A) = 1, the entanglement wedge of A is protected against errors in \bar{A} (Harlow/Pastawki/Preskill/Yoshida, Hayden/Nezami/Qi/Thomas/Walter/Yang).
 - → What happens in the case of non-unique min-cuts?

References

- G. Aubrun. Partial transposition of random states and non-centered semicircular distributions. 2012.
- G. Aubrun, I. Nechita. Realigning random states. 2012.
- G. Aubrun, S. Szarek, D. Ye. Entanglement threshold for random induced states. 2013.
- T. Banica, S.T. Belinschi, M. Capitaine, B. Collins. Free Bessel laws. 2011.
- N. Cheng, C. Lancien, G. Penington, M. Walter, F. Witteveen. Random tensor networks with nontrivial links. 2022.
- B. Collins, I. Nechita, K. Życzkowski. Random graph states, maximal flow and Fuss-Catalan distributions. 2010.
- B. Harlow, F. Pastawki, J. Preskill, B. Yoshida. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. 2015.
- M.B. Hastings. Solving gapped Hamiltonians locally. 2006.
- M.B. Hastings. The asymptotics of quantum max-flow min-cut. 2017.
- P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, Z. Yang. Holographic duality from random tensor networks. 2016.
- M.A. Jivulescu, N. Lupa, I. Nechita. On the reduction criterion for random quantum states. 2014.
- **C. Lancien.** *k*-extendibility of high-dimensional bipartite quantum states. 2016.
- Z. Landau, U. Vazirani, T. Vidick. A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians. 2015.