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§ Introduction

Eigenvalue distributions of matrix models play important roles
in understanding atoms, 2-dim quantum gravity, QCD, etc.

H ~ random matrix : Semicircle law E.Wigner 1958

Solving matrix models via p(e)

E. Brezin, C. Itzykson, G. Parisi and ]J. B. Zuber, 1978

Gross-Witten-Wadia transition, topological change of p(e)

D.J. Gross and E. Witten, S. R. Wadia, 1980



What roles eigenvalue / vector distributions can take in tensor
models ?

Tensor eigenvalue/ vector distributions are previously studied in

* Expectation numbers of real tensor eigenvalues

P. Breiding, SIAM Journal on Applied Algebra and Geometry 1, 254-271 (2017).
P. Breiding, Transactions of the American Mathematical Society 372, 7857-7887 (2019).

 Estimation of the largest eigenvalue
O. Evnin, Lett. Math. Phys. 111, 66 (2021) d0i:10.1007 /511005-021-01407-z
[arXiv:2003.11220 [math-ph]].

* Extension of Wigner semicircle law

R. Gurau, [arXiv:2004.02660 [math-ph]].



The problem of tensor eigenvalue distribution is essentially the
same as counting the critical points of the Hamiltonian
(complexity) of the spherical p-spin model for spin glasses.

H=C,www., ww, =1 C

1 - Tandom (Gaussian)
(p=3)

This has comprehensively been solved vie matrix model techniques in

Auffinger, A., Arous, G.B. and (errny, J. (2013), “Random Matrices and Complexity of Spin
Glasses.” Comm. Pure Appl. Math., 66: 165-201. https:/ /doi.org/10.1002 / cpa.21422

Accordingly, the end results of this talk are not new. However, the
method we use is different, i.e., field theoretical, and may give
different insights from previous studies in the future.


https://doi.org/10.1002/cpa.21422

In this talk, we consider real symmetric order-three tensor C,_, .

Tensor eigenvalues/vectors of C,.. :

C.pVpV, = 4 vV, ¢ : Eigenvalue v, : Figenvector
L.Qi 2005, L.H.Lim 2005, D.Cartwright and B.Sturmfels 2013

There exist some differences from the matrix case:
» A system of N non-linear equations
« Not unique: can be rescaled by { = ¢, v, = cv,

« Evenif C_, isreal, {,v, are not necessarily real.

Accordingly there are some different notions of eigenvalues/vectors.

Ex.  Z-eigenvalue (Qi): ¢ ( > 0) withreal v, (v.v, = 1)



In this talk we consider symmetric real order-three tensors with
Gaussian distributions, and compute the distributions of
eigenvectors and eigenvalues:

C ;. : symmetric real tensor, Gaussian distribution

Eigenvector distribution Eigenvalue distribution

. 1
Cabcvbvc =V, = —

v, : real %

C a
=1

abcWpWe = Cwa Wa = |V|

(Z-eigenvalues of { > 0)

What is new in this talk is that we use field theoretical methods
instead of matrix models.



Y Field theoretical expression

Eigenvector distribution for a given C :
#sol(C) N

- yt—C , vivi =0 vl e R
p,O)= ), []ow,—vi) a7 T a
i=1 a=1 i =1,2,---, #s0l(C)

N
= | DetM | H(S(Cabcvbvc —V,)
a=1

Mab — (Vb o Cbcdvcvd) — 561[9 o 2Cabcvc : Hessian

Eigenvector distribution for C . with Gaussian distribution :

2

p(») = (p(,C))c=A""| dCe™*“p(v,C)

J R#C
a>0 C?=

C

abc™~ abc



We employ the following three different ways to compute p(v) (or
similar quantity) with different treatments of | DetM | .

(1) Just ignore taking the absolute value
NS, Phys.Lett.B 836 (2023) 137618, ArXiv: 2208.08837 [hep-th]

N
Psign(Vs €) = DetM 11 O(CapcVpVe = Vo) k(M) : the number of

#501(C) N negative eigenvalues
= Y D T80, -vi) ofMatv =y
a=1

=1
Field theoretical expressions:

DetM = Jdl/'/dl//épMW

N
H 5(Cabcvbvc _ Va) — (271')_N dA ei’la(va_cabc"b"c)
a=1 JRN




(2) Analytic continuation via replica trick
NS, PTEP 2023 (2023) 1, 013A02, ArXiv:2209.07032 [hep-th]

N
Pr(v, C) = {De’c(M2 + €I)}R H5(Cachch —V,)

a=1

{Det(M? + €I)}" — |Det M| by R — 1/2, € — + 0
€ needed for unique determination

The determinant part can be expressed as Lineat in C

b

{Det(M* + €l )}R = (— 1R Jdl/‘/dyfd(pdgo o~ Pr+ew Y= My—p' Mo,

Fermions : 1/72, W, gbil, g, 1=12,- R, a=1,2,--- N)

Two kinds of fermions are introduced for linearity in M.



(3) Introducing both bosons and fermions NS, ArXiv:2210.15129 [hep-th]

2
pe(v, C) _ Det(M -+ GI) Hé( VY. —V )

\/Det(M2+€I)
Det(M?* + €1
lim M +el) = | DetM |
e~+0 y/Det(M? + e 1)

Rewrite numerator by fermions and denominator by bosons.

Det(M? + e I)
v/ Det(M2 + el

= (—n)N | dpdodpdydpdp e

S = 6% + 2icM¢ + e + po + Mo + My + ey

o, (a=1.2,- N):bosons w,w,p,@, :fermions



In either case of (1),(2),(3), what we want to compute has generally
the form:

D (V) = J'dCd/l didy dd--- 5
Mab — 5ab o 2Cabcv

C

S =- acz T iﬂa(va o Cabcvbvc) o (W’ Y, ¢9 "°)2 o (l/_j’ Y, ¢9 °")M('7_”7 Y, ¢a '")

T
_ (C,/l)(—*a :) (f) +(c,z)<:> L

Linear in C
Since S is Gaussian (+linear) in C and 4, these can be integrated out.

Then we obtain an effective theory of bosons and fermions with
quartic interactions.



y Computations of effective theories : case (1)

Signed distribution : | DetM | — DetM

psigned(v) — 3WN=1)/2.—=NI2 , NI2,,=2N ,—v’la J dipdy e’

S is a four-fermi theory
2

_ _ ve o _ _ _
S=— l//“l//” —+ v,y 61 (l//J_l//J_)z (WW) = YW etc.

The parallel and transverse components of v _, y, against v, are
decoupled. Parallel components ¥, y; are free, and can trivially

be integrated out. But it generates an overall sign, which matters.



The transverse part can also be computed, and we obtain an exact
expression of p(v).

| g _
J dp dyr (fryr, )" eV = dk2n JdWLdWL e PLvL = (1 =N)y,
L - k=1 T
Pochhammer symb.
(@), =aa@+1)--(a+n-1)
N 3 3a
V) = — 3U29=14N2 o =NI2 ,—alv® | 1 =N=2 77 [ 4 =
pLY) " v 2727 22

|

Confluent hypergeometric function of the second kind

Can also be expressed by Hermite polynomials.



Comparison with Monte Carlo simulation

Randomly generate C ;. with normal distribution and solve
C_,.V»v. = v, by Mathematica.

a

N=7

Psim
0.6

0.4

0.2}
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-Q4} *

0.6/ J




y Computations of effective theories : case (2)

Analytic continuation via replicas of fermions

[DetM | — {DetM?+¢I)}" (e = +0, R — 1/2)

Parallel components are free and can be integrated out.

p(V, R, 6) — 3(N—1)/271.—N/2aN/2v—2Ne—a/vz(_ 1)(N—1)R dl/_/dl//d@dQO eS

LT

Only transverse components

V2

S=¢ l/_/il//i — l/_/i(pl- — @il//,- — @i(ﬂi — a <(‘/_/il/_/j)(§0i¢j) + (‘/_/iéﬂj)(l/_/jfﬂi)

(@'P))wwr) + (@) (@) + 200 D)) (@) 2(v7il//j)<¢fcpi>)

(wy) =y, etc.
vlowl @l @l (a=12,-,N—1,i=1,2,---,R) : Fermions



For integer N, R, the fermionic integral is a finite polynomial
function of z = v?/6a of order (N — 1)R. We used a Mathematica
package to do the explicit computations.

LN g1 = 1+42

3N=3,R=1 — + 4Z + 2822

‘gN=2,R=2 . T 24Z 48Z2
Lrnoarey = 1 + 40z + 552z% + 12487° + 51367
p N=2R=2

Agrees with Monte Carlo




[t is not easy to obtain the expression for larger values of N, R,
because of the complication of the fermionic integral.

Therefore it seems difficult to obtain the general expression for
any R and analytically continue it to R = 1/2.

We therefore compute the partition function for large-N by using
Schwinger-Dyson equation. And we put R = 1/2.



In more details :

Assume W) = Ol
<l/72€0bj> = Q121ab5ji 0, to be determined
<@Z‘/fbj> — Q21Iab5ji
<¢Z(ij> = szlalﬁji
others = 0
In the leading order of N — 1

(F'o) W)y ~ (W'o)W ) = (N— 1RO}, et

Seft = (N — 1)R<€Q11 — Q01— 01— Oy

VAN — 1)
6o

(01, + 05, + 20,,0,,) — log( —det Q)>

Coming from integrating out fermions




0, are determined by
oS
eff —0
00,5

There are four independent solutions. Uniquely chosen from the
free theory limitatv = 0:

I+

1
Q1 = o Q=0 =

€
, = ,atv=0
1 + € O

1 +¢€

The expressions of the solutions are complicated, so here it is
suppressed.



In the € = 4+ 0 limit, the solution has two regions:

x = v3(N = 1/3a

-0<x<1/4
—v/1—4x +1 1 —1/1—4x — 4x
11 = , Q=0 = , O =0
2x\/1 — 4x 2x\/1 — 4x
1/4 < x
\/—1+4x 1 1 \/E
1= ———t Op=0)=—7-+ + -,
2x7\/ € 2x 2x 2X\/—1+4x
—1+4
22=—\/E\/ Sy




The solution for x > 1/4 diverges in € — + 0, but S converges.

-O<x<1/4

1 —+/1—4x

N —-1)R
S§§+O(x)=( 2) <2+log16+ —410g(1—\/1—4x)+410gx)

- 1/4 < x

S50 =

(N—DR(I
2

+2+210gx>
X

Only the latter case (1/4 < x) matters for large-/N, because
x = v (N = 1)/3a - .



Putting R = 1/2 to the expression, we obtain

a

,O(V) — (N )(N—l)/2 —(N—l)/2 —N/2 1/2‘\/‘ —N— 16 4y 2

Eigenvalue ({ = 1/]|v|) distribution is given by Gaussian

peigenvalue((:) = 2(N — 1)(N_1)/26_(N_1)/2611/2F(N/2)_le_1(:2

Agrees with Monte Carlo up to overall factors depending on N.

N=14
CN Pei 1igenvalue C
300, N

250
200
150
100
50

Next order will be needed to compute Cy.



y Computations of effective theories : case (3)

Det(M? + ¢ 1
lim =M+ eD) e

e=+0 4 /Det(M?2 + € 1)

Numerator by Fermions, denominator by bosons
No analytic continuation needed. Just evaluate the expression.
After integrating over C and 4, we have a boson-fermion

four-interaction system. PParallel components are free and
can be integrated out :

,D(V) — lim 3(N—1)/2]Z.1—3N/2aN/2v—2Ne—a/vz(_ l)N—l dgbdﬁdl/_/dlﬂd(pdgﬁ €S
e—>+0 J | T

Transverse



SZKB+KF+ VF+ VB+VBF

c,, ¢ :bosons, v v ., P, @, fermions (a =1,2,---,N)

Ky = — 6 = 2io — e¢h?
- ) Wry) = Wy, etc.
Kp=— 0o —wp — oy — epy

2

V= — ;—a (W) + (Py)* + 2 P) (@) + 2 y) (@)

2 2
V= 3‘; (62? + (o))

2iv?

Ver = g((l/'fﬂ)(coéb) + (@o) () + (Wp)(@o) + (pP)(wo))



We can perform similar Schwinger-Dyson analysis for large-N as
in case (2). The result turns out to be the same as in (2).

In principle, we can improve the result by taking into account
higher orders of Schwinger-Dyson analysis.

What turns out to be more interesting is that there exist exact
expressions of the eigenvalue distributions for any N in terms of

polynomial, exponential and error functions. This has been checked
for NV < 8.

After fermionic integration, the bosonic integrand turns out to be a

total derivative (+ a term) and the bosonic integral can be exactly
performed.



More explicitly :
The fermionic integral can be proven to have the form

dydydpd eKrtVetVer = ay + a(o@) + Clz(qu)z

=L

+ay0°¢? + a, (P (o) — (o)) + as(c’p? — (6¢p)*)?

where a,, a,, -+, as are some finite polynomial functions of v*/a.
The explicit form can be determined by using a Mathematica
package.

Then, after some changes of variables, the bosonic integral turns
into the form
~1/82

Gy = dx e xW=I2(1 — 4zx)~N+2D2(4a, + 2(=2ia; + a, + (N — 1)az)x
JO

+(8iza; — (3 + 4z)(a, + a3) — i(N — 2)a,)x* + 8z(a, + a)x>)

7 = v?/6a



To derive this, we assumed
6472a, — 8iza, + (42 — Da, + (=1 — 4z + 8(N — 1)z)az — i(N — 2)a, + N(N — 2)as = 0
This is actually satisfied for N < 8.

Otherwise, the integrand would contain a factor of 1/(1 — 8zx),
which ruins the integrability.

Putting the explicit values of a, :-+, as, one finds

For odd N
~1/82 o =% Z(N FZ 5 (N+1)/2
Gy = dx = QN2 =113z b (8z2)"—b
A dx (1 - 4zx)N/2 Z (52) ’
n=0
For even V b, cy: determined

1/87 1/2 n

d x"2e* YN box

Gy = [ dx(cox_l/ze_x + = > from g,
) dx (1 —4zx)V?

N/2 b

= ¢oy[1/2,1/87] + 2V2e~1/5% 2 :+1/2
~ &2)




The end results are

Gy = 7 (1 122 4 1222 4+ V2e 5 (1 + 122 + 12,22)) |

V2e 5

8z

Gy—y7 = T° (1 — 302 + 18022 — 1202° + (1+ 8z + 1202° — 4802° + 2640z4)> .

Groy = 75 <6\f€ 824/2(1+22) + (1 —62)y B 81ZD )

2v/2e~ 5 ( 1+15z+1802)

l\DI@

(1= 202 4 60:2)~ | =, -
— 20z 2
NZ: Y 2°8~| |’

i ( e~ (1 4 21022 — 210023 + 126002* + 252002°)

N 1522
+(1——422—#42022——8402:3)7-1 1
2°8z| |

7 = v3/6a



The exact formula agrees with the Monte Carlo result.

N=8

MC
peig




The Schwinger-Dyson analysis in the leading order carried out in
case (2) did not correctly produce the overall factor of the
distribution, since this is in the next order.

From the exact results of N < 8 one can guess the N-dependence of

the overall factor. We obtain
0.:(8) ~ 2~ N2+2 112,112 FIN+ 1 o~ 40

C1g N "N

LS +1 03]

Poig.
600
500 -
400
300
200
100

The formula agrees well with
the Monte Carlo result without
extra tuning of the overall
factor.




S Summary and future prospects

Eigenvalue distributions of tensors could be an interesting
dynamical quantity which characterizes the dynamical aspects
of tensor models.

We compute real eigenvalue/vector distribution for order-three
real symmetric tensors with Gaussian distribution.

The large-N limit of the eigenvalue distribution is given by
Gaussian, which contrasts with Wigner’s semicircle law in the
matrix model.

The difference from the previous studies is that we used field
theoretical methods, while the previous studies used the matrix
model techniques.



One would extend the computation in various directions.

« Count only the eigenvectors at which Hessian matrix M has
signature k (= the number of negative eigenvalues).

N=2 k(M)=2

0.05

. <4\/ge—1/8z —\/2x Erfc(1/2@))

7 = v%/6a

* Compute correlations among eigenvectors. In matrix models,
eigenvalues are repulsive. How about tensor models ?

 Obtain exact formulas of eigenvalue/ vector distributions
for any N, R



