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 § Introduction

Eigenvalue distributions of matrix models play important roles 
in understanding atoms, 2-dim quantum gravity, QCD, etc.

 ~ random matrix : Semicircle lawH E.Wigner 1958

Solving matrix models via ρ(e)
E. Brezin, C. Itzykson, G. Parisi and J. B. Zuber, 1978

D. J. Gross and E. Witten, S. R. Wadia, 1980

Gross-Witten-Wadia transition, topological change of ρ(e)



Tensor eigenvalue/vector distributions are previously studied in

• Expectation numbers of real tensor eigenvalues
P. Breiding, SIAM Journal on Applied Algebra and Geometry 1, 254-271 (2017). 
P. Breiding, Transactions of the American Mathematical Society 372, 7857-7887 (2019). 

• Estimation of the largest eigenvalue 
O. Evnin, Lett. Math. Phys. 111, 66 (2021) doi:10.1007/s11005-021-01407-z 
[arXiv:2003.11220 [math-ph]]. 

• Extension of Wigner semicircle law
R. Gurau, [arXiv:2004.02660 [math-ph]]. 

What roles eigenvalue/vector distributions can take in tensor 
models ?



H = Cabcwawbwc, wawa = 1  : random (Gaussian)Cabc

The problem of tensor eigenvalue distribution is essentially the 
same as counting the critical points of the Hamiltonian 
(complexity) of the spherical -spin model for spin glasses.p

This has comprehensively been solved vie matrix model techniques in

Auffinger, A., Arous, G.B. and Černý, J. (2013), “Random Matrices and Complexity of Spin 
Glasses.” Comm. Pure Appl. Math., 66: 165-201. https://doi.org/10.1002/cpa.21422

Accordingly, the end results of this talk are not new. However, the 
method we use is different, i.e., field theoretical, and may give 
different insights from previous studies in the future.

( ) p = 3

https://doi.org/10.1002/cpa.21422


Cabcvbvc = ζ va
L.Qi 2005, L.H.Lim 2005, D.Cartwright and B.Sturmfels 2013 

• A system of  non-linear equationsN
• Not unique: can be rescaled by , ζ → c ζ va → c va

• Even if  is real, ,  are not necessarily real.Cabc ζ va

Accordingly there are some different notions of eigenvalues/vectors. 

Z-eigenvalue (Qi) :  ( ) with real  ( ) ζ ≥ 0 va vava = 1

 : Eigenvalueζ  : Eigenvectorva

Tensor eigenvalues/vectors of  :Cabc

Ex.

There exist some differences from the matrix case:

In this talk, we consider real symmetric order-three tensor Cabc



Cabcvbvc = va

 : symmetric real tensor, Gaussian distributionCabc

 : realva Cabcwbwc = ζwa

 ζ =
1

|v |
wa =

va

|v |

In this talk we consider symmetric real order-three tensors with 
Gaussian distributions, and compute the distributions of 
eigenvectors and eigenvalues:

(Z-eigenvalues of )ζ > 0

What is new in this talk is that we use field theoretical methods 
instead of matrix models.

Eigenvector distribution Eigenvalue distribution

ζ = 1



§ Field theoretical expression

Eigenvector distribution for a given  :C

= |DetM |
N

∏
a=1

δ(Cabcvbvc − va)

ρ(v, C) =
#sol(C)

∑
i=1

N

∏
a=1

δ(va − vi
a)

vi
a − Cabcvi

bv
i
c = 0 vi

a ∈ ℝ

Mab =
∂

∂va
(vb − Cbcdvcvd) = δab − 2Cabcvc

ρ(v) = ⟨ρ(v, C)⟩C = A−1 ∫ℝ#C

dC e−α C2ρ(v, C)

α > 0

Eigenvector distribution for  with Gaussian distribution :Cabc

C2 = CabcCabc

: Hessian

i = 1,2,⋯, #sol(C)



We employ the following three different ways to compute  (or 
similar quantity) with different treatments of .

ρ(v)
|DetM |

(1) Just ignore taking the absolute value
NS, Phys.Lett.B 836 (2023) 137618, ArXiv: 2208.08837 [hep-th]

= DetM
N

∏
a=1

δ(Cabcvbvc − va)

=
#sol(C)

∑
i=1

(−1)k(Mi)
N

∏
a=1

δ(va − vi
a)

DetM = ∫ dψ̄dψ eψ̄Mψ

N

∏
a=1

δ(Cabcvbvc − va) = (2π)−N ∫ℝN

dλ ei λa(va−Cabcvbvc)

 : the number of 
negative eigenvalues 
of  at 

k(Mi)

M v = vi

Field theoretical expressions:

ρsign(v, C)



(2) Analytic continuation via replica trick

ρR(v, C) = {Det(M2 + ϵ I)}R
N

∏
a=1

δ(Cabcvbvc − va)

NS, PTEP 2023 (2023) 1, 013A02, ArXiv:2209.07032 [hep-th]

 by  {Det(M2 + ϵI)}R → |Det M | R → 1/2, ϵ → + 0

 needed for unique determinationϵ

{Det(M2 + ϵI)}R = (−1)NR ∫ dψ̄dψdφ̄dφ e−φ̄iφi+ϵψ̄ iψi−ψ̄ iMψi−φ̄iMφi

Fermions :   ψ̄ i
a, ψia, φ̄i

a, φia (i = 1,2,⋯, R, a = 1,2,⋯, N)

The determinant part can be expressed as Linear in C

Two kinds of fermions are introduced for linearity in . M



(3) Introducing both bosons and fermions

ρϵ(v, C) =
Det(M2 + ϵ I)
Det(M2 + ϵ I)

N

∏
a=1

δ(Cabcvbvc − va)

Rewrite numerator by fermions and denominator by bosons.

NS, ArXiv:2210.15129 [hep-th]

Det(M2 + ϵ I)
Det(M2 + ϵ I)

= (−π)−N ∫ dϕdσdψ̄dψdφ̄dφ e−S

S = σ2 + 2iσMϕ + ϵϕ2 + φ̄φ + ψ̄Mφ + φ̄Mψ + ϵψ̄ ψ

lim
ϵ→+0

Det(M2 + ϵ I)
Det(M2 + ϵ I)

= |DetM |

 : bosonsσa, ϕa (a = 1,2,⋯, N)  : fermionsψ̄a, ψa, φ̄a, φa



In either case of (1),(2),(3), what we want to compute has generally 
the form:

ρ⋅(v) = ∫ dC dλ dψ̄dψ dϕ⋯ eS

S = − αC2 + iλa(va − Cabcvbvc) − (ψ̄, ψ, ϕ, ⋯)2 − (ψ̄, ψ, ϕ, ⋯)M(ψ̄, ψ, ϕ, ⋯)

Mab = δab − 2Cabcvc

= (C, λ)(−α *
* 0 ) (C

λ) + (C, λ)( *
* ) + ⋯

Linear in C

Since  is Gaussian (+linear) in  and , these can be integrated out.S C λ

Then we obtain an effective theory of bosons and fermions with 
quartic interactions.



§ Computations of effective theories : case (1)

Signed distribution : |DetM | → DetM

ρsigned(v) = 3(N−1)/2π−N/2αN/2v−2Ne−v2/α ∫ dψ̄dψ eS

 is a four-fermi theoryS

The parallel and transverse components of  against  are 
decoupled. Parallel components  are free, and can trivially 
be integrated out. But it generates an overall sign, which matters.

ψ̄a, ψa va
ψ̄∥, ψ∥

S = − ψ̄∥ψ∥ + ψ̄⊥ψ⊥ −
v2

6α
(ψ̄⊥ψ⊥)2 (ψ̄ ψ) = ψ̄aψa, etc.



The transverse part can also be computed, and we obtain an exact 
expression of . ρ(v)

∫ dψ̄⊥dψ⊥ (ψ̄⊥ψ⊥)2n eψ̄⊥ψ⊥ = [ d2n

dk2n ∫ dψ̄⊥dψ⊥ ekψ̄⊥ψ⊥]
k=1

= (1 − N )2n

Pochhammer symb.

ρ(v) = − 31/22−1+N/2α π−N/2e−α/v2 |v |−N−2 U (1 −
N
2

,
3
2

,
3α
2v2 )

Confluent hypergeometric function of the second kind

(a)n = a(a + 1)⋯(a + n − 1)

Can also be expressed by Hermite polynomials.



Comparison with Monte Carlo simulation

Randomly generate  with normal distribution and solve 
 by Mathematica.

Cabc
Cabcvbvc = va



Analytic continuation via replicas of fermions

|DetM | → {Det(M2 + ϵ I)}R ( )ϵ → + 0, R → 1/2

Parallel components are free and can be integrated out.

ρ(v, R, ϵ) = 3(N−1)/2π−N/2αN/2v−2Ne−α/v2(−1)(N−1)R ∫⊥
dψ̄dψdφ̄dφ eS

Only transverse components

S = ϵ ψ̄ iψi − ψ̄ iφi − φ̄iψi − φ̄iφi −
v2

6α ((ψ̄ iψ̄ j)(φiφj) + (ψ̄ iφj)(ψ̄ jφi)

+ (φ̄iφ̄ j)(ψiψj) + (φ̄iψj)(φ̄ jψi) + 2(ψ̄ iφ̄ j)(φiψj) + 2(ψ̄ iψj)(φ̄ jφi))

§ Computations of effective theories : case (2)

   : Fermionsψ̄ i
a, ψ i

a, φ̄i
a, φi

a (a = 1,2,⋯, N − 1, i = 1,2,⋯, R)
(ψ̄ ψ) = ψ̄aψa, etc.



For integer , the fermionic integral is a finite polynomial 
function of  of order . We used a Mathematica 
package to do the explicit computations.

N, R
z = v2/6α (N − 1)R

ℒN=2,R=1 = 1 + 4z

ℒN=3,R=1 = 1 + 4z + 28z2

ℒN=2,R=2 = 1 + 24z + 48z2

ℒN=3,R=2 = 1 + 40z + 552z2 + 1248z3 + 5136z4

0 1 2 3 4

10

20

30

40

N=2

Figure 1: Some non-trivial checks of the general formula (31) with (29). The analytical results,
(34) with (35) for ↵ = 1/2, (solid lines) and the results from the Monte Carlo simulations (51)
(dots) for (N,R) = (2, 1), (3, 1), (2, 2), (3, 2) from the left to the right panels are compared.
�v = 0.03. NC = 3 · 104 for the former two, and NC = 105 for the latter two.

• Repeat the above processes.

By the above repeating procedure we obtain a data of (|vi|, detMi) (i = 1, 2, . . . , L), where L
is the total number of real eigenvectors generated. For the general case of R, we define

⇢simR ((k + 1/2)�v) =
1

�vNC

LX

i=1

| detM |
2R�1 ✓(k�v < |vi|  (k + 1)�v), (51)

where NC denotes the total number of randomly generated C, �v is a bin size, k = 0, 1, 2, . . .,
and ✓ is a support function which takes 1 if the inequality of the argument is satisfied, but zero
otherwise. This quantity corresponds to ⇢(v, R, 0)SN�1|v|N�1 with ↵ = 1/2 of the analytical
result by a derivation similar to that of (47). The �1 in the exponent of | detM | in (51) comes
from the consideration of the measure associated to the delta functions, namely, the di↵erence
between (2) and (3).

In Figure 1, the numerical datas (51) for N = 2, 3, R = 2, 3, and the analytical results,
⇢(v, R, 0)SN�1|v|N�1 with ⇢(v, R, 0) being given by (34) with (35) for ↵ = 1/2, are compared.
They precisely agree. The agreement includes the allover numerical factor, and gives non-
trivial checks of the general formula (31) with (29).

For R = 1/2 in (51), we have

⇢simsize((k + 1/2)�v) =
1

�vNC

LX

i=1

✓(k�v < |vi|  (k + 1)�v). (52)

For large-N , this is the numerical quantity corresponding to (47) with ↵ = 1/2.

In the left panel of Figure 2 the analytical result (47) and the numerical result (52) are
compared. In this figure, the analytical result is multiplied by an extra allover numerical
factor, which means that the overall factor is not correctly computed in the analytical result,
while the functional form agrees well with the numerical data. As shown in the right panel,
the extra factor  needed to have good agreement is dependent on N . As far as the fitting
line implies, the factor seems to asymptotically diverge in N ! 1.
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Agrees with Monte Carlo

N = 2 R = 2ρ



It is not easy to obtain the expression for larger values of , 
because of the complication of the fermionic integral.

N, R

Therefore it seems difficult to obtain the general expression for 
any  and analytically continue it to .R R = 1/2

We therefore compute the partition function for large-  by using 
Schwinger-Dyson equation. And we put .

N
R = 1/2



Assume ⟨ψ̄ i
aψbj⟩ = Q11Iabδi

j

⟨ψ̄ i
aφbj⟩ = Q12Iabδi

j

⟨φ̄i
aψbj⟩ = Q21Iabδi

j

⟨φ̄i
aφbj⟩ = Q22Iabδi

j

others = 0

 to be determinedQαβ

⟨(ψ̄ iφj)(ψ̄ jφi)⟩ ∼ ⟨ψ̄ iφj⟩⟨ψ̄ jφi⟩ = (N − 1)2RQ2
12

In the leading order of N − 1

etc.

Seff = (N − 1)R(ϵQ11 − Q12 − Q21 − Q22

−
v2(N − 1)

6α
(Q2

12 + Q2
21 + 2Q11Q22) − log( − det Q))

Coming from integrating out fermions

In more details :



 are determined byQαβ

∂Seff

∂Qαβ
= 0

There are four independent solutions. Uniquely chosen from the 
free theory limit at  :v = 0

Q11 =
1

1 + ϵ
, Q12 = Q21 =

−1
1 + ϵ

, Q22 =
ϵ

1 + ϵ
, at v = 0

The expressions of the solutions are complicated, so here it is 
suppressed.



In the  limit, the solution has two regions:ϵ → + 0

・0 < x ≤ 1/4

Q11 =
− 1 − 4x + 1

2x 1 − 4x
, Q12 = Q21 =

1 − 1 − 4x − 4x

2x 1 − 4x
, Q22 = 0

x = v2(N − 1)/3α

・1/4 < x

Q11 =
−1 + 4x

2x ϵ
−

1
2x

+ ⋯, Q12 = Q21 = −
1
2x

+
ϵ

2x −1 + 4x
+ ⋯,

Q22 = −
ϵ −1 + 4x

2x
+

ϵ
2x

+ ⋯



The solution for  diverges in , but  converges. x > 1/4 ϵ → + 0 Sϵ
eff

Sϵ=+0
eff (x) =

(N − 1)R
2 ( 1

x
+ 2 + 2 log x)

・0 < x ≤ 1/4

・1/4 < x

Sϵ=+0
eff (x) =

(N − 1)R
2 (2 + log 16 +

1 − 1 − 4x
x

− 4 log(1 − 1 − 4x) + 4 log x)

Only the latter case ( ) matters for large- , because 
.

1/4 < x N
x = v2(N − 1)/3α → ∞



ρ(v) = (N − 1)(N−1)/2e−(N−1)/2π−N/2α1/2 |v |−N−1 e− α
4 |v |2

Putting  to the expression, we obtainR = 1/2

ρeigenvalue(ζ) = 2(N − 1)(N−1)/2e−(N−1)/2α1/2Γ(N/2)−1e− α
4 ζ2

Eigenvalue ( ) distribution is given by Gaussianζ = 1/ |v |

Figure 2: Left: (52) from a Monte Carlo simulation for N = 14 is plotted by dots. NC =
400, �v = 0.01. This is compared with ⇢size from (47) with  = 5.27 (the best fitting value),
which is plotted by a solid line. Right: The overall factors  needed for the best fitting for
various N are plotted by dots. The fitting line is �3.6 + 3.2N0.38.
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N=14

Figure 3: The numerical result (53) and the analytical result (48) for large-N are compared
for N = 14. NC = 400, �v = 0.02, and  = 5.6 (the best fitting value).

12
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Figure 2: Left: (52) from a Monte Carlo simulation for N = 14 is plotted by dots. NC =
400, �v = 0.01. This is compared with ⇢size from (47) with  = 5.27 (the best fitting value),
which is plotted by a solid line. Right: The overall factors  needed for the best fitting for
various N are plotted by dots. The fitting line is �3.6 + 3.2N0.38.

Figure 3: The numerical result (53) and the analytical result (48) for large-N are compared
for N = 14. NC = 400, �v = 0.02, and  = 5.6 (the best fitting value).

12

CN

Agrees with Monte Carlo up to overall factors depending on .N

Next order will be needed to compute .CN



§ Computations of effective theories : case (3)

lim
ϵ→+0

Det(M2 + ϵ I)
Det(M2 + ϵ I)

= |DetM |

Numerator by Fermions, denominator by bosons

ρ(v) = lim
ϵ→+0

3(N−1)/2π1−3N/2αN/2v−2Ne−α/v2(−1)N−1 ∫⊥
dϕdσdψ̄dψdφ̄dφ eS

After integrating over  and , we have a boson-fermion 
four-interaction system. Parallel components are free and 
can be integrated out :

C λ

No analytic continuation needed. Just evaluate the expression.

Transverse



KB = − σ2 − 2iσϕ − ϵϕ2

KF = − φ̄φ − ψ̄φ − φ̄ψ − ϵψ̄ ψ

VF = −
v2

6α ((ψ̄φ)2 + (φ̄ψ)2 + 2(ψ̄φ̄)(φψ) + 2(ψ̄ ψ)(φ̄φ)))

VB = −
2v2

3α
(σ2ϕ2 + (σϕ)2)

VBF =
2iv2

3α
((ψ̄σ)(φϕ) + (φ̄σ)(ψϕ) + (ψ̄ϕ)(φσ) + (φ̄ϕ)(ψσ))

S = KB + KF + VF + VB + VBF

: bosons, : fermions  σa, ϕa ψ̄a, ψa, φ̄a, φa (a = 1,2,⋯, N)

(ψ̄ ψ) = ψ̄aψa, etc.



We can perform similar Schwinger-Dyson analysis for large-  as 
in case (2). The result turns out to be the same as in (2).

N

In principle, we can improve the result by taking into account 
higher orders of Schwinger-Dyson analysis.

What turns out to be more interesting is that there exist exact 
expressions of the eigenvalue distributions for any  in terms of 
polynomial, exponential and error functions. This has been checked 
for 

N

N ≤ 8.
After fermionic integration, the bosonic integrand turns out to be a 
total derivative (+ a term) and the bosonic integral can be exactly 
performed.



More explicitly :

The fermionic integral can be proven to have the form

∫⊥
dψ̄dψdφ̄dφ eKF+VF+VBF

+a3σ2ϕ2 + a4(σ2ϕ2(σϕ) − (σϕ)3) + a5(σ2ϕ2 − (σϕ)2)2

= a0 + a1(σϕ) + a2(σϕ)2

where  are some finite polynomial functions of . 
The explicit form can be determined by using a Mathematica 
package.

a0, a1, ⋯, a5 v2/α

Then, after some changes of variables, the bosonic integral turns 
into the form

GN = ∫
1/8z

0
dx e−xx(N−3)/2(1 − 4zx)−(N+2)/2(4a0 + 2(−2ia1 + a2 + (N − 1)a3)x

+(8iza1 − (3 + 4z)(a2 + a3) − i(N − 2)a4)x2 + 8z(a2 + a3)x3)

z = v2/6α



To derive this, we assumed 

64z2a0 − 8iza1 + (4z − 1)a2 + (−1 − 4z + 8(N − 1)z)a3 − i(N − 2)a4 + N(N − 2)a5 = 0

This is actually satisfied for .N ≤ 8

Otherwise, the integrand would contain a factor of , 
which ruins the integrability.

1/(1 − 8zx)

Putting the explicit values of , one findsa0, ⋯, a5

For odd N

GN = ∫
1/8z

0
dx

d
dx

e−x ∑(N+1)/2
n=0 bnxn

(1 − 4zx)N/2
= 2N/2e−1/8z

(N+1)/2

∑
n=0

bn(8z)−n − b0

For even N
GN = ∫

1/8z

0
dx(c0x−1/2e−x +

d
dx

x1/2e−x ∑N/2
n=0 bnxn

(1 − 4zx)N/2 )
= c0γ[1/2,1/8z] + 2N/2e−1/8z

N/2

∑
n=0

bn

(8z)n+1/2

 : determined 
from 
bi, c0

ai



This indeed satisfies (46). Then, by putting this into (45), we obtain

GN=3 = ⇡2

Z 1
8z

0

dx
e�x

(1� 4zx)
5
2

�
1 + 4z + 28z2 � 16z(1 + 3z + 14z2)x

+ 16z2(5 + 16z + 16z2)x2 � 128z3(1 + 4z)x3
�
.

(56)

A surprising fact is that the integrand in (56) is actually a total derivative, and we therefore
obtain

GN=3 = �⇡2

Z 1
8z

0

dx
d

dx

 
e�x

(1� 4zx)
3
2

�
1� 2z � 4z(3 + 4z)x+ 32z2(1 + 4z)x2

�
!

= ⇡2
⇣
1� 2z + 4

p
2ze�

1
8z

⌘
.

(57)

6.4 Larger odd N

The strategy taken in Section 6.3 can be generalized for larger odd N in the following manner.
We first compute the ai (i = 0, 1, . . . , 5), which are listed for N = 5, 7 in Appendix B, by
using the aforementioned Mathematica package. They indeed satisfy (46). Then, by putting
them into (45), we obtain GN . Similarly to the case of N = 3 in 6.3, what we find is that the
integrand of GN is a total derivative of the following form for N = 5, 7:

GN :odd =
⇡N�1

4�
⇥
N�1
2

⇤
Z 1

8z

0

dx
d

dx

e�x
PN+1

2
n=0 bnxn

(1� 4zx)
N
2

, (58)

where bn (n = 0, 1, . . . , (N + 1)/2) are some polynomial functions of z. The explicit forms of
bn are given in Appendix B. Therefore, we obtain

GN :odd =
⇡N�1

4�
⇥
N�1
2

⇤

0

@2
N
2 e�

1
8z

N+1
2X

n=0

bn
(8z)n

� b0

1

A . (59)

By using the bi in Appendix B, the explicit expressions of GN for N = 5, 7 are given by

GN=5 = ⇡4
⇣
1� 12z + 12z2 +

p
2e�

1
8z (1 + 12z + 12z2)

⌘
,

GN=7 = ⇡6

 
1� 30z + 180z2 � 120z3 +

p
2e�

1
8z

8z
(1 + 8z + 120z2 � 480z3 + 2640z4)

!
.

(60)

Let us lastly comment on our equipment. The computations were done on a machine which
had a Xeon W2295 (3.0GHz, 18 cores), 128GB DDR4 memory, and Ubuntu 20 as OS. The
computation of ai quickly takes longer time as N becomes larger. GN=8, which appears in
the next subsection, was the largest feasible case, while we failed to obtain GN=9 seemingly
because of a memory shortage.
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6.5 Larger even N

The di↵erence from the odd case of Section 6.4 is that the integrand of GN is a sum of a total
derivative and a simple integrable term:

GN =
⇡N�1

4�
⇥
N�1
2

⇤
Z 1

8z

0

dx

 
c0 x

� 1
2 e�x +

d

dx

x
1
2 e�x

PN
2
n=0 bnx

n

(1� 4zx)
N
2

!
. (61)

Then, by doing the integration, we obtain

GN =
⇡N�1

4�
⇥
N�1
2

⇤

0

@c0�


1

2
,
1

8z

�
+ 2

N
2 e�

1
8z

N
2X

n=0

bn

(8z)n+
1
2

1

A . (62)

The lists of ai, bi, c0 for N = 4, 6, 8 are given in Appendix C. ai indeed satisfy (46). By putting
the values of bi, c0 we obtain the explicit forms of GN as

GN=4 = ⇡
5
2

✓
6
p
2e�

1
8z
p
z(1 + 2z) + (1� 6z) �


1

2
,
1

8z

�◆
,

GN=6 = ⇡
9
2

 
2
p
2e�

1
8z (1 + 15z + 180z3)

3
p
z

+ (1� 20z + 60z2) �


1

2
,
1

8z

�!
,

GN=8 = ⇡
13
2

 p
2e�

1
8z (1 + 210z2 � 2100z3 + 12600z4 + 25200z5)

15z
3
2

+ (1� 42z + 420z2 � 840z3) �
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(63)

7 Comparison with Monte Carlo simulations

In this section, we compare the results in Section 6 with Monte Carlo simulations. The
procedure is basically the same as that used in [16, 17]. To make this paper self-contained,
however, we review the method below.

The eigenvector equation (1) is a system of polynomial equations and it can be solved by
an appropriate polynomial equation solver, unless N is too large. We use Mathematica 13
for this purpose. It gives generally complex solutions to the equation (1), and we pick up
only real ones, since we are only counting real eigenvectors (or Z-eigenvalues). Whether this
method covers all the real solutions or not can be checked by whether the number of generally
complex solutions obtained for each C by a polynomial equation solver agrees with the known
number 2N � 1 [20]3.

3In fact, for large N , Mathematica 13 seems to miss a few solutions for some C. We have not pursued the
reason for that, but the missing portion is ⇠ 10�4 even for our largest case of N = 16, and is statistically
irrelevant in the present study.
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The end results are

z = v2/6α
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Figure 1: The results of the Monte Carlo simulation for N = 8, NC = 10000 are compared
with the analytic expressions. Left: The eigenvector size distribution. The Monte Carlo result
(66) with �v = 0.03 (dots) is compared with (67) using (40) and GN=8 in (63) (solid line).
Right: The eigenvalue distribution. The Monte Carlo result (68) with �⇣ = 0.03 (dots) is
compared with the analytic expression through (7).

8 Extrapolation to general N

In this section, we point out a few patterns which exist in the expressions of the distributions
derived for small N in Section 6, and guess an extrapolation to general N . A motivation
for doing this is to improve the large-N expression previously obtained by an approximation
using a Schwinger-Dyson equation [17]. The issue of the previous result was that, while the
functional form agreed well with the numerical simulation for large-N , the overall factor did
not. In this section, using the extrapolation, we will guess the overall factor for general N and
find good agreement with Monte Carlo simulations.

After a thought one notices that GN for even N (namely, N = 2, 4, 6, 8) in Section 6 can
be expressed by the following general form:

GN :even =⇡N� 3
2 z

N�1
2 HN�1


1

2
p
z

�
�


1

2
,
1

8z

�

+
p
2⇡N� 3

2
N !
N
2 !
z

N�1
2 e�

1
8z

✓
1 +

d1
z

+
d2
z2

+ · · ·+ dN�3

zN�3

◆
,

(69)

where Hn[·] are Hermite polynomials, di are some coe�cients generally depending on N , and
specifically

d1 =
1 + (�1)

N
2

4
. (70)

As for di (i � 2), we could not find reasonably simple functions of N .

Let us discuss the real eigenvalue distribution for large-N , assuming (69) with (70). Be-
cause of the relations (6) and (44), and the fact that the major part of the distribution is
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The exact formula agrees with the Monte Carlo result.



The Schwinger-Dyson analysis in the leading order carried out in 
case (2) did not correctly produce the overall factor of the 
distribution, since this is in the next order.

From the exact results of  one can guess the -dependence of 
the overall factor. We obtain

N ≤ 8 N

ρeig(ζ) ∼ 2−N/2+2α1/2π−1/2 Γ[N + 1]
Γ[ N

2 + 1] Γ[ N
2 ]

e− α
4 ζ2
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Figure 2: The guessed large-N formula (73) (solid line) is compared with the Monte Carlo
simulation (68) (dots). Left: N = 14, �⇣ = 0.03, NC = 400. Middle: N = 15, �⇣ = 0.06, NC =
100. Right: N = 16, �⇣ = 0.1, NC = 72.

around ⇣ ⇠ 0 as in Figure 1, we are interested in a 1/z expansion of (69) with (70). By
explicitly doing this one obtains

GN ⇠
p
2⇡N� 3

2
�[N + 1]

�
⇥
N
2 + 1

⇤z
N�1

2

✓
1 +

1

8z
+ · · ·

◆
, (71)

where the factorials are replaced by Gamma functions to also be applicable for odd N below.
By combining with the previous result in [17] that the large-N eigenvalue distribution is given
by a Gaussian function of |v|, one could assume that the expansion in 1/z of (71) comes from
the expression,

GN ⇠
p
2⇡N� 3

2
�[N + 1]

�
⇥
N
2 + 1

⇤z
N�1

2 e
1
8z . (72)

Putting this into (7) using (6), (40) and (44), we obtain

⇢eig(⇣) ⇠ 2�
N
2 +2↵

1
2⇡� 1

2
�[N + 1]

�
⇥
N
2 + 1

⇤
�
⇥
N
2

⇤e�↵
4 ⇣

2
, (73)

which indeed is a Gaussian distribution. While the coe�cient ↵/4 in the exponent indeed
agrees with the previous result in [17], the overall factor is di↵erent.

In Figure 2 we compare the large-N expression (73) with the Monte Carlo simulations for
N = 14, 15, 16.4 They agree well, and the agreement seems to become slightly better, as N
becomes larger.

In the above discussion, we have not used the odd N cases. The reason is that we could
not find simple expressions valid across all the odd N cases obtained in Section 6. We merely
notice

GN :odd = ⇡N�1z
N�1

2 HN�1

✓
1

2
p
z

◆
+ d00 e

� 1
8z

✓
1 +

d01
z

+ · · ·+
d0N�3

zN�3

◆
, (74)
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The formula agrees well with 
the Monte Carlo result without 
extra tuning of the overall 
factor.



§ Summary and future prospects
Eigenvalue distributions of tensors could be an interesting 
dynamical quantity which characterizes the dynamical aspects 
of tensor models.

We compute real eigenvalue/vector distribution for order-three 
real symmetric tensors with Gaussian distribution.

The large-  limit of the eigenvalue distribution is given by 
Gaussian, which contrasts with Wigner’s semicircle law in the 
matrix model.

N

The difference from the previous studies is that we used field 
theoretical methods, while the previous studies used the matrix 
model techniques.



One would extend the computation in various directions.

• Count only the eigenvectors at which Hessian matrix  has 
signature  (= the number of negative eigenvalues).

M
k

• Compute correlations among eigenvectors. In matrix models, 
eigenvalues are repulsive. How about tensor models ?

• Obtain exact formulas of eigenvalue/vector distributions 
for any , N R
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⋅ (4 ze−1/8z − 2π Erfc(1/2 2z))
z = v2/6α


