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Introduction: Asymmetric Spiked Tensor Model

T
=

x1

x2

x3

Tijk

x1i

x2j

x3k

X
+ Xijkβ x

We consider the following model: (x1 ⊗ x2 ⊗ x3)ijk = x1ix2jx3k

T = βx1 ⊗ · · · ⊗ xd︸ ︷︷ ︸
signal

+
1
√

n
X︸︷︷︸

noise

∈ Rn1×···×nd

where β ≥ 0, ∥xi∥ = 1, Xi1...id
∼ N (0, 1) i.i.d. and n =

∑d

i=1 ni.

▶ Is it possible to recover the signal in theory? for which critical value of β?
▶ What alignment ⟨xi, ui⟩ between the signal and an estimator ui(T)?
▶ Is there an algorithm that can recover the signal in polynomial time?
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Related Works: Symmetric Case

Introduced initially by (Montanari & Richard, 2014)

Y = βx⊗d +
1
√

N
W ∈ RN×···×N

where ∥x∥ = 1 and W has random Gaussian entries and is symmetric.This is a
natural extension of the classical spiked matrix model Y = βxx⊤ + 1√

N
W .

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

Other works in the literature include: (Montanari et al., 2015), (Hopkins et al.,
2020), (Kim et al., 2017), (Ben Arous et al., 2019), (Jagannath et al, 2020),
(Perry et al., 2020), (Ros et al., 2020), (Goulart et al., 2022).

Of which Goulart et al. "A random matrix perspective on random tensors",
JMLR 2022.
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Random Matrix Approach (Goulart et al., 2022)
The optimization problem of maximum likelihood estimator (MLE) for d = 3:

min
λ>0, ∥u∥=1

∥∥Y− λu⊗3
∥∥2

F
⇔ max

∥u∥=1
⟨Y, u⊗ u⊗ u⟩

The critical points satisfy (Lim, 2005):

Y(u, u) = λu ⇔ Y(u)u = λu, ∥u∥ = 1

where (Y(u, u))i =
∑

jk
ujukYijk et (Y(u))ij =

∑
k

ukYijk. The MLE
x̂ corresponds to the dominant eigenvector of Y(x̂) : Y(x̂)x̂ = ∥Y∥x̂.

Hence, the approach from (Goulart et al., 2021) consists in studying:

Y(u) = β⟨x, u⟩xx⊤ +
1
√

N
W(u) ∈ RN×N

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

RMT threshold

Local maximum
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Tensors Singular Values and Vectors

The optimization problem of MLE for d = 3:

min
λ>0, ∥ui∥=1

∥T− λu1 ⊗ u2 ⊗ u3∥2
F ⇔ max∏3

i=1
∥ui∥=1

⟨T, u1 ⊗ u2 ⊗ u3⟩

The critical points satisfy (Lim, 2005):

T(·, u2, u3) = λu1, T(u1, ·, u3) = λu2, T(u1, u2, ·) = λu3

where ∥ui∥ = 1 for all i ∈ [3] and (T(·, u2, u3))i =
∑

jk
u2ju3kTijk.

▶ In contrast to the symmetric case, the choice of the associated contraction
matrix is not straightforward. For instance:

T(u3) ≡ T(·, ·, u3) = β⟨x3, u3⟩x1x⊤
2 +

1
√

n
X(·, ·, u3) ∈ Rn1×n2

Objectives:
▶ Evaluate the asymptotic limits of λ̂ and ⟨xi, ûi⟩ associated (a priori) to

the MLE when ni →∞.
▶ Define a symmetric random matrix that is equivalent to T.
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Associated Random Matrix to T

Stein’s Lemma. Let X ∼ N (0, 1), then E[Xf(X)] = E[f ′(X)].

Recall λ = T(u1, u2, u3) = 1√
n

∑
ijk

u1iu2ju3kXijk + β
∏3

i=1⟨xi, ui⟩.

E[λ] =
1
√

n

∑
ijk

E

[
u2ju3k

∂u1i

∂Xijk

]
+ E

[
u1iu3k

∂u2j

∂Xijk

]
+ E

[
u1iu2j

∂u3k

∂Xijk

]
+ .


∂u1

∂Xijk
∂u2

∂Xijk
∂u3

∂Xijk

 ≃ − 1
√

n


[

0n1×n1 T(u3) T(u2)
T(u3)⊺ 0n2×n2 T(u1)
T(u2)⊺ T(u1)⊺ 0n3×n3

]
︸ ︷︷ ︸

Φ3(T,u1,u2,u3)

− λIn


−1 [

u2ju3ken1
i

u1iu3ken2
j

u1iu2jen3
k

]

The resolvent matrix: R(z) = (Φ3(T, u1, u2, u3)− zIn)−1.
When ni →∞, the non-vanishing terms involve the trace of R(z),

λ +
1
n

tr R(λ) = β

3∏
i=1

⟨xi, ui⟩
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Associated Random Matrix to T

For an order-d tensor the associated random matrix is Φd(T, u1, . . . , ud)

Φd : (X, a1, . . . , ad) 7−→


0n1×n1 X12 X13 · · · X1d

(X12)⊤ 0n2×n2 X23 · · · X2d

(X13)⊤ (X23)⊤ 0n3×n3 . . . X3d

...
...

...
. . .

...
(X1d)⊤ (X2d)⊤ (X3d)⊤ · · · 0nd×nd


with Xij ≡ X(a1, . . . , ai−1, ·, ai+1, . . . , aj−1, ·, aj+1, . . . , ad) ∈ Rni×nj .

Remark. (d− 1)λ is an eigenvalue of Φd(T, u1, . . . , ud) with

Φd(T, u1, . . . , ud)

u1
...

ud

 = (d− 1)λ

u1
...

ud


since T (u1, . . . , uj−1, ·, uj+1, . . . , ud) = λuj .

rank(Φd(T, u1, . . . , ud)) =
d∑

i=1

min

(
ni,
∑
j ̸=i

nj

)
April 19th 2023 Tensor Journal Club
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Spectral Measure of Φd(T, u1, . . . , ud)

Stieltjes Transform. The Stieltjes transform of a probability measure ν is
gν(z) =

∫
dν(λ)
λ−z

, z ∈ C \ S(ν).

For S ∈ Symn with λi its eigenvalues and denote its resolvent RS(z) =
(S − zIn)−1, the ESM of S and its associated Stieltjes transform are:

νS =
1
n

n∑
i=1

δλi
, gνS (z) =

1
n

n∑
i=1

1
λi − z

=
1
n

tr RS(z), z ∈ C \ S(νS)

Definition 1. Let ν by the probability measure with Stieltjes transform
g(z) =

∑d

i=1 gi(z) verifying ℑ[g(z)] > 0 for ℑ[z] > 0, where gi(z) satisfies
g2

i (z)− (g(z) + z)gi(z)− ci = 0, for z /∈ S(ν).

Assumption 1. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a

sequence of critical points (λ̂, û1, . . . , ûd) s.t. λ̂
a.s.−→ λ, |⟨xi, ûi⟩|

a.s.−→ ρi

with λ /∈ S(ν) and ρi > 0.

Theorem 1 (SGC’21). Under Assumption 1, the ESM of Φd(T, û1, . . . , ûd)
converges weakly to ν defined in Definition 1 (i.e. 1

n
tr R(z) a.s.−→ g(z)).

April 19th 2023 Tensor Journal Club
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Spectral Measure of Φd(T, u1, . . . , ud)

Repeat
▶ gi ← ci/(gi − g − z)
▶ g ←

∑
i

gi

Until convergence of g.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

D
en

sit
y

c1 =
c

4
, c2 =

c

2
, c3 = 1−

3c

4

c = 0.1
c = 0.3
c = 0.4
c = 0.6
c = 0.7
c = 0.9

Figure: Density of the limiting spectral measure ν(dx) = 1
π limϵ→0 ℑ[g(x + iϵ)].
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Spectral Measure of Φd(T, u1, . . . , ud)

Corollary 1. When ci = 1
d

for all i ∈ [d], the ESM of Φd(T, û1, . . . , ûd)

converges to a semi-circle law ν of support
[
−2
√

d−1
d

, 2
√

d−1
d

]
, where

ν(dx) =
d

2(d− 1)π

√(4(d− 1)
d

− x2
)+

, g(z) =
−zd + d

√
z2 − 4(d−1)

d

2(d− 1)

−2 −1 0 1 2
0

0.2

0.4 Empirical
Theoretical

−2 0 2 4 6
0

0.1

0.2

0.3

0.4 Theo.

4
√

2
3

2E[λ]

Figure: Spectrum of Φ3(T, u1, u2, u3) at initialization (left) and convergence (right) of
tensor power iteration applied on T. n1 = n2 = n3 = 150 and β = 3.

u1 ←
T(·, u2, u3)
∥T(·, u2, u3)∥

, u2 ←
T(u1, ·, u3)
∥T(u1, ·, u3)∥

, u3 ←
T(u1, u2, ·)
∥T(u1, u2, ·)∥
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Asymptotic Spectral Norm and Alignments

T(x1, û2, û3) = λ̂⟨x1, û1⟩ ⇒︸︷︷︸
Stein

[
λ̂ + g2(λ̂) + g3(λ̂)

]
⟨x1, û1⟩ = β

3∏
i=2

⟨xi, ûi⟩

Assumption 1. As ni → ∞ with ni∑
j

nj

→ ci ∈ (0, 1), there exists a

sequence of critical points (λ̂, û1, . . . , ûd) s.t. λ̂
a.s.−→ λ, |⟨xi, ûi⟩|

a.s.−→ ρi

with λ /∈ S(ν) and ρi > 0.

Theorem 2 (SGC’21). For all d ≥ 3, under Assumption 1, there exists βs > 0
such that for all β > βs

λ̂
a.s.−→ λ, |⟨xi, ûi⟩|

a.s.−→ qi(λ)

where λ satisfies f(λ, β) = 0 with

f(z, β) = z + g(z)− β

d∏
i=1

qi(z), qi(z) =

√
1−

g2
i (z)
ci

for β ∈ [0, βs], λ is bounded and |⟨xi, ûi⟩|
a.s.−→ 0.
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Asymptotic Spectral Norm and Alignments
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Cubic Tensors

Corollary 2 (SGC’21). If d = 3 with ci = 1
3 , then for all β > 2

√
3

3
λ̂

a.s.−→

√
β2

2 + 2 +
√

3
√

(3β2−4)3

18β

|⟨xi, ûi⟩|
a.s.−→

√
9β2−12+

√
3
√

(3β2−4)3

β
+

√
9β2+36+

√
3
√

(3β2−4)3

β

6
√

2β

For hyper-cubic tensors of order d, we have

βs =

√
d− 1

d

(
d− 2
d− 1

)1− d
2

, lim
β→βs

ρi(β) =

√
d− 2
d− 1
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Spiked Matrix Model

For d = 3, n3 = 1 ⇒ T = βx1x⊤
2 +

1
√

n1 + n2
X ∈ Rn1×n2

Corollary 3 (SGC’21). If d = 3 with c1 = c et c2 = 1− c for c ∈ [0, 1], the
spiked tensor model becomes a spiked matrix model (i.e. c3 = 0).

Let κ(β, c) = β

√
β2(β2+1)−c(c−1)

(β4+c(c−1))(β2+1−c) , for β > βs = 4
√

c(1− c)

λ̂
a.s.−→

√
β2 + 1 +

c(1− c)
β2 , |⟨xi, ûi⟩|

a.s.−→
1

κ(β, ci)
, i ∈ {1, 2}

while for β ∈ [0, βs], λ̂
a.s.−→
√

1 + 2
√

c(1− c) et |⟨xi, ûi⟩|
a.s.−→ 0.
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Decomposition Algorithms and Complexity

min
λ>0, ∥ui∥=1

∥T− λu1 ⊗ · · · ⊗ ud∥2
F ⇒ NP-hard (Hillar et al., 2013)

▶ Tensor unfolding: Mi(T) = βxiy
⊤
i + 1√

n
Mi(X) ∈ R

ni×
∏

j ̸=i
nj .

▶ Using Corollary 3, we find βa =
(∏

i
ni

)1/4
/
√∑

i
ni.

▶ Coincides with O

(
N

d−2
4

)
of (Ben Arous et al, 2021) for ni = N .

▶ Same threshold for tensor power iteration initialized with tensor unfolding
(Auddy et al., 2021).
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Hotteling-type Tensor Deflation

We consider the following rank-2 order-3 spiked tensor model

T1 =
2∑

i=1

βix1i ⊗ x2i ⊗ x3i +
1
√

n
X ∈ Rp×p×p

where βi ≥ 0, ∥xmi∥ = 1, Xijk ∼ N (0, 1) i.i.d. and n = 3p. Assume

α ≡ ⟨x11, x12⟩ = ⟨x21, x22⟩ = ⟨x31, x32⟩ ∈ [0, 1]

Tensor Deflation. Compute λ̂2û12 ⊗ û22 ⊗ û32 as best rank-one approxi-
mation of T2 with

T2 = T1 − λ̂1û11 ⊗ û21 ⊗ û31

where λ̂iû1i ⊗ û2i ⊗ û3i is a critical point of

arg min
λi>0,∥umi∥=1

∥Ti − λiu1i ⊗ u2i ⊗ u3i∥2
F

Such a critical point satisfy

Ti (·, û2i, û3i) = λ̂iû1i Ti (û1i, ·, û3i) = λ̂iû2i Ti (û1i, û2i, ·) = λ̂iû3i
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Illustration of Signal Recovery with Deflation
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Figure: Deflation on T1 =
∑2

i=1
βix⊗3

i
with xi = ei ∈ Rp.
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Associated Random Matrices

For both deflation steps:

Ti → Φ3(Ti, û1i, û2i, û3i) → Stieltjes transform g(z)

since Ti’s are low-rank perturbations of 1√
n

X.

Assumption 2. Assume that as n→∞, there exists a sequence of critical
points (λ̂i, û1i, û2i, û3i) such that

λ̂i
a.s.−→ λi |⟨ûmi, xmj⟩|

a.s.−→ ρij |⟨ûm1, ûm2⟩|
a.s.−→ η

with λi > 2
√

2
3 and ρij , η > 0.

Theorem 3 (SGC’21). Under Assumption 2, the ESM of Φ3(Ti, û1i, û2i, û3i)

converges to the semi-circle law ν of compact support
[
−2
√

2
3 , 2
√

2
3

]
,

with Stieltjes transform

g(z) =
−3z + 3

√
z2 − 8

3
4

, z > 2

√
2
3
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First Deflation Step

Theorem 4 (SGD’22). Under Assumption 2, λ1, ρ11 and ρ12 satisfy{
fg(λ1) =

∑2
i=1 βiρ

3
1i

hg(λ1)ρ1j =
∑2

i=1 βiαijρ2
1i for j ∈ [2]

where αij = α if i ̸= j and 1 otherwise, and denote fg(z) = z + g(z) and
hg(z) = − 1

g(z) .

0 5 10 15
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15

β1

λ̂1
λ1

0 5 10 15

0

0.5

1

β1

ρ̂11
ρ̂12
ρ11
ρ12
β1 = β2
α = 0.5

Figure: Simulated versus asymptotic singular value and alignments corresponding to the
first deflation step. We considered β2 = 5, α = 0.5, p = 100 and varying β1 ∈ [0, 15].
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Second Deflation Step

Theorem 5 (SGD’22). Under Assumption 2, λ1, ρ11 and ρ12 satisfyfg(λ2) + λ1η3 =
∑2

i=1 βiρ
3
2i

hg(λ2)ρ2j + λ1η2ρ1j =
∑2

i=1 βiαijρ2
2i for j ∈ [2]

hg(λ2)η + qg(λ1)η2 =
∑2

i=1 βiρ1iρ
2
2i

where αij = α if i ̸= j and 1 otherwise, and denote fg(z) = z + g(z),
hg(z) = − 1

g(z) and qg(z) = z + g(z)
3 .
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Figure: Simulated versus asymptotic singular value and alignments corresponding to the
first deflation step. We considered β2 = 5, α = 0.5, p = 100 and varying β1 ∈ [0, 15].
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Orthogonalized Tensor Deflation

We consider the following rank-2 order-3 spiked tensor model

T1 =
2∑

i=1

βix1i ⊗ x2i ⊗ x3i +
1
√

n
X ∈ Rp×p×p

where βi ≥ 0, ∥xmi∥ = 1, Xijk ∼ N (0, 1) i.i.d. and n = 3p. Assume

α ≡ ⟨x11, x12⟩ = ⟨x21, x22⟩ = ⟨x31, x32⟩ ∈ [0, 1]

Orthogonalized Deflation. Compute λ̂2û12 ⊗ û22 ⊗ û32 as best rank-one
approximation of T2 with

T2 ≡ T1 ×1
(

Ip − γû11û⊤
11
)

= T1 − γû11 ⊗ T1(û11)

where γ ∈ [0, 1] and λ̂iû1i ⊗ û2i ⊗ û3i is a critical point of

arg min
λi>0,∥umi∥=1

∥Ti − λiu1i ⊗ u2i ⊗ u3i∥2
F

Such a critical point satisfy

Ti (·, û2i, û3i) = λ̂iû1i Ti (û1i, ·, û3i) = λ̂iû2i Ti (û1i, û2i, ·) = λ̂iû3i
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Associated Random Matrix (Second Deflation Step)

Let κ̂ = ⟨û11, û12⟩

T2 →Mγ ≡
1
√

n

[
0 X(û32) X(û22)

X(û32)⊤ 0 X(û12)− γκ̂X(û11)
X(û22)⊤ X(û12)⊤ − γκ̂X(û11)⊤ 0

]

Remark. If γ = 1 then κ̂ = 0.

λ2⟨û11, û12⟩ = T2(û11, û22, û32)
= T1(û11, û22, û32)− ⟨û11, û11⟩︸ ︷︷ ︸

=1

T1(û11, û22, û32) = 0

which yields a semi-circle law as in Hotteling’s deflation.

Assumption 3. Assume that as n→∞, there exists a sequence of critical
points (λ̂2, û12, û22, û32) such that for m ̸= 1

λ̂2
a.s.−→ λ2 |⟨û12, x1i⟩|

a.s.−→ θ2i |⟨ûm2, xmi⟩|
a.s.−→ ρ2i

|⟨û11, û12⟩|
a.s.−→ κ |⟨ûm1, ûm2⟩|

a.s.−→ η

with λ2 > λ+ and θ2i, ρ2i, η > 0.
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Associated Random Matrix (Second Deflation Step)

Theorem 6 (SMD’23). Under Assumption 3, the ESM of Mγ converges
weakly to a deterministic measure µ having Stieltjes transform s(z) =
a(z) + 2b(z) verifying ℑ[s(z)] > 0 for ℑ[z] > 0, where a(z) and b(z) satisfy,
for z /∈ Supp(µ) {

[2b(z) + z] a(z) + 1
3 = 0

(a(z) + z − τb(z))b(z) + 1
3 = 0

with τ = γκ2 − 1 + κ(γ − 1).

Repeat
▶ a← −1/(3(2b + z))
▶ b← −1/(3(a + z − τb))

Until convergence of a and b.

µ(dx) =
1
π

lim
ϵ→0
ℑ[s(x + iϵ)]

−2 −1 0 1 2
0

0.2

0.4

Eigenvalues
µ(dx)
Semi-circle

Figure: Histogram of the eigenvalues of Mγ and limiting measure µ. We considered
p = 200, β1 = 20, β2 = 15, α = 0.8, γ = 0.85.
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Singular Value and Alignments (Second Deflation Step)

Theorem 6 (SMD’23). Under Assumption 3, λ2, θ2i, ρ2i, κ and η satisfy

fs(λ2) − γκη2
3 g(λ1) − 2γκ2b(λ2) =

∑2
i=1

βiθ2iρ2
2i

− γκ
∑2

i=1
βiρ1iρ2

2i

[fs(λ2) − a(λ2)]θ2j − γρ1j

[
η2
3 g(λ1) + 2κb(λ2)

]
=
∑2

i=1
βiαij ρ2

2i
− γρ1j

∑2
i=1

βiρ1iρ2
2i

[λ2 + 2(1 − γ)b(λ2)] κ = (1 − γ)

[∑2
i=1

βiρ1iρ2
2i

− η2
3 g(λ1)

][
fs(λ2) − (1 + γκ2)b(λ2)

]
ρ2j =

∑2
i=1

βiθ2iρ2iαij − γκ

[∑2
i=1

βiρ1iρ2iαij −
ρ1j η

3 g(λ1)
][

λ2 + a(λ2) + (1 − γκ2)b(λ2) − γκ
3 g(λ1)

]
η =
∑2

i=1
βiθ2iρ1iρ2i − γκ

∑2
i=1

βiρ2
1i

ρ2i

where αij = α if i ̸= j and 1 otherwise, and denote fs(z) = z + s(z).

Case γ = 1. The above system reduces to
fg(λ2) =

∑2
i=1 βiθ2iρ

2
2i

hg(λ2)θ2j − η2

3 g(λ1)ρ1j =
∑2

i=1 βiαijρ2
2i − ρ1j

∑2
i=1 βiρ1iρ

2
2i

hg(λ2)ρ2j =
∑2

i=1 βiθ2iρ2iαij

hg(λ2)η =
∑2

i=1 βiθ2iρ1iρ2i

since κ = 0.

April 19th 2023 Tensor Journal Club



Spike Recovery from
Large Random Tensors

MEA. Seddik

Introduction
Asymmetric Spiked Tensor
Model

Related Works

Random Matrix Approach

Analysis of the
Asymmetric Spiked
Tensor Model
Tensors Singular Values and
Vectors

Associated Random Matrix

Asymptotic Spectral Norm
and Alignments

Decomposition
Algorithms and
Complexity

Generalization to
Low-rank Spiked
Tensor Models
Hotteling-type Tensor
Deflation

Orthogonalized Tensor
Deflation

Generalization to Low-rank Spiked Tensor Models/Orthogonalized Tensor Deflation 29/34

Singular Value and Alignments (Second Deflation Step)
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Figure: β2 = 5, α = 0.5, p = 100, γ = 0.8 and varying β1 ∈ [0, 15].
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Alignments Varying γ

0 0.5 1

0

0.2

0.4

0.6

0.8

1

γ

First mode alignments

θ21
θ22
θ∗

22 = 0.994
α = 0.6
γ∗(θ22) = 0.63

0 0.5 1

0

0.2

0.4

0.6

0.8

1

γ

Other modes alignments

ρ21
ρ22
ρ∗

22 = 0.996
α = 0.6
γ∗(ρ22) = 0.65

Figure: β1 = 10, β2 = 9, α = 0.6, p = 100, α = 0.6 and varying γ ∈ [0, 1].
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Model Parameters Estimation

▶ Compute λ̂1, λ̂2 and η̂ = ⟨û21, û22⟩ by orthogonalized deflation for γ = 1.
▶ Solve the previous systems (for γ = 1) in β1, β2, α and the alignments.
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0
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15

β1

y = x

y = β2
β1 = β2

λ̂1

λ̂2

max{β̂1, β̂2}
min{β̂1, β̂2}

Figure: β2 = 5, α = 0.5, p = 150 and γ = 1 while varying β2. The curves are averaged
over 100 realizations of T1.
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RTT-improved Deflation Algorithm
▶ Perform orthogonalized deflation with γ = 1.
▶ Model estimation (β̂1, β̂2, α̂).
▶ Estimate optimal γ∗ to maximize ρ22 (solve systems and update

γ ← γ − ϵ for ϵ > 0).
▶ Perform orthogonalized deflation with γ∗.
▶ Re-estimate first component as best rank-one approximation of

T2 −min{β̂1, β̂2}û∗
2 ⊗ v̂∗

2 ⊗ ŵ∗
2 .
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Figure: β1 = 6, β2 = 5.7 and p = 150. The curves are obtained by averaging over 200
realizations of T1.
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Take Away Messages
▶ The RMT approach allows the study of asymmetric spiked tensor models.
▶ The obtained results characterize the performance of the MLE for β large

enough (i.e., β ≥ βc).

Impossible NP-hard Simple

Statistical  
threshold 

Algorithmic 
threshold 

RMT threshold

Local maximum

Open questions:
▶ Still unclear how to characterize the phase transition of the MLE with the

RMT approach.
▶ Is it possible to find a polynomial time algorithm that is consistent below

the computational threshold βa?
▶ Study of higher order statistics and fluctuations?
▶ Proof of consistency of model estimation?
▶ Study the existence and uniqueness of the solutions of the deflation cases.
▶ Universality and generalization to other decomposition methods.

Thank you for your attention!
melaseddik.github.io
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