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The generalized entropy of a black hole

Bekenstein: a black hole must have entropy to be consistent with the second law of
thermodynamics. He figured out that it must be proportional to its horizon area,

SBH ∝ Ahorizon

Hawking: a black hole does radiate quantum mechanically, and putting this fact
together with the other known laws of black hole mechanics confirms Bekenstein’s
conjecture,

SBH =
Ahorizon
4GNℏ
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The black hole information paradox

If the radiation is thermal and featureless as shown by Hawking, the radiation entropy,
S(R) := −Tr𝜌R log 𝜌R, shall keep increasing. Where is the information carried by the
collapsing star after the black hole evaporation? It seems that we end up having a
non-unitary evolution. This is a version of the black hole information paradox.

Page asked, "How would the entropy behave if we demand unitarity?" If black holes
were to evolve unitarily as demanded by quantum theory, say under some typical
random unitary, then the radiation entropy should follow the Page curve.

The black hole information puzzle
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theory, say under some typical random unitary, then the radiation 
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The challenge is to obtain the Page curve using gravity calculations 
and understand its discrepancy from Hawking’s calculation.

S(R) ≲ min{ |R | , |B |}

The challenge is to obtain the Page curve using the first-principled gravity
calculations.
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Recent progress on deriving the Page curve

[Penington, Almheiri, Engelhardt, Marolf, Maxfield, Maldacena, Mahajan, Zhao,
Hartman, Shaghoulian, Tajdini, Shenker, Stanford, Yang ... ]



Gravitational replica trick

The standard formula for the vN entropy seems to give us a non-unitary answer, so
let’s try a different way to compute the radiation entropy. [Cardy, Calabrese,
Hawking, Gibbons, Hartle, Lewkowycz, Maldacena, Faulkner]

S(R) = lim
n→1

1
1 − n

logTr𝜌n
R = lim

n→1

1
1 − n

logTr𝜌⊗n
R 𝜏n.

We can use the gravitational path integral (GPI) to capture ⟨𝜏n⟩𝜌 = Tr𝜌⊗n
R 𝜏n by

setting up appropriate boundary conditions.

S(R) := lim
n→1

1
1 − n

log⟨𝜏n⟩ := lim
n→1

1
1 − n

log
Z [B×n, 𝜏n]

Z [B]n .

The full GPI is tricky to evaluate, so we use the saddlepoint approximation. There are
two most important saddles. A fully disconnected one and a fully connected one.
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Two saddles

For example, we compute Z [B×3, 𝜏3],
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The former is known by Gibbons and Hawking which results in increasing entropy;
whereas the latter, known as the replica wormhole, is responsible for the decreasing
entropy in the second half of the Page curve.

They swap dominance after the Page
time. The radiation entropy is then given by the island formula that accounts for the
effect of the saddle switch.
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A concrete problem: the Penington-Shenker-Stanford-Yang model
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The solution to this boundary condition in JT gravity is given by an "End of the
World" (EOW) brane (geodesic) that acts as the black hole interior which hosts all the
d.o.f. that are entangled with the emitted radiation collected in some auxiliary system.



Page curve in the PSSY model
The PSSY model doesn’t describe dynamic evaporation (so the black hole doesn’t
shrink). Nonetheless, the information paradox is captured by the model. By tuning
the amount of entanglement k, it describes snapshots at different stages of
evaporation.

A concrete example: the Penington-Shenker-Stanford-Yang (PSSY) model

 Bell pairslog k
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[Penington, Shenker, Stanford, Yang]

PSSY adds a brane to a black hole in JT gravity, and 
entangle by hand  the d.o.f. on the brane with an 
auxiliary radiation reservoir. It doesn’t describe 
dynamical evaporation (so the black hole doesn’t shrink).  

Nonetheless, the information paradox is captured by the 
model. By tuning the amount of  entanglement , it 
describes snapshots at different stages of  the evaporation. 

log k

We can understand the Hawking curve as the entanglement entropy the maximally
entangled state that one naively thinks to describe the black hole-radiation systems,
1
k
∑k

i=1 |𝜓i⟩B |i⟩R. However, the GPI calculation shall show that {|𝜓i⟩B} are slightly
overlapping rendering a “capping-off” of the radiation entropy as predicted by Page.
This is consistent with the fact that B is really only has a finite amount of d.o.f.
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The island formula

We consider the replica trick calculation of the radiation entropy S(R) in the PSSY
model (JT+ brane). For example, consider the calculation for three replicas again,

!
B

"
R

We want to compute Z3/Z3
1 . The disconnected saddle roughly evaluates to ke3SBH ,

and the wormhole saddle evaluates to k3eSBH . We have

Z3 = ke3SBH + k3eSBH .

The normalization factor is given by Z3
1 = (keSBH )3.Using the replica trick formula,

the end result is given by the (island) formula:

S(R) = min{log k,SBH}.
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Breakdown of the island formula “near” the transition

The island formula assumes the dominance of replica-symmetric saddles, which may
not be valid in general.

We expect large corrections to the island formula when we
have non-flat spectrum for the radiation. Generally, the non-flat spectrum is relevant
when we apply quantum information processing to the radiation or when the reservoir
has some gapped Hamiltonian.
For example, consider a black hole-radiation system BR in a superposition of two
branches, where one has much more entanglement than the other. The spectrum is
“L”-shaped, and the island formula S(R) = min{log k,SBH} is largely different from
the answer obtained from summing over all geometries.
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SBH

S(R)
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PSSY model with non-flat bulk entanglement spectrum

Consider now a more general “naive” state that describes the black hole-radiation
system. We want to know what’s the corresponding Page curve.

|𝜌⟩BR =

k∑︁
i=1

√
ci |𝜓i⟩B |i⟩R

We’d like to sum over all saddles in the planar limit (k ≫ 1 no crossings, S0 ≫ 1 no
higher genus), e.g.

From each saddle, there are contributions from the gravitational sector (Zn from an
n-connected disk/wormhole) and the matter sector (brane index loops). Unlike in
PSSY, the brane index loops are now weighed by ci and an n-connected loop
evaluates to Tr(k𝜌R)n, which always gives k for a flat 𝜌R ∝ I.



The precise formula for the GPI

The partition function for an n-connected disk/wormhole reads

Zn =

∫ ∞

0
dE 𝜌(E)y (E)n ,

y (E) := 2−𝛽E21−2𝜇 |Γ(𝜇 − 1/2 + i
√

2E) |2, 𝜌(E) := 2S0 sinh(2𝜋
√

2E)/(2𝜋2)

where 𝜌(E) is the density of states. Z1 is the thermal partition function (for a
thermal circle of length 𝛽 disrupted by the brane of tension 𝜇). The constant S0 is the
topological entropy. Therefore, Zn/Zn

1 computes the moments of a thermal state,

Zn/Zn
1 =

∫ y (0)

0

𝜌(E (y))
−y ′(E (y)) (y/Z1)ndy

x=y/Z1
=

∫ x (0)

0
𝜈b (x)xndx .

Bekenstein-Hawking entropy is then given by

SBH = −
∫

𝜈b (x) x log x
𝜇≫1/𝛽
= S0 + 4𝜋2

𝛽
+ O(1) .

The moments Zn/Zn
1 are packaged in the distribution 𝜈b, which is NOT a probability

distribution! (it has a divergent zeroth moment.)



Summing over all saddles: sorting out the combinatorics

In the planar limit (k ≫ 1 no crossings, S0 ≫ 1 no higher genus), the saddles are
organized by non-crossing partitions. e.g. (1) (2 3 12 13) (4 6 9) (5) (7 8) (10) (11)
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So we have

Z̃n =
∑︁

𝜋∈NCn

(∏
V ∈𝜋

Z |V | · (matter sector)
)
.



Summing over all saddles: sorting out the combinatorics

Key observation: the brane index loops define another set of cycles/partitions
corresponding to a unique NC permutation 𝜋 ∈ NCn dual to 𝜋 ∈ NCn. This is called
the Kreweras complement of 𝜋, defined by the following diagram. (Rule of the
game: replicate another set of [n] (in red) and interlace them; then link up as many
red dots as possible without crossing the black dots.)
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e.g. 𝜋 = (1 13) (2) (3 9 10 11) (4 5) (6 8) (7) (12) ∈ NC13.



A formula for Z̃n

We thus obtain the general formula for the replica trick partition functions,

Z̃n =
∑︁

𝜋∈NCn

©­«
∏
V ∈𝜋

Z |V | ·
∏̄
V ∈𝜋

Tr(k𝜌R) |V̄ |ª®¬ .

Note that this formula resembles the combinatorial formula describing free
multiplicative convolution, provided we treat Zn’s as cumulants.

mn (𝜈a ⊠ 𝜈b) =
∑︁

𝜋∈NCn

©­«
∏
V ∈𝜋

𝜅 |V | (𝜈a) ·
∏̄
V ∈𝜋

m |V̄ | (𝜈b)
ª®¬ .

The main hypothesis of the replica trick is that the Z̃n’s (with appropriate
normalization) give the moments (w.r.t. an appropriate trace) of a density operator
𝜌R with spectrum density 𝜇r . We now show that this is indeed true here.
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Regularize the density of states

Recall that the density of states 𝜌(E) ∼ sinh(
√

2E) is not integrable and so is 𝜈b
which diverges at x → 0. Therefore, 𝜈b is not a probability distribution :(

The way out is to work with a sequence of regularized density of states (𝜌N (E))N
parameterized by N that are integrable. For example,

𝜌N (E) :=
2S0

2𝜋2 sinh

(
2𝜋

√︄
E (EN − E)

EN

)
, 0 ≤ E ≤ EN

where EN is determined via
∫ EN
0 dE𝜌N (E) = N.

Then we define a regularized
probability distribution 𝜈bN supported on [y (EN)/Z1, y (0)/Z1] such that

(Zn/Zn
1 =) mn (𝜈b) = lim

N→∞
N1−nmn (𝜈bN ) .

We then work at finite N with 𝜈bN and take the large N limit in the end. In the end, the
result is independent of how we regularize 𝜌N (E).
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Making the convolution work

Recall the formula for Z̃n,

Z̃n =
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©­«
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Z |V | ·
∏̄
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To make it match with the convolution formula, we need to 1) switch to finite N; 2)
take appropriate normalizations of the moments to define 𝜇r ; and 3) treat the Zn’s as
free cumulants.

The limiting distribution of the radiation is eventually given by

𝜇r = lim
N→∞

𝜇rN = 𝜈r ⊠ 𝜇b, 𝜇b := lim
N→∞

𝜇N/k,𝜈bN
◦ DN/k ,

where DN/k is the rescaling operation defined by 𝜇 ◦ D𝜆 (x) := 𝜆𝜇(𝜆x). The limiting
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Aside: free Poisson law

▶ 𝜇N/k,𝜈bN
is defined by the cumulants (N/k)mn (𝜈bN ), which looks like the

rescaled moments of another distribution 𝜈bN . This is known as the compound
free Poisson law 𝜇𝜆,𝜈 , characterized by the jump rate 𝜆 and the jump
distribution 𝜈.

▶ A free Poisson law is when 𝜈 = 𝛿𝛼, which is more commonly known as the
Marchenko–Pastur distribution in RMT.

▶ Free Poisson has some nice properties: free infinite divisibility
(𝜇 = 𝜇⊞k

k ,∀k ∈ Z+), free Levy-Khintchine theorem, etc.



Evaluating the convolution

But what is 𝜇r explicitly?

We can use the S-transforms, S𝜈r⊠𝜇b = S𝜈r S𝜇b , but they are
usually hard to invert. Fortunately, in our case, we can rewrite everything in terms of
the R-transforms for which the free Poissons have simple expressions. We have

S𝜈r (x) = 𝔷(x) (1 + x)/x (0.1)

where 𝔷(x) is defined via
𝔷(x)R𝜇1,𝜈r (𝔷(x)) = x , (0.2)

and
S𝜇b;N (x) = z(x)/x (0.3)

where z(x) is defined via
z(x)R𝜇b;N (z(x)) = x . (0.4)

Then it follows that {
R𝜇1,𝜈r (𝔷(x)) = xz(x)
R𝜇b;N (z(x)) = x𝔷(x)

. (0.5)

Then we solve for 𝔷(x) and take the large N limit. Using 𝔷(x), the Cauchy transform
is given by

G𝜈r⊠𝜇b (x) = x−1 + 𝔷(x)R𝜇1,𝜈r (𝔷(x))/x . (0.6)
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Evaluating the convolution

Consider any y in the upper complex plane, y ∈ C+, solve the following equation for
𝔷(y), ∫

R+

𝜈b (x)
z/x −

∫
R+

x′
1−x′𝔷 (y) 𝜈r (x ′)dx ′

dx = 𝔷(y)

This is a fixed-point equation for 𝔷(y). Then plug the solution into

G𝜇r (z) =
1
z

∫
R+

1
1 − x𝔷(y) 𝜈r (x)dx ,

which gives the Cauchy transform of 𝜇r . The spectral distribution can be extracted
using the Stieltjes inversion,

𝜇r (x) = − 1
𝜋

lim
𝜖→0

Im G𝜇r (x + i𝜖) .

There is no closed form solution in generally but it is numerically tractable.



Page curve
We can then compute the radiation entropy and obtain the accurate Page curve.

S(R) = −
∫

𝜇r (x) x log x .

This is to be contrasted with the other two entropies

SBH = −
∫

𝜇b (x) x log x , S(𝜌R) = −
∫

𝜈r (x) x log x .

With this, we obtain the more accurate Page curve that the island formula fails to
capture.

Smin(!)
SBH

S(R)

20 25 30 35
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S(!) Smax(!)

Island formula

Summing over all saddles

The island formula holds when the convolution factorizes if a particular term
dominates the sum.



Concluding remarks

▶ The important physics entailed in resolving the information paradox has already
been captured by the replica wormholes and the island formula. Free probability
theory only serves as a technical tool to help with the calculations.

▶ This also seems to be the case for almost all applications of FPT in physics.
▶ The hope is to find some physical problems where notions from FPT like free

independence or free entropy, etc are conceptually indispensable, which in turn
can help illustrate the obscure meanings of these ideas.

▶ Given other examples such as the well-known interplay between 2D gravity and
matrix models and the more recently discussed connection between the
double-scaled SYK model and the q-Gaussians, quantum gravity could
potentially provide a set of such problems that are most naturally perceived
through the lens of free probability.

Thank you!
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GPI as a free multiplicative convolution

Recall the formula for Z̃n,

Z̃n =
∑︁

𝜋∈NCn

©­«
∏
V ∈𝜋

Z |V | ·
∏̄
V ∈𝜋

Tr(k𝜌R) |V̄ |ª®¬ .

Let’s use Z̃n/kZn
1 as moments to define a probability distribution 𝜇r , (such that our

radiation density operator is correctly normalized). Also, the moments 1
k Tr (k𝜌R)n

define a probability distribution 𝜈r.

mn (𝜇r ) :=
Z̃n

kZn
1
= kn

∑︁
𝜋∈NCn

©­«
∏
V ∈𝜋

1
k

m |V | (𝜈b) ·
∏̄
V ∈𝜋

m |V̄ | (𝜈r)ª®¬ .

We can write it in terms of finite N,

mn (𝜇r ) := lim
N→∞

∑︁
𝜋∈NCn

©­«
∏
V ∈𝜋

N1−n

k1−n m |V | (𝜈bN ) ·
∏̄
V ∈𝜋

m |V̄ | (𝜈r)ª®¬ ,

To match it with the free multiplicative convolution, we need to treat N1−n

k1−n mn (𝜈bN ) as
cumulants, and they are in fact a legit set of cumulants.
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