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Dénombrement

Exercice 1 Prouver ou réfuter les assertions suivantes.
1. L’ensemble des nombres premiers est dénombrable.
2. L’ensemble des nombres pairs est dénombrable.
3. R est dénombrable.
4. C est dénombrable.
5. N× R est dénombrable.

On pourra s’appuyer sur la non dénombrabilité de ]0, 1].

Exercice 2 Un nombre réel x est algébrique s’il existe un polynôme non nul P à coefficients dans
Z tel que P (x) = 0. Un nombre réel qui n’est pas algébrique est transcendant.

1. Montrer que tout nombre rationnel est algébrique.
2. Montrer que l’ensemble des nombres algébriques est dénombrable, et que l’ensemble des

nombres transcendants n’est pas dénombrable.

Exercice 3 Nous admettons le résultat suivant, qui sera démontré en topologie : tout ouvert
U ⊂ R s’écrit U = ∪i∈IIi, avec les Ii intervalles ouverts non vides et deux à deux disjoints. Montrer
que I est au plus dénombrable. Ou encore : tout ouvert de R est réunion au plus dénombrable
d’intervalles ouverts deux à deux disjoints.

Fonctions caractéristiques

Exercice 4 Soit X un ensemble. Pour une partie A de X, on définit sa fonction indicatrice (ou

fonction caractéristique, ou indicatrice) χA : X → {0, 1} par χA(x) =

{
1, si x ∈ A
0, si x 6∈ A

.

1. Calculer χ∅ et χX . Pour A ⊂ X fixé et Y ⊂ R, calculer χ−1A (Y ).
2. Calculer en fonction de χA et χB les fonctions suivantes : χAc , χA∩B, χA∪B (dans le cas général

et dans le cas particulier où A ∩B = ∅), χA4B, χf−1(A).
3. L’application A 7→ χA est-elle une bijection de P(X) dans {0, 1}X ?
4. Soit (An) une suite de parties de X et soit A =

⋃
nAn.

(i) Montrer que si la suite (An) est croissante (c’est-à-dire si An ⊂ An+1), alors la suite
(χAn) est croissante et converge simplement vers χA.

(ii) Si les An sont deux à deux disjoints, montrer que χA =
∑∞

n=0 χAn .

lim sup

Exercice 5 Préambule. En intégration, il est utile d’étendre la notion de borne supérieure à
des ensembles non majorés. Il est utile aussi d’associer à une suite les quantités lim sup et lim inf,
qui ont des propriétés similaires à la limite, et l’avantage d’exister pour toute suite (contrairement
à la limite).
Définitions. Si A ⊂ R est un ensemble non vide, nous définissons supA comme le plus petit
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élément de l’ensemble {M ∈ R ; M majorant de A}.
Si (xn) ⊂ R, alors par définition

lim sup
n→∞

xn = lim
n→∞

xn := lim
n→∞

sup
k≥n

xk.

1. Proposer la définition de inf A.
2. Proposer la définition de lim inf

n→∞
xn.

3. Montrer que toute partie non vide A de R admet (exactement) un sup et un inf.
4. Si A ⊂ R, comparer supA au supA « d’avant ». Proposer une formule compacte pour supA

en fonction du supA « d’avant ».
5. Montrer que toute suite (xn) ⊂ R admet (des uniques) lim sup et lim inf.
6. Calculer lim sup et lim inf pour la suite donnée par xn := (−1)n, ∀n ∈ N.
7. Pour toute suite (xn), montrer les propriétés suivantes :

(a) inf
n∈N

xn ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn ≤ sup
n∈N

xn.

(b) Si xn → l, alors l = lim inf
n→∞

xn = lim sup
n→∞

xn.

(c) Réciproquement, si lim inf
n→∞

xn = lim sup
n→∞

xn = l, alors xn → l.

Mesurabilité

Exercice 6 Le but de cet exercice est de montrer qu’une réunion arbitraire d’ensembles mesurables
n’est pas forcément un ensemble mesurable. Soit

T = {A ⊂ R ; A au plus dénombrable ou Ac au plus dénombrable}.

1. Montrer que T est une tribu.
2. Montrer que T 6= P(R).
3. Conclure.
4. Question plus difficile : même conclusion si on remplace R par tout ensemble non dénom-

brable.

Exercice 7 Soit f : R→ R une fonction croissante.
1. Montrer que f est borélienne.
2. Montrer que l’ensemble des points où f n’est pas continue est au plus dénombrable.
3. Plus généralement, si f : I → R (avec I ⊂ R intervalle) est continue en dehors d’un ensemble

au plus dénombrable, alors f est borélienne.

Exercice 8 Soit X =
⋃

i∈I Ai une partition de l’espace métrique X, avec :
(i) I au plus dénombrable.
(ii) Ai borélien, ∀ i ∈ I.

Pour chaque i, soit fi : Ai → R une fonction borélienne. On définit la fonction « à accolade »
f : X → R, f(x) = fi(x) si x ∈ Ai.

1. Montrer que f est borélienne.
2. Retrouver comme cas particuliers les conclusions de l’exercice précédent.
3. Enoncer et prouver un résultat analogue si X est mesurable.
4. Montrer que l’hypothèse « I au plus dénombrable » est essentielle.
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Exercice 9

1. Soit f : R→ R dérivable. Montrer que f ′ est borélienne.
2. Soit f : R→ R continue. Soit x ∈ R. Montrer l’équivalence des propriétés suivantes :

(i) f est dérivable en x et f ′(x) = l.
(ii) Nous avons l’égalité

l = lim
m→∞

inf

{
f(x+ h)− f(x)

h
; h ∈ Q∗, |h| < 1

m

}
= lim

m→∞
sup

{
f(x+ h)− f(x)

h
; h ∈ Q∗, |h| < 1

m

}
.

3. En déduire que, si f est continue, alors g : R→ R, g(x) :=

{
f ′(x), si f est dérivable en x
0, sinon

,

est borélienne.
4. Est-il vrai que g = 0 =⇒ f constante ?

Compléments. Monotonie et intégrale de Riemann

Exercice 10 Soit f : [a, b]→ R une fonction monotone. Montrer que f est Riemann intégrable.

Exercice 11 Une fonction f : [a, b]→ R est à variation bornée si

VT (f) := sup

{
n∑

j=1

|f(xj)− f(xj−1)| ; n ∈ N∗, a ≤ x0 < x1 < · · · < xn ≤ b

}
<∞.

Le nombre VT (f) (noté aussi VT (f)([a, b])) est la variation totale de f sur [a, b].
1. Montrer que les fonctions monotones et les fonctions de classe C1 sont à variation bornée.

2. Montrer que la fonction f : [0, 1]→ R, f(x) =

{
x sin(1/x), si x ∈]0, 1]
0, si x = 0

, est continue, mais

n’est pas à variation bornée.
3. Soit f : [a, b] → R à variation bornée. Etudier la monotonie des fonction g, h : [a, b] → R,
g(x) := VT (f)([a, x]), h := g − f .

4. En déduire le théorème de Jordan : une fonction est à variation bornée ssi elle est la différence
de deux fonctions croissantes.

5. Montrer qu’une fonction à variation bornée est Riemann intégrable.

Exercice 12 Soient f, g : [a, b] → R, avec f continue et g décroissante. Soit F une primitive de
f , choisie telle que F ≥ 0. Nous nous proposons d’établir une formule (faible) d’intégration par
parties.

1. Si, de plus, nous avons g ∈ C1, montrer (en intégrant par parties) que∫ b

a

f(t)g(t) dt ≥ [F (t)g(t)]ba . (1)

2. Sous les hypothèsse initiales, montrer que fg est Riemann intégrable.
3. Montrer que, sous les hypothèses initiales, (1) reste vraie.
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