Cours du 31 mars 2020
Exercise 3.3 : D given by ¢(z) and ¢(z) in 9. That is,

D= () = {d e MM = (d)} = () = {d € M7 90 - u(d)},
Show that for M < DT we have
D' = (M) = {d € N : 0 |- p(d)} = p().

This is because

M V2 (p(2) > 0(7).
Since I < N, we have

N | Vo (9(z) & ().
Thus,

D' = () = {d € NV : 0 | o(d)} = () = {d € N¥ 91 = w(d)}.

Exercise 3.14. 7(z) partial type over A, where A C M for some model 9. We want to
complete it to p(z) € S, (A).

Enumerate all £(A)-formulae (¢;(Z) : ¢ < «) for some ordinal a. Put my = 7, and for
all 1 < a, put

Tir1 = U {e;}

if this is (finitely) consistent, and otherwise
Tiv1 = m U {-p;}.

At limits, take unions. These always remain (finitely) consistent.

Suppose 7; U {p;} is not finitely consistent, say a finite bit 79(z) U {¢;(Z)} is not
consistent. Since m; is consistent, there is m in M such that 9t = m;(m). Then M B~
@i(m), so M | —p;(m). If there is a finite bit 7} of m; such that 7} () U {—p;(Z)} is
inconsistent, since m; is consistent, there is m € M such that

M = (x0 Ul (m).

But then either M = ¢;(m) or M = —p;(IM), a contradiction in either case.

So we can always add either ; or —y;, and 7, is the completion we are looking for.
Proposition 3.17 : Every type can be realized in some elementary extension.

Just write down what that means :

Elementary extension = model 9t of Th(9M, M), where we identify m € M with

m™ € N. We want an element 7 = ¢™ in N realizing p, so we want 91 to satisfy p(c).
Example : p(x) = {3yp-y =2 : p a (standard) prime}.

This is finitely consistent in N. Hence there is N < N* and some element n* € N* which
realises this (partial) type.



Exercice 3.21. Suppose D = (9, m), and for some A C M and all 2 < 91 and all
automorphisms o of N fixing A, we have o[D'] = D" = ¢(M,m). Then there is an
L(A)-formula 1(z,a) defining D (in 9t and hence D’ in N).

Proof : Consider p(y) = tp(m/A).

Claim : Th(9t, M) U p(9) = VZ(p(z,m) < ©(Z,7)).

Let M < 9, and 7 in N realize p. Then tpy(n/A) = tpp(m/A) = tpg(m/A) =p .
Hence there is an elementary extenison 91 < 9V and an automorphism o of 9V fixing
A with o(m) = n. Let D' = (9, m). By assumption

p(W,m) = D' = o[D] = o(W,0(m)) = p(N,n).
By compactness, there is a finite bit of p(g), say 6(y), such that
Th(M, M) Ub(y) = V2(p(z,m) < ¢(T,7))-
Hence 3y (6(y) A ¢(Z,7)) defines D with parameters in A. QED

Section 3.3 : Quantifier Elimination

Note : I is the same as .

Why QE? Because quantifier-free definable sets are easier to understand than general
sets; QE allows us to get a better hold on general definable sets.

Often, we do not have full QE, but just QE down to some set of "nice" formulas.

For instance, in the (noncommutative) free groups, every formula is equivalent to a
boolean combination of V3-formulas.

QE for formulas is "equivalent" to ge for types, in the sense of Proposition 3.23.

(Note that the converse is obvious : if 7" has qe and tpsqgy(a) = tpsqy(b) for models
M, N of T, then tpyy(a) = tpy(b).)

Remark : What about types over parameters? If every formula is equivalent to a b.c.
of formulas from ®, then a formula ¢(z,7) is equivalent to a b.c. (z, ) of formulas
from ®. So p(Z,a) is equivalent to 6(z,a), and it is in some type p € S(A) iff 8(z,a)
is.



Proof of 3.23. Start with ¢(z). If it is inconsistent with 7', it is equivalent to any
inconsistent formula. (Here we need ® non-empty.)
Otherwise consider a model 9 =T and a in M realizing ¢. Put

N=TU{p@):pe®MEp(@)}uU{-p@):pedMg—pa)u{-y@)}

By hypothesis, this is inconsistent : If it were realized by 9 and a tuple b, then @ in 9
and b in N realize the same formulas in ®, and hence have the same type. As M |= ¢(a)
we must have M = 9(b), a contradiction to 3.

Hence there is a finite bit which is inconsistent. We get a finite b.c. ¢z(Z) of ®-formulas
which implies ¢) modulo T'. Note that ¢z(a) holds.

We obtain such a @5, for every a; realising ¢ in every model of 7. This only depends
on the type p; of a;. Suppose these are {p; : i € I'}. Then ¢;, € p;. Hence

T U{~pa(c) i€ I} U{y(0)}

is inconsistent : if in some model M’ of T" we have 1 (¢) for some tuple ¢ in M’, then
¢ = p; for some i € I, whence g, (¢) is true.
Hence a finite bis is inconsistent. If this uses {—g, : i € Iy}, then

\/ 90@i<j)

is equivalent to ¢(z). QED

Remark 3.28 Morleyization : QE depends on the language. We can always expand the
language, in a definable way without increasing the collection of definable sets, in order
to have qe.



Section 3.4. Algebraically closed fields.

Theorem (Tarski 1948, Chevalley in algebraic geometry). Algebraically closed fields
have ge in the language of rings.

Take two tuples @ and b which satisfy the same atomic formulas in algebraically closed
fields K and L. Then a and b generate isomorphic fields : P(a) = Q(a) iff P(b) = Q(b).
Replace K and L be elementary extension of infinite transcendence degree. Then partial
isomorphisms of subfields form a back-an-forth system. Hence they are elementary, and
a — b is elementary. Thus tpy(a) = tp,(b). QED

Note : If T has gqe and M, N | T with M C N, then M < N : If p(m) € L(M)
and 9 = p(m), then there is quantifier-free ¥(Z) equivalent to ¢(z), and M = ¥ (m).
As quantifier-free formulas are preserved by sub-/superstructures, we get M |= ¥ (m),
whence 0N = ¢(m).

This yields lemma 3.36.

Theorem 3.37. (Hilbert’s Nullstellensatz)
Note : The ideal generated by () and J are all polynomials of the the form

TQ + S

for T some polynomial and S € J.
Since J is prime, K[X7,..., X,]/J is a domain, and has a field of fractions L. Clearly
a — a+ J embeds K into L.



