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Feuille 1

Exercice 1 (Ensembles.) Soient X et Y des ensembles.
1. Montrer que la paire (X,Y’) est un ensemble.

2. Montrer que le produit cartésien X x Y est un ensemble.

Exercice 2 (Axiome de fondation.) On rappelle que I’axiome de fondation est 1’énoncé suivant :
pour tout ensemble non vide z, il existe un ensemble y € z tel que y Nz = (). Vérifier que cet axiome
interdit lexistence d’ensembles z tels que = € z, ou l'existence de suites (xy,)n<, telles que z,41 € x5,
pour tout n.

Exercice 3 (L’univers V et I’axiome de fondation.) On définit une hiérarchie d’ensembles (V)
indexée par les ordinaux en posant :

o Vo=10;

o Vo1 =P(Va);

e Si « est limite, V, = U5<a Vs.

1. Montrer que V,, est un ensemble transitif pour tout a.

2. Montrer que 8 < a ssi Vg € Vy, et que B < arssi Vg C V.

3. Si x est un ensemble, on définit son rang rg(z) en posant

rg(x) =

le plus petit v tel que x € V41 si un tel v existe.
0 sinon.

Montrer que rg(a) = o pour tout ordinal a.

4. Montrer que 'axiome de fondation est équivalent a 1’énoncé suivant : pour tout ensemble z, il
existe un ordinal v tel que x € V.

5. Montrer que la classe V' = |, V., satisfait les axiomes de ZF. En déduire que si Z est consistant,
ZF aussi.

Exercice 4 (Ensembles ordonnés : ordres totaux, bons ordres, ordres denses.)

1. Montrer que toute partie finie d’un ensemble totalement ordonné est bien ordonnée par rapport
a la méme relation d’ordre.

2. Montrer que le produit cartésien de deux ensembles totalement ordonnés, muni de l'ordre
lexicographique défini a partir des deux ordres, est totalement ordonné. Que peut-on dire si les
deux ordres sont bons?

3. On munit N de son bon ordre usuel, noté <. Montrer que si A C N est un sous-ensemble infini,
alors (A, <) est isomorphe a (N, <).

4. Soit (X, <) un ensemble totalement ordonné. Montrer que (X, <) est un bon ordre si et seule-
ment s’il ne contient pas de suite strictement décroissante d’éléments.

5. Montrer qu’un ensemble X muni d’un ordre total < est fini si a la fois < et son inverse définissent
des bons ordres sur X.

6. On dira qu’une relation d’ordre total < définie sur un ensemble X est dense si pour tous a,b € X
distincts tels que a < b, il existe ¢ € X différent de a et de b tel que a < ¢ < b. Montrer que
si X et Y sont deux ensembles dénombrables densement ordonnés et qui ne sont ni majorés ni
minorés, alors ils sont isomorphes.



Exercice 5 (Plongements de bons ordres.) Un plongement d’un ensemble ordonné (X, <) dans
un autre (Y, <’) est une injection f : X — Y qui préserve l'ordre : pour tous z,2’ € X, f(z) < f(2)
si et seulement si z < 2.

1. Montrer que tout bon ordre dénombrable ou fini se plonge dans (Q, <).

2.

Quels sont les bons ordres qui admettent un plongement dans (R, <) ?

Exercice 6 (Segments initiaux.)

A. Donner un exemple d’ensemble totalement ordonné (X, <) qui contient un segment initial propre
qui n’est pas de la forme {z € X|x < a} pour un certain a € X.

B. Soit (X, <) un ensemble totalement ordonné. Notons Ix I’ensemble des segments initiaux propres
de X et 0: X — Ix qui associe a chaque x € X le segment initial propre X, = {y € X|y < x}.

W N =

W

Vérifier que o est injective.
Montrer que o est surjective si et seulement si (X, <) est un bon ordre.

Si (X, <) est un bon ordre, montrer que S(X) = X U{X} admet un bon ordre isomorphe &
(Jx,C), ou Jx est 'ensemble de tous les segments initiaux de X.

Que peut-on dire de X si pour tout x € X, x = X, 7

Exercice 7 (Propriétés élémentaires des ordinaux.)

1.

Montrer qu'un ordinal « est un entier naturel (donc, un ordinal fini) si, et seulement si, tout
sous-ensemble non vide de o a un plus grand élément.

Montrer qu’un ordinal « est limite si et seulement si a = sup{j|g € a}.

3. Montrer que si a, 8 sont deux ordinaux et f: a — 3 est strictement croissante alors a < .

4. Montrer que si A est une partie d’un ordinal «, alors I’appartenance définit sur A une relation

de bon ordre qui est isomorphe a un ordinal inférieur ou égal a a.

Exercice 8 (Somme ordinale.) Rappelons la définition par récurrence transfinie de la somme de
deux ordinaux « et 3 :

Q sif=0
a+pf=14Sa+7) si 8= S5(v)
sup ({a+&: € < B})  sif est limite

Nous allons maintenant décrire une opération sur les bons ordres qui est équivalente :

1.

Soient A et B deux ensembles bien ordonnés. Montrer que 'on peut supposer qu’ils sont dis-
joints.

. On suppose maintenantA N B = () et on considere X = A U B. Montrer que 1’on peut définir

de maniére unique un bon ordre sur X prolongeant celui de A et celui de B (i.e. tel que l'ordre
de X induise ceux de A et de B) et tel que A soit un segment initial de X.

. Montrer que si A et B sont respectivement isomorphes aux ordinaux « et [ alors X est iso-

morphe a a + 8.

. En déduire les propriétés suivantes de I’addition ordinale :

(a) associativité;
) non commutativité;

) monotonie stricte a droite, i.e § < B =a+pB<a+ps;
d) régularité a gauche, i.e a + 5 = a + g =8=4":
)
)

non monotonie stricte a gauche et non régularité a droite;



Exercice 9 (Multiplication ordinale.) Rappelons la définition par récurrence transfinie du produit
de deux ordinaux a et (3 :

0 sif=0
a.f =< (ay) +a sif=~vy+1
sup ({a.£: £ < B})  si [ est limite
Soient deux ordinaux « et [, nous allons définir un bon ordre sur I'ensemble a x 8 qui sera
isomorphe a l'ordinal o.f :

1. On munit « x 3 de l'ordre (anti-)lexicographique suivant
(’}/1,(51) < (’)/2,(52) ssi 51 < 52 ou (51 = 52 & v < ")/2).

Montrer que cela définit un bon ordre sur a x .
2. Montrer que ce bon ordre est isomorphe a ’ordinal «.f.
3. En déduire les propriétés suivantes de la multiplication ordinale :
a) associativité;
non commutativité ;

)

(c) sia>0et 8 <yalors a.f < a.7v;

(d) si a < B alors a.y < Boy;
)

a(f+7) =af+ay;

Exercice 10 (Soustraction et division euclidienne sur les ordinaux.)
1. Montrer que 'on peut définir une opération © sur les ordinaux telle que pour tous les ordinaux
a, B on ait :
e a0 f=0sia<f
e f+ (e f)=asia>p.
Donner un exemple d’ordinaux a > 5 tels qu’il n’existe pas d’ordinal v tel que v+ 8 = a.
2. Soient « et 8 deux ordinaux avec 8 # 0. Montrer qu’il existe un unique couple d’ordinaux (v, )
tel que a =y +det §d <p.
(Indication : on pourra d’abord montrer qu’il existe 7’ tel que a < 8.9 et que le plus petit tel
7' est successeur).

Exercice 11 (Puissance ordinale.) Rappelons la définition par récurrence transfinie de a@ > 0 &
la puissance S :

1 si =0
o = o« sif=v+1
sup ({aéz &< ﬁ}) si B est limite

1. Vérifiez les propriétés suivantes pour a > 0, § et v trois ordinaux :

— sia>1letf>~alors o® >a7;
— ol.ar =Pt

_ (aﬁ)V — B,

2. Montrer que si v et 3 sont dénombrables alors o est aussi dénombrable !

3. Prouver qu'il existe un ordinal dénombrable ¢ tel que ¢ = w®. Existe-t-il un ordinal tel que
§=¢"7

1. en particulier, o ne correspond PAS & I’ensemble des fonctions de 8 dans « : ¢a, c’est la puissance cardinale.




Exercice 12 (Développement de Cantor.) On souhaite ici démontrer que tout ordinal admet un
< développement en base w >, autrement dit que tout ordinal « non nul s’écrit de maniére unique

a=wn + ... +wn,,

avec ayq, ..., q, des ordinaux tels que a; > ... > a;, et nq,...,n,, des entiers non nuls. On appelle ce
développement le développement de Cantor de c.

1. Montrer que pour tout ordinal o on a w® > a.

2. Montrer que pour tout ordinal o non nul il existe un unique couple (a1, n1) tel que
whln; <a<w(n;+1).

3. En déduire qu’il existe un unique 87 < w*! tel que a = w*nq + F1.
4. Montrer I'existence du développement de Cantor et son unicité.

5. Montrer que les ordinaux de la forme w® sont exactement les ordinaux (8 tels que pour tout
v < [ onaity+ B8 =p.

6. En déduire le développement de Cantor de v + 8 connaissant le développement de Cantor de
« et celui de £.



