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Exercice 1 (Ensembles.) Soient X et Y des ensembles.

1. Montrer que la paire (X,Y ) est un ensemble.

2. Montrer que le produit cartésien X × Y est un ensemble.

Exercice 2 (Axiome de fondation.) On rappelle que l’axiome de fondation est l’énoncé suivant :
pour tout ensemble non vide x, il existe un ensemble y ∈ x tel que y ∩ x = ∅. Vérifier que cet axiome
interdit l’existence d’ensembles x tels que x ∈ x, ou l’existence de suites (xn)n<ω telles que xn+1 ∈ xn
pour tout n.

Exercice 3 (L’univers V et l’axiome de fondation.) On définit une hiérarchie d’ensembles (Vα)
indexée par les ordinaux en posant :

• V0 = ∅ ;

• Vα+1 = P(Vα) ;

• Si α est limite, Vα =
⋃
β<α Vβ.

1. Montrer que Vα est un ensemble transitif pour tout α.

2. Montrer que β < α ssi Vβ ∈ Vα, et que β ≤ α ssi Vβ ⊆ Vα.

3. Si x est un ensemble, on définit son rang rg(x) en posant

rg(x) =

{
le plus petit γ tel que x ∈ Vγ+1 si un tel γ existe.

0 sinon.

Montrer que rg(α) = α pour tout ordinal α.

4. Montrer que l’axiome de fondation est équivalent à l’énoncé suivant : pour tout ensemble x, il
existe un ordinal γ tel que x ∈ Vγ .

5. Montrer que la classe V =
⋃
α Vα satisfait les axiomes de ZF. En déduire que si Z est consistant,

ZF aussi.

Exercice 4 (Ensembles ordonnés : ordres totaux, bons ordres, ordres denses.)

1. Montrer que toute partie finie d’un ensemble totalement ordonné est bien ordonnée par rapport
à la même relation d’ordre.

2. Montrer que le produit cartésien de deux ensembles totalement ordonnés, muni de l’ordre
lexicographique défini à partir des deux ordres, est totalement ordonné. Que peut-on dire si les
deux ordres sont bons ?

3. On munit N de son bon ordre usuel, noté <. Montrer que si A ⊂ N est un sous-ensemble infini,
alors (A,<) est isomorphe à (N, <).

4. Soit (X,<) un ensemble totalement ordonné. Montrer que (X,<) est un bon ordre si et seule-
ment s’il ne contient pas de suite strictement décroissante d’éléments.

5. Montrer qu’un ensembleX muni d’un ordre total< est fini si à la fois< et son inverse définissent
des bons ordres sur X.

6. On dira qu’une relation d’ordre total < définie sur un ensemble X est dense si pour tous a, b ∈ X
distincts tels que a < b, il existe c ∈ X différent de a et de b tel que a < c < b. Montrer que
si X et Y sont deux ensembles dénombrables densement ordonnés et qui ne sont ni majorés ni
minorés, alors ils sont isomorphes.
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Exercice 5 (Plongements de bons ordres.) Un plongement d’un ensemble ordonné (X,<) dans
un autre (Y,<′) est une injection f : X −→ Y qui préserve l’ordre : pour tous x, x′ ∈ X, f(x) < f(x′)
si et seulement si x < x′.

1. Montrer que tout bon ordre dénombrable ou fini se plonge dans (Q, <).

2. Quels sont les bons ordres qui admettent un plongement dans (R, <) ?

Exercice 6 (Segments initiaux.)
A. Donner un exemple d’ensemble totalement ordonné (X,<) qui contient un segment initial propre
qui n’est pas de la forme {x ∈ X|x < a} pour un certain a ∈ X.
B. Soit (X,<) un ensemble totalement ordonné. Notons IX l’ensemble des segments initiaux propres
de X et σ : X −→ IX qui associe à chaque x ∈ X le segment initial propre X<x = {y ∈ X|y < x}.

1. Vérifier que σ est injective.

2. Montrer que σ est surjective si et seulement si (X,<) est un bon ordre.

3. Si (X,<) est un bon ordre, montrer que S(X) = X ∪ {X} admet un bon ordre isomorphe à
(JX ,⊂), où JX est l’ensemble de tous les segments initiaux de X.

4. Que peut-on dire de X si pour tout x ∈ X, x = X<x ?

Exercice 7 (Propriétés élémentaires des ordinaux.)

1. Montrer qu’un ordinal α est un entier naturel (donc, un ordinal fini) si, et seulement si, tout
sous-ensemble non vide de α a un plus grand élément.

2. Montrer qu’un ordinal α est limite si et seulement si α = sup{β|β ∈ α}.
3. Montrer que si α, β sont deux ordinaux et f : α→ β est strictement croissante alors α ≤ β.

4. Montrer que si A est une partie d’un ordinal α, alors l’appartenance définit sur A une relation
de bon ordre qui est isomorphe à un ordinal inférieur ou égal à α.

Exercice 8 (Somme ordinale.) Rappelons la définition par récurrence transfinie de la somme de
deux ordinaux α et β :

α+ β =


α si β = 0

S(α+ γ) si β = S(γ)

sup ({α+ ξ : ξ < β}) si β est limite

Nous allons maintenant décrire une opération sur les bons ordres qui est équivalente :

1. Soient A et B deux ensembles bien ordonnés. Montrer que l’on peut supposer qu’ils sont dis-
joints.

2. On suppose maintenantA ∩ B = ∅ et on considère X = A ∪ B. Montrer que l’on peut définir
de manière unique un bon ordre sur X prolongeant celui de A et celui de B (i.e. tel que l’ordre
de X induise ceux de A et de B) et tel que A soit un segment initial de X.

3. Montrer que si A et B sont respectivement isomorphes aux ordinaux α et β alors X est iso-
morphe à α+ β.

4. En déduire les propriétés suivantes de l’addition ordinale :

(a) associativité ;

(b) non commutativité ;

(c) monotonie stricte à droite, i.e β < β
′ ⇒ α+ β < α+ β

′
;

(d) régularité à gauche, i.e α+ β = α+ β
′ ⇒ β = β

′
;

(e) non monotonie stricte à gauche et non régularité à droite ;

(f) α ≤ α′ ⇒ α+ β ≤ α′ + β.
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Exercice 9 (Multiplication ordinale.) Rappelons la définition par récurrence transfinie du produit
de deux ordinaux α et β :

α.β =


0 si β = 0

(α.γ) + α si β = γ + 1

sup ({α.ξ : ξ < β}) si β est limite

Soient deux ordinaux α et β, nous allons définir un bon ordre sur l’ensemble α × β qui sera
isomorphe à l’ordinal α.β :

1. On munit α× β de l’ordre (anti-)lexicographique suivant

(γ1, δ1) < (γ2, δ2) ssi δ1 < δ2 ou (δ1 = δ2 & γ1 < γ2).

Montrer que cela définit un bon ordre sur α× β.

2. Montrer que ce bon ordre est isomorphe à l’ordinal α.β.

3. En déduire les propriétés suivantes de la multiplication ordinale :

(a) associativité ;

(b) non commutativité ;

(c) si α > 0 et β < γ alors α.β < α.γ ;

(d) si α ≤ β alors α.γ ≤ β.γ ;

(e) α(β + γ) = α.β + α.γ ;

Exercice 10 (Soustraction et division euclidienne sur les ordinaux.)

1. Montrer que l’on peut définir une opération 	 sur les ordinaux telle que pour tous les ordinaux
α, β on ait :
• α	 β = 0 si α < β
• β + (α	 β) = α si α ≥ β.

Donner un exemple d’ordinaux α > β tels qu’il n’existe pas d’ordinal γ tel que γ + β = α.

2. Soient α et β deux ordinaux avec β 6= 0. Montrer qu’il existe un unique couple d’ordinaux (γ, δ)
tel que α = β.γ + δ et δ < β.
(Indication : on pourra d’abord montrer qu’il existe γ′ tel que α < β.γ′ et que le plus petit tel
γ′ est successeur).

Exercice 11 (Puissance ordinale.) Rappelons la définition par récurrence transfinie de α > 0 à
la puissance β :

αβ =


1 si β = 0

αγ .α si β = γ + 1

sup
({
αξ : ξ < β

})
si β est limite

1. Vérifiez les propriétés suivantes pour α > 0, β et γ trois ordinaux :
— si α > 1 et β > γ alors αβ > αγ ;
— αβ.αγ = αβ+γ ;
—
(
αβ
)γ

= αβ.γ .

2. Montrer que si α et β sont dénombrables alors αβ est aussi dénombrable 1

3. Prouver qu’il existe un ordinal dénombrable ξ tel que ξ = ωξ. Existe-t-il un ordinal tel que
ξ = ξω ?

1. en particulier, αβ ne correspond PAS à l’ensemble des fonctions de β dans α : ça, c’est la puissance cardinale.
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Exercice 12 (Développement de Cantor.) On souhaite ici démontrer que tout ordinal admet un
� développement en base ω �, autrement dit que tout ordinal α non nul s’écrit de manière unique

α = ωα1n1 + . . .+ ωαmnm

avec α1, . . . , αn des ordinaux tels que α1 > . . . > αm et n1, . . . , nm des entiers non nuls. On appelle ce
développement le développement de Cantor de α.

1. Montrer que pour tout ordinal α on a ωα ≥ α.

2. Montrer que pour tout ordinal α non nul il existe un unique couple (α1, n1) tel que

ωα1n1 ≤ α < ωα1(n1 + 1) .

3. En déduire qu’il existe un unique β1 < ωα1 tel que α = ωα1n1 + β1.

4. Montrer l’existence du développement de Cantor et son unicité.

5. Montrer que les ordinaux de la forme ωα sont exactement les ordinaux β tels que pour tout
γ < β on ait γ + β = β.

6. En déduire le développement de Cantor de α + β connaissant le développement de Cantor de
α et celui de β.

4


