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Chapitre 1

Langage, structures et théories

1.1 Quelques exemples

Les mathématiques traitent de divers structures mathématiques : Groupes, corps, es-
paces vectoriels, graphes, espaces de fonctions, surfaces, ou encore I'univers ensembliste.
La théorie des modéles, dans un premier temps, fait abstraction de la nature spécifique
des ces structures et cherche leurs points communs abstraits :

— Les structures consistent d’un ensemble sous-jacent, leur domaine,

— sur lequel il y a des fonctions et relations (on peut voir des constantes comme

fonctions d’arité 0).

Pour la théorie des ensembles, par exemple, on n’a que deux relations, ’égalité = et
I’appartenance €. Pour un graphe, on a également deux relations, 1’égalité et les liens
(arétes). Dans un groupe il y a 1’égalité, ainsi qu’une fonction binaire, le produit (et
éventuellement une constante 1 et une fonction unaire, I'inversion). Enfin, un corps
posséde, a part de 1’égalité, deux fonctions binaires (et éventuellement deux constantes
0 et 1, et une fonction unaire, 'inversion additive).
Avec ce langage, on peut exprimer des propriétés de la structure concernée.

Exemple 1.1. 1. L’énoncé
Vedyx=yey

est vrai dans Q mais faux dans Z si on interpréte e par I’addition; il est vrai
dans C mais faux dans R si on interpréte e par la multiplication.

2. Si R(z,y) est une relation binaire, I’énoncé
VaVy (z = y & Y(R(2,2) © R(51)))

est 'axiome d’extensionalité si on interpréte R comme appartenance, mais pour
un graphe dirait que deux sommets qui ont les mémes voisins sont égaux.

1.2 Langage et structures

Formalisons.
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Définition 1.2. Un langage L consiste en :
— une collection {f; : i € I'} de symboles de fonction, chaque symbole f étant doté
d’une arité ny € N,
— une collection {R; : j € J} de symboles de relation, chaque symbole R étant
doté d’une arité ngp € N.
On considére les constantes comme des fonctions d’arité 0. Une relation d’arité 0 est
une constante propositionnelle.

Définition 1.3. Une L-structure 9 consiste d’un ensemble M, le domaine de 91, ainsi
que

— pour chaque symbole de fonction f d’une fonction f™ : M™ — M, et

— pour chaque symbole de relation R d’'un sous-ensemble R™ de M"~=.

Remarque 1.4. 1. Une fonction d’arité 0 est souvent note ¢, et son interprétation
™ est un élément de M. Une constante propositionnelle est interpreté soit par
vrai, soit par faux.

2. Habituellement, on ne considére que les structures non-vides. On note cepen-
dant que deux structures vides peuvent toujours différer par la valeur de leurs
constantes propositionnelles, s’il y en a.

3. Tous nos langages comporteront 1'égalité = sans la mentionner explicitement ;
de plus I'égalité sera toujours interpreté par la diagonale de M?2.

4. Souvent on confond 9 et M.
5. L’application f — f™ et R — R™ est linterprétation de £ dans 9.

Exemple 1.5. 1. Le langage des ordres £,,.q = {<} ne contient que deux relations
binaires = et <. Les structures (Z, <) et (Q, <) sont des L,.4-structures.

2. Le langage des groupes L4, = {1,-, 7'} contient une constante 1, une fonction
binaire -, une fonction unaire ~! et I’égalité.

3. Le langage des anneaux L,,, = {0,1,+, —, -} contient deux constantes 0 et 1,
deux fonctions binaires +, -, une fonction unaire —, et 1’égalité.

4. Le langage L.,s de la théorie des ensembles contient une relation binaire €, et
I'égalité.

1.3 Satisfaction et conséquence

Afin d’exprimer certaines propriétés d une structure, on considére des formules obtenues
a partir du langage de base. On se restreint ici & un langage finitaire (formules de
longueur finie) et du premier ordre (on ne quantifie que sur des éléments de 1'univers).
Les logiques infinitaires (avec des conjonctions et disjonctions infinies) ou de second
ordre (ou l'on quantifie sur les parties) ont des propriétés bien différentes.
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Remarque 1.6. En théorie des ensembles on quantifie bien sur les parties, par exemple
dans 3z (x C y A p(z). Mais c’est toujours une quantification sur les éléments du
domaine, et ne concerne que les parties de x qui se trouvent dans ce domaine.

Définition 1.7 (Termes). Soit £ un langage. I’ensemble des termes de £ (ou L-termes)
est donné par la récurrence suivante :
— toutes les variables sont des L-termes,
— si f est une fonction n-aire de L et ty, ..., t, sont des termes, alors f(tq,...,t,)
est un terme.

Définition 1.8 (Formules). Soit £ un langage. L’ensemble des formules de £ (ou
L-formules) est donné par la récurrence suivante :

— Les formules atomiques : si R est une relation n-aire de L et ¢1,...,t, sont des
termes alors R(ti,...,t,) est une formule,

— Combinaisons booléennes (négation, conjonction, disjonction) : si ¢ et 1) sont
des formules alors = (non @), (¢ A1) (¢ et ¥) et (¢ V) (p ou 1)) sont des
formules,

— Quantifications universelle et existentielle : si ¢ est une formule et = est une
variable alors Vxp (pour tout x on a ) et Jxy (il existe x tel que ) sont des
formules.

Si ¢ est une formule et x est une variable, alors les occurrences de = dans les formules
Vze et Jzp sont lides au quanteur (ou quantificateur) V ou 3, exceptées celles qui
étaient liées auparavant dans la formule . Une variable qui n’est pas liée est libre.

En particulier toutes les occurrences des variables dans une formule sans quanteur sont
libres. Un énoncé (ou formule close) est une formule sans variable libre.

Remarque. Une formule est un mot fini constitué de symboles de constantes, fonc-
tions et relations de £, de symboles de variables, de connecteurs et de séparateurs (les
paranthéses et la virgule). Ainsi si le langage est dénombrable, I’'ensemble des formules
I’est aussi.

Exemple 1.9. 1. Les termes de L,.4 sont les variables; les formules atomiques de
L,-q sont les égalités et les inégalités.

2. Les termes de L, sont les mots en les variables et leurs inverses (avec parenthé-
sage pour indiquer 'ordre des opérations en 1’absence d'un axiome d’associati-
vité). Les formules atomiques sont les équations entre mots.

3. Les termes de L,,, sont les polynémes sur Z en plusieurs variables (encore avec
parenthésage). Les formules atomiques sont les équations entre polynomes.

Pour étre tout a fait rigoureux dans nos futures définitions et démonstrations par
induction sur la construction des formules, il est nécessaire de vérifier que la lecture des
formules est unique. Nous laissons la vérification de ce résultat syntaxique au lecteur :
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Fait 1.1 (Lecture unique). 1. Chaque terme est soit une variable, soit une constante,
soit de la forme f(ti,...,t,) ot f est une fonction d’arité n et tq,...,t, sont
des termes. Cette écriture est uniquement déterminée.

2. Chaque formule est

— soit atomique et de la forme R(tq,...,t,) ot R est une relation d’arité n et
ty,...,t, sont des termes,

— soit de la forme =@ ot ¢ est une formule,

— soit de la forme (v1 N p2) ou de la forme (p1 V p2) 0u 1 et ps sont deux
formules,

— soit de la forme Jxp ou de la forme Vry ou ¢ est une formule et x est une
variable.

Cette écriture est uniquement déterminée.

Notation. Par la suite on désignera par z, 7,...des uples finis de variables, et par a,
b, m,...des uples finis d’éléments d’une structure. Si Z est un uple de variables qui
contient les variables d’un terme t ou les variables libres d’une formule ¢, on note
souvent t(Z) ou () pour fixer une arité pour le terme t ou la formule . Si m est un
uple de méme longueur que z, alors ¢(m) désigne le terme ¢ ou chaque occurrence de
x; € T a été remplacé par m; € m, et p(m) désigne la formule ¢ ot chaque occurrence
libre de x; € T a été remplacé par m; € m. On parle alors d’une terme ou d’une formule
avec parametres.

Définition 1.10 (Interprétation). Soit £ un langage et 9t une L-structure. L’ interprétation
t™(m) € M d’un L-terme t(1m) avec paramétres dans 9 est donnée par la récurrence
suivante :

— si m € M est un paramétre, alors m™ = m,

— si f est une fonction n-aire et t1(m),...,t,(m) sont des L-termes avec para-
métres dans M, alors f(ty, ..., t,) " (m) = [T (m), ..., 7 (m)).

Définition 1.11 (Satisfaction). Soit £ un langage et 9t une L-structure. La satis-
faction dans 9 d’une formule ¢(m) avec paramétres dans 9, notée M = p(m), est
donnée par la récurrence suivante :

— M E= R(ty,...,t,)(m) ssi (T (m),...,t7(m)) € R™,

— M = —p(m) ssi ME p(m),

— MM (91 A ) (i) 51 M = g1 () et M= oo (),

— M= (1 V p2)(m) ssi M |= @1(m) ou M = pa(m),

— M =V (z,m) ssi pour tout n € M on a M = ¢(n,m),

— M = Jzp (z,m) ssi il existe n € M tel que M = p(n,m).
Si p(m) est satisfaite dans 9, on dit également que p(m) est vraie dans 9, que M
satisfait p(m) ou que m satisfait ou réalise p(Z) dans M. Ce dernier est aussi noté

m FEa (Z).
C’est cette définition qui donne le sens usuel aux connecteurs booléens et aux quanti-

ficateurs.
Il arrive que deux formules signifient la méme chose.
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Définition 1.12. 1. Soient ¢(Z) et 1(Z) deux formules. On dit que ¢(Z) implique
(), ou que (T) est conséquence de p(T), si pour toute L-structure M et tout
m € M, si M = p(m) alors M = (m).
Les formules ¢(Z) et 1(Z) sont équivalentes, noté p(z) = ¥(z), si ¢(z) = ()
et (7) = (7).

2. Soient ®(z) et ¥(Z) deux ensembles de formules. On dit que ®(z) implique
U(z), ou que U(Z) est conséquence de ®(z), si pour toute L-structure M et
tout m € M, si M = p(m) pour tout ¢(z) € ¢(z) alors M = ¢ (m) pour tout
¥(z) € U(T).

Les ensembles ®(z) et WU(Z) sont équivalentes, noté &(z) = V(z), si P(z) = ¥(z)
et U(z) E ®(7).

Exercice 1.13. Toute formule est équivalente a une formule ne contenant ni le connec-
teur booléen V, ni le quanteur V.

On vérifie facilement que dans une conjonction ou une disjonction de plusieurs for-
mules, tout choix de parenthéses donne une formule équivalente. On supprimera donc
en général les parenthéses superflues.
Par la suite, nous utiliserons les abréviations suivantes :

— ¢ — ¢ pour ~p V1,

— @< ¥ pour (¢ = ) A (Y = ¢).

Exercice 1.14. Deux formules ¢(Z) et ¢ () sont équivalentes si et seulement toute
L-structure satisfait VZ(p(Z) <> ¥(7)).

Exercice 1.15. Toute formule est équivalente & une formule prénezxe, c¢’est-a-dire a
une formule de la forme Q1x1Qsxs ... Q,x,p ol les Q; sont des quanteurs et ¢ est une
formule sans quanteur.

1.4 Modeéles, théories et axiomes

Définition 1.16 (Modéle). Soit £ un langage et ® un ensemble de L-énoncés. Une
L-structure M est un modeéle de @ si M = ¢ pour tout ¢ € ®. On dit que P est
consistant si & a un modele.

Remarque 1.17. Ceci est la définition sémantique de la consistance. La définition
syntaxique demande que ¢ ne permet pas d’en déduire une contradiction ; le théoreme
de complétude de Godel dit que les deux sont équivalents.

Définition 1.18 (Théorie). Soit £ un langage. Une L-théorie est un ensemble consis-
tant de L-énoncés clos par conséquence. Une théorie T' est compléte si pour tout L-
énoncé ¢ on a soit ¢ € T soit ~p € T
Un systéeme d’axiomes pour une théorie T' est un ensemble ® de L-énoncés tel que T
est ’ensemble des conséquences de P.
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En particulier un systéme d’axiomes pour une théorie T' est une partie de 7. Si T
permet un systéme fini d’axiomes, T" est finiment aziomatisable.

Exemple 1.19. Soit M une L-structure. Alors ’ensemble Th(91) de tous les £L-énoncés
vrais dans 9 est une théorie compléte.

Exercice 1.20. Deux théories complétes qui ont un modéle commun sont égales.

Exemple 1.21. 1. La L,.4-théorie DLO? des ordres denses sans extrémités est
donnée par les axiomes suivants :
— Ordre : VaVyVz[(zr <yAy < z) = x < 2,
VeVy(r <yVz=yVy<zx),
Vo -z < x.
— Dense : VaVylz <y — Jz(x <z Az <y)].
— Sans extrémités : Ve y Iz (y < z Az < 2).
Ceci est une théorie compléte finiment axiomatisable.

2. La Lg,-théorie des groupes est donnée par les axiomes suivants :
— Associativité : Ve VyVz (z-y) -z =z - (x - 2),
— Elément neutre : Ve z-1=1-2 =z,
— Inverse : Vo o ---271 Lox=1.
Ceci est une théorie incompléte finiment axiomatisable.

:x_

3. La L,,-théorie des groupes abéliens sans torsion est donnée par les axiomes
suivants :
— La théorie des groupes,
— Commutativité : Ve Vy x -y =y - .
— Sans torsion : Pour tout n € N* Paxiome Vz 2™ # 1, ol 2™ est une abbré-
viation pour - - - .
——

n
Ceci est une théorie compléte récursivement axiomatisable (la liste infinie d’axiomes
est donné par un schéma récursif).

4. La Lg,,-théorie ACF des corps algébriquement clos est donnée par les axiomes
suivants :
— (M, +) est un groupe abélien.
— (M \ {0},-) est un groupe abélien.
— Distributivité : VaVyVz x - (y+2) =z -y+x - 2.
— Pour tout n € N l'axiome Va; ... Vo, Iy y* + 29" ' +--- 4+ 2, = 0.
Ceci est une théorie incompléte récursivement axiomatisable. Ses complétions
sont données en spécifiant la caractéristique, soit en caractéristique p > 0 par un
seul axiome 1+ ---+ 1 = 0, soit en caractéristique 0 par un schéma d’axiomes

—_——

p
14---+ 120 pour tout n > 0.
—_—
n
5. La théorie Th(N, 0, +, ) de I'arithmétique. D’aprés le théoréme d’incomplétude
de Godel, elle n’est pas récursivement axiomatisable.
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1.5 Elémentaire, mon cher Watson !

Définition 1.22 (Equivalence élémentaire). Deux L-structures 90 et 9 sont élémen-
tairement équivalentes (noté 9 = N) si elles satisfont les mémes énoncés.

Ainsi 9 = 9 ssi Th(M) = Th(N).

Exemple 1.23. 1. (Q, <) = (R, <), deux modéles de DLO®.

2. (Q,+) = (R, +), deux modéles de la théorie des groupes abéliens divisibles sans
torsion.

3. (Z,+) #(Q,+) car VaTJy x = y + y est satisfaite dans Q mais pas dans Z.

Exercice 1.24. Une théorie est compléte si ses modéles sont tous élémentairement
équivalents.

Définition 1.25 (Plongement). Soit £ un langage et 9t et M deux L-structures. Une
application ¢ : M — N est un plongement 9t — N si
— pour tout symbole de fonction f € £ d’arité n et m € M™ on a o(f™(m)) =
P {o(m), et
— pour tout symbole de relation R € £ d’arité n et m € M™ on a m € R™ ssi
o(m) € R™.
Un isomorphisme est un plongement surjectif. Un automorphisme de 91 est un isomor-
phisme de 991 vers 9.
Un plongement o : 9t — N est élémentaire si pour tout L-formule ¢(Z) et tout m dans
M on a M E p(m) ssi N | p(a(m)).

Puisque I’égalité fait partie des relations, un plongement est toujours injectif. La pro-
position suivante montre en particulier qu’un isomorphisme est toujours élémentaire.

Proposition 1.26. Soient M et N deux L-structures.

1. Si o est un plongement de M vers M alors pour toute formule sans quanteurs
w(m) avec parametres m dans M on a M = p(m) ssi N = p(o(m)).

2. Si o est un isomorphisme de M sur N alors pour toute formule p(xy, ..., xx) et
tout m = (my, ...,mg) € M*, M = p(m) ssi N | p(a(m)).

Démonstration. 1. Par récurrence sur les termes on montre facilement que pour
tout terme t(1m) avec paramétres on a o(t™(m)) = t*(o(m)). Ensuite 1'énoncé
est vrai pour les formules atomiques par définition d’un plongement ; il est clai-
rement préservé par combinaison booléenne.

2. D’apres la premiére partie I’énoncé est vrai pour les formules sans quanteurs, et
préservé par les combinaisons booléennes. Soit donc 9 |= Jxp(z, m). Alorsily a
n € M tel que M |= ¢(n,m); par hypothése de récurrence N | p(o(n),o(m)),
d’ou N = Jzp(z, o(m)). Réciproquement, si N = Jzp(z,0(m))ilyan’ € N tel
que N = Jxp(n',0(m)). Comme o est surjectif il y an € M avec o(n) = n'. Par
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hypothése de récurrence M = ¢(n,m), d'ot M = Jxp(x, m). La démonstration
pour un quanteur universel est analogue (ou bien on utilise que Yz = —3Jz—p).
O

Exercice 1.27. Si 9 est une L-structure finie et T = I alors T = M.

Définition 1.28 (Sous-structure). Soit 9t une L-structure. Une partie A C M est une
sous-structure de 9 si A est clos par les fonctions dans £. Dans ce cas on munit A
d'une L-structure 2A en posant f* = f™ |4 pour tout symbole de fonction f € L, et
R¥ = R™ N A" pour tout symbole de relation R € £. Si A est une sous-structure de
N, on note A C M.

Une sous-structure 2 C 9 est élémentaire si pour toute L-formule ¢(a) avec para-
métres a dans A on a A | p(a) ssi M = ¢(a). Dans ce cas on dit que M est une
extension élémentaire de 2, et on note A < M.

On note que si M < N alors NM = N.

Remarque 1.29. 1. Soit 91 une L-structure et A une partie de M. Il existe une
plus petite sous-structure de 991 contenant A, la sous-structure engendrée par
A, qui est la cloture de A par les fonctions de L.

2. La notion de sous-structure dépend du langage choisi. Par exemple, N est une
sous-structure de (Z, <) et de (Z,0,+) mais pas de (Z,0, +, —).

Notation. Pour une L-structure 9t et un ensemble A de paramétres dans M, on
peut former le langage L4 = LU {a : a € A} ou l'on rajoute les éléments de A
comme nouvelles constantes, et considérer I’expansion N, de M en une L 4-structure
en interprétant ™4 = a pour a € A. On note Th(9, A) la L4-théorie de My, qui
correspond donc & ’ensemble des énoncés a parameétres dans A qui sont vrais dans 9.

On appelle Th(9, M) le diagramme élémentaire de IN.

Exercice 1.30. Soit 9t C N. Les trois conditions suivantes sont équivalentes :
1L <M,
2. Th(, M) = Th(N, M),

3. l'inclusion 9 < DN est un plongement élémentaire.

Exercice 1.31. Soit K un corps.
1. Remarquer que toute L,,,-sous-structure de (K,0,1,+4, —, ) est un anneau.
2. Ajouter une fonction f au langage telle que toute sous-structure de (K,0,1, 4+, —, -, f)
soit un corps.
Exercice 1.32. Donner un exemple de structures 9t C 91 tel que
1. 971 n’est pas élémentairement équivalente a 1.

2. 9N est élémentairement équivalente a O, mais n’en est pas une sous-structure
élémentaire.
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Exercice 1.33. Soient 90t; C 9, C IMN5.
— Si My KMy et My < M3 alors My < M.
— Si ?Jﬁl < mg et WIQ < mtg alors ?Jﬁl < 9)?2.
— Trouver un exemple tel que 9, < My et Ny < M3 mais Ny £ M.

Exercice 1.34. Soit I un ensemble totalement ordonné et (91;);c; une chaine de £-
structures (i.e. M; C M; pour tout ¢ < j).

1. Montrer que J;c; M; est canoniquement doté d’une L-structure 9 telle que
N, C 9N pour tout 7 € 1.

2. Montrer que si la chaine est élémentaire (i.e. 9; < 9, pour tout ¢ < j), alors
M, <N pour tout ¢ € 1.

Voici un critére utile pour vérifier qu'une sous-structure est élémentaire. Ce critére
n’utilise que la satisfaction dans la grande structure :

Proposition 1.35 (Test de Tarski). Soit M une L-structure, et A C M. Alors la
L-structure A induite sur A en fait une sous-structure élémentaire de N ssi pour toute
formule o(x,a) avec parametres dans A, si M |= Jzp(z,a) alors il existe b € A tel que

M = ¢(b,a).

Démonstration. Si A < M et M = Jxp(z, a), alors A = Jxp(x,a) et on trouve bien
be Atel que 2 = p(b,a). Alors M = (b, a).

Réciproquement supposons que A C M satisfont le critére de Tarski. On note d”abord
que A est clos par fonctions : si f € L est une fonction et @ dans A, alors M | Jrx =
f(a), et donc on trouve b € A avec b = f(a). Ainsi on peut bien parler de la structure
2 induite sur A par 9.

On montre par récurrence sur les formules que 2 | p(a) ssi M = ¢(a), pour toute
formule ¢(a) avec paramétres dans A. C’est vrai pour les formules sans quanteurs car
20 C 9 ; de plus la propriété est préservée par combinaison booléenne. Soit donc ¢(x, a)
une L-formule avec paramétres dans A telle que M |= Jzp(z, a). Par le critére de Tarski
il existe b € A tel que M | p(b,a). Par hypothése de récurrence 2 = (b, a)d’ou
20 | Jrp(z,a). Réciproquement, si A = Jre(x,a), alors il existe b € A tel que
2 = (b, a); par hypothése de récurrence M |= ¢(b,a) et donc M | Jzp(x, a). O

Corollaire 1.36 (Théoréme de Lowenheim-Skolem Descendant). Soient 91 une L-
structure infinie, A un ensemble de parameétres dans N, et x un cardinal infini tel que
max(|Al,|L]) <k < |91]. Alors il y a une sous-structure élémentaire 9 < 91 contenant
A et de cardinal k.

Démonstration. On peut supposer que |A| = k. On fixe a € A, et pour toute L-
formule ¢(z,9) on choisit une fonction f, : N — N telle que si N |= Iz p(z, m) alors
N = o(f,(m),m) pour tout M dans N (et f,(m) = a sinon). Soit M la cloture de A
par toutes les fonctions de £ et par toutes les fonctions f,, pour toutes les L-formules
avec au moins une variable libre. Alors la structure induite 90 en fait une sous-structure
de M, qui est élémentaire par le test de Tarski. O
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Exercice 1.37. Montrer qu'il existe un modéle dénombrable de ZFC (en supposant
que ZFC est consistant). Pourquoi est-ce que cela ne contredit pas le théoréme de
Cantor que | X| < |P(X)| pour tout X 7

La théorie des modéles permet bien de faire du modélisme !

1.6 Le va-et-vient

Le va-et-vient est une méthode utile pour montrer que deux structures sont élémentai-
rement équivalentes, voire méme isomorphes dans le cas dénombrable.

Définition 1.38 (Isomorphisme partiel). Soient 9t et M deux L-structures. Un iso-
morphisme partiel de M dans DN est un isomorphisme o d'une sous-structure A C I
sur une sous-structure B C M. Il est élémentaire si pour toute L-formule p(a) avec
paramétres dans A on a M |= ¢(a) ssi N = p(o(a)).

Ainsi 'adjectif élémentaire fait référence a la satisfaction dans 9t et dans 91. Comme
tout isomorphisme, o préserve la satisfaction par rapport a 2 et B.

Définition 1.39 (Va-et-vient). Soient 9 et N deux L-structures. Une famille non vide
F d’isomorphismes partiels de 9T dans 91 est un (systéme de) va-et-vient entre M et
N si pour tout o € F,
— pour tout m € M, il existe T € F prolongeant o tel que m € Dom(7) (le va),
— pour tout n € N, il existe 7 € F prolongeant o tel que n € Im(7) (le vient).
Deux structures 91 et N sont oco-équivalentes s’il existe un va-et-vient entre elles.

Exemple 1.40. Deux ordres totaux denses sans extrémité sont co-équivalents : On
voit facilement que la famille d’isomorphismes partiels entre parties finies forme un
va-et-vient.

Exemple 1.41. Deux corps algébriquement clos K7 et K5 de méme caractéristique et
de degré de transcendance infini sont co-équivalents.

Soit F la famille des isomorphismes entre des sous-corps finiment engendrés respecti-
vement de K et Ky. Comme K; et K, ont méme caractéristique, F est non vide car
leurs corps premiers sont isomorphes.

Soit ¢ € F un isomorphisme de ky sur ks, et soit a € K. Si a est algébrique sur kq,
et P € ki[X] est son polyndéme minimal, alors o(P) est un polynome irréductible de
ko[ X] qui a une racine b dans K, qui est algébriquement clos. On peut donc envoyer a
sur b pour prolonger ¢ en un isomorphisme 7 : k1(a) — k2(b). Sinon a est transcendant
sur k1. Comme k5 est finiment engendré et K5 est de degré de transcendance infini, il
existe b € Ky transcendant sur ky. Méme conclusion que dans le cas précédent.

Exercice 1.42. Soit K un corps. On considére L = {0,+, A\; : k € K} le langage des
K-espaces vectoriels, les A étant des fonctions unaires (les fonctions scalaires). Soient
E et F' deux K-espaces vectoriels vus comme Lg-structures. Montrer que si E et F
sont de dimension infinie alors ils sont co-équivalents.
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Exercice 1.43. Donner un exemple de deux ordres totaux discrets infinis qui ne sont
pas oco-équivalents.

Exercice 1.44. Montrer que la relation d’co-équivalence est bien une relation d’équi-
valence.

Proposition 1.45. Deuz structures dénombrables co-équivalentes sont isomorphes.

Démonstration. Soit F un va-et-vient entre deux structures dénombrables 9t et 91. On
choisit une énumération (m;);eny de M et une énumération (n;);ey de N. En commen-
gant avec n’importe quel oy € F on trouve inductivement une suite croissante (0;);ec.
d’isomorphismes partiels dans F telle que pour tout ¢ € N

m; € DOHI(O'QZ‘+1> et n,; € Im(02i+2).
Alors 0 = | ;o 0s est I'isomorphisme recherché. O

La méthode de va-et-vient sera souvent utilisée pour montrer que deux structures sont
élémentairement équivalentes :

Proposition 1.46. Un va-et-vient consiste disomorphismes partiels élémentaires. En
particulier, st M et N sont co-équivalentes, alors M = N.

Démonstration. On montre par récurrence sur les formules que pour tout o € F et
toute L-formules ¢(m) avec paramétres dans Dom(o) on a M | ¢(m) ssi N =
o).

Pour une formule atomique, on a 9 = ¢(m) ssi Dom(o) = ¢(m) ssilm(o) = ¢(a(m))
ssi M k= p(o(m)). La propriété étant préservée par combinaisons booléennes, considé-
rons une formule existentielle. Si M = Jx p(z,m), il y a a € M tel que M = p(a,m).
Soit 7 une prolongation de o avec a € Dom(7). Par hypothése de récurrence 0N |=
o(1(a), 7(m), dou N |= Jx ¢(x,7(Mm)), et donc N = Jz p(z,0(m)). L’'autre direction
est par symétrie. L]

Exercice 1.47. Montrer que deux ordres totaux denses sans extrémité sont élémentai-
rement équivalents. En particulier (Q, <) = (R, <). En déduire que DLO? est complet.

Exercice 1.48. Déduire de 'exemple que la théorie ACF, des corps algébrique-
ment clos de caractéristique p (premier ou 0) est compléte.
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Chapitre 2

La compacité

2.1 Ultraproduits

Définition 2.1 (Filtres et ultrafiltres). Soit I un ensemble. Un ensemble non vide F
de parties de I est un filtre sur [ si :

—0¢F,

— i XY € Falors XNY € F,

—siXeFetXCYCJTalorsY € F.
Un filtre F est un wltrafiltre si pour toute partie A de I, soit A soit I\ A est dans F.
Un ultrafiltre F est principal s’ il y a a € I tel que F ={A:a € A}.

Exemple 2.2. Si [ est infini, alors I’ensemble des parties co-finies de I forme un filtre,
le filtre de Fréchet.

Exercice 2.3. 1. Montrer que F est un ultrafiltre ssi F est maximal pour 'inclu-
sion.

2. Montrer que si [ est fini, tout ultrafiltre sur I est principal.
3. Montrer qu'un ultrafiltre ¢ est non-principal ss’il contient le filtre de Fréchet.

4. Soit U un ultrafiltre et X C [ avec X ¢ U. Montrer que Uy = {Y\ X : Y e U}
est un ultrafiltre sur I\ X.

A P’aide du lemme de Zorn, tout filtre est contenu dans un ultrafiltre.

Définition 2.4 (Ultraproduit). Soit (9;);c; une famille de L-structures non-vides et
U un ultrafiltre sur . L’ultraproduit [ [, , 9; /U, aussi noté [[,, M;, est la structure M
sulvante :

iel
1. le domaine de 91 est le produit [[,., M; modulo la relation d’équivalence
(a;)ier ~ (b;)ier si et seulement si {i € [ : a; = b;} € U.

On notera [a;]; la classe modulo U de 1'uple (a;)icr, et [a;:]r = ([a}]r, - ., [a?]7).

2. pour toute fonction f de £, on pose f™([a;]r) = [f™(a:)];.

13
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3. pour toute relation R de L, on pose
R™ .= {([ai)|;];) e M™= : {i € I - a; € R™} e U}.

Remarque 2.5. Sion permet des structures vides, alorssoit X ={i e I : M; =0} e U
et alors M = (), soit enléve ces indices et on considére I'ultraproduit [, 9.

Exercice 2.6. Vérifier que ~ est une relation d’équivalence, et que les fonctions et
relations sont bien définies, c¢’est-a-dire qu’elle ne dépendent pas du choix des repré-
sentants. Noter de plus que la définition de =™ correspond a la vraie égalité sur M.

Exercice 2.7. Que peut-on dire de 'ultraproduit si I'ultrafiltre est principal ?

Théoréme 2.8 (Critére de Los). Soit U un ultrafiltre sur I et (IM;);er une famille de
L-structures. Si p([m;)r) est une L-formule avec paramétres dans Uultraproduit 9 =
[L, 9, alors

M = o([mi]r) si et seulement si {i € I :9M; E o(m;)} € U.

En particulier, si 0 est un énoncé alors M = 0 ssi il existe X € U tel que M; |= 6 pour
tout i € X. Si T est une théorie telle que M; =T pour tout i € I, alors M =T

Démonstration. On vérifie par récurrence sur les termes que pour tout L-terme ¢(z)
on a

7 ([mar) = [ (ma)] .
Ensuite, on montre le critére de L.os par récurrence sur les formules. Par définition de
I'ultraproduit et par ce qui précéde le critére est évident pour les formules atomiques.
Supposons le critére vérifié pour deux formules ¢ et ¥ (avec paramétres qu’on sup-

prime). Alors M = (@ A1) ssi M = @ et M |= 1 ssi
X=4el - MEpteld et Y={iel:MEy}eld

ssi X NY €U car U est un filtre. Or, XNY ={i € I : M, = (¢ A1)}, ce qui montre
le critére pour (¢ A ). Le cas d’une disjonction est analogue.

Quant a la négation, M = - ssi X ¢ U. Comme U est un ultrafiltre (c’est ici qu'un
simple filtre ne suffit pas), X ¢ U ssi [\ X e U. Or, I\ X ={i € [ : M, = —¢}, et le
critére est également vérifié pour —p.

Enfin, si M = Jzp(z, [my]r), soit [n;]; € M tel que M = ¢([ni]r, [mi]r). Alors

Y={iel:MEen,m)}el.
Or, X ={i el :M = Jzp(x,m)} 2 Y, et X € U. Réciproquement, si X € U,
choisissons pour tout i € X un n; € M; tel que IM; = p(n;, m;) (et choisissons n; € M;
arbitraire pour i ¢ X. Alors
et par hypotheése M = o([ni]r, [ma]r), dot M = Jrp(x, [my]r). Le critére est alors
vérifié pour la formule Jxp(x, [m;)). O

Exercice 2.9. Soit U un ultrafiltre sur I. Montrer que 'application diagonale m >
[m]; est un plongement élémentaire de 9 dans V' ultrapuissance [ [,, 9, aussi notée M.
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2.2 Le théoréme de compacité

Théoréme 2.10 (Compacité). Soit X un ensemble d’énoncés tel que tout sous-ensemble
fini de X a un modele. Alors ¥ a un modéle.

Démonstration. Considérons Y un ensemble d’énoncés finiment consistant. Pour toute
partie finie ¢ de ¥ soit 9, un modeéle de i. Nous allons utiliser le critére de f.os pour
montrer quun ultraproduit des 9; est modéle de X.

Soit I I'ensemble des parties finies de X, et pour tout i € I soit I; :={j € I :i C j}.
Alors F:={X C[:I; C X pour un i € I} est un filtre sur /. En effet : Iy = I € F
(Z)%]—“;si]igXet[ngalorinUngﬂYE}";siIingYaloringYE}".
Soit U un ultrafiltre contenant F et M = [[,, M;. Alors M est un modele de ¥ : si
6§ € ¥ alors M; |= 0 pour tout i € Irgy € U, donc M = 6 par le critére de Los. ]

Exercice 2.11. Montrer que le théoréme de compacité est équivalent a 1’énoncé sui-
vant : soient ¥ un ensemble d’énoncés et ¢ une conséquence de Y. Alors ¢ est consé-
quence d’une partie finie de X.

Exercice 2.12. A T'aide du théoréme de compacité vérifier les assertions suivantes :

1. Une théorie qui, pour tout entier n, a un modele de cardinalité plus grand que
n, a un modéle infini.

2. Il n’existe pas de théorie dans la langage L4 dont les modéles sont précisément
les ordres finis.

3. Il n’existe pas de théorie dans la langage L,,,,, dont les modéles sont précisément
les corps finis.

Le théoréme de compacité s’exprime topologiquement de la facon suivante : nous mu-
nissons ’ensemble 7 des théories complétes dans le langage £ d’une topologie. A tout
énoncé ¢, on associe I'ensemble [p] des théories complétes contenant ¢. Alors les [¢]
forment une base d’ouverts pour une topologie, car si ¢; et @y sont deux énoncés,
[o1] N [w2] = [p1 A po]. Muni de cette topologie, T est un espace séparé : si Ty et T
sont deux théories complétes distinctes alors il existe un énoncé ¢ € T} tel que ¢ & Ts.
Donc [¢] et [-p] sont des voisinages disjoints respectivement de 7 et T5. Cet espace
T est de plus totalement discontinu, c¢’est-a-dire il admet une base d’ouverts qui sont
fermés : le complémentaire de [¢] est [-p]. Par conséquent, toute partie connexe de T
est soit vide, soit réduite & un point.

Exercice 2.13. Montrer que le théoréme de compacité est équivalent a la compacité
de cet espace T.

Exercice 2.14. Les ouverts-fermés de 7 sont les parties de la forme [¢] pour ¢ un
énoncé de T .

Voici quelques applications du théoréme de compacité.
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Corollaire 2.15. Soit 9t une L-structure et ¢;(Z) une L formule avec paramétres
dans M pour tout ¢ € I. Si pour tout Iy C [ fini les formules {¢;(Z) : i € Iy} ont une
réalisation commune dans M, alors il existe une extension élémentaire 91 de 9 et a
dans N tel que M = p;(a) pour tout i € 1.

Démonstration. Soit ¢ un n-uple de nouvelle constantes, et L = LU{m : m € M }U{c}.
Considérons I'ensemble de £’-énoncés

¥ :=Th(OM, M) U{p:(c):iel}

Par hypothése, pour toute partie finie Xy de X, il existe ayx, dans M tel que 9 = X,
oll ¢ est interprété par ay,. Par compacité > est consistant et a un modéle 9. Alors
M < N (en identifiant les constantes m € M avec leur interprétation m™ dans 1), et
sia=c" € N alors M |= ¢;(a) pour tout i € 1. O

Exemple 2.16. 1. Les entiers non-standards : il existe une extension élémentaire
de la structure (N, 0, 1,4, -) contenant un entier (non-standard) non nul qui est
divisible par tous les entiers standards non nuls (les entiers de N*).

2. Les réels non-standards : il existe une extension élémentaire R’ de la structure
(R,0,1,+,—,+, <) contenant un réel ¢ (non-standard) strictement positif qui est
mfiniment petit, ¢’est-a-dire tel que 0 < ¢ < % pour tout entier (standard) n €
N*. On a alors pour tout ' € R’ borné (tel qu'il existe n € N avec —n < 1’ < n),
il existe un unique réel standard r € R infiniment proche de ', i.e. |r — r'| est
infiniment petit. On appelle r la partie standard de r'.

Proposition 2.17 (Théoréme de l'extension élémentaire commune). Toute famille
(O, =i € I) de L-structures élémentairement équivalentes a une extension élémentaire
«communey : il existe une L-structure N telle que tous les M; se plongent élémentai-
rement dans .

Démonstration. On peut supposer que les domaines des (M; : i € I) sont disjoints.
Considérons I’ensemble d’énoncés
% := | Th(M;, M;)
iel
dans le langage £’ = L U J,c; M;. Remarquons que si N est un modele de X, alors
I'application M; > m +— m™ est un plongement élémentaire de 9; dans 91. Par com-
pacité, il est donc suffisant de montrer que tout fragment fini 3y de ¥ est consistant.
Soit ¢;(m;) la conjonction des formules de ¥g N Th(9M;, M;). Alors M, = Izp;(T) pour
tout 7 ; comme My et M; sont élémentairement équivalentes, on a aussi My = 3T, (7).
Ainsi
My =321 T (03, (T1) A A @i (T,

et on trouve m/}, ..., m; dans M tel que

My = o, (M) A= A, (1)

Ainsi M; est un modele de Xy eEn interprétant m;, par m;. pour j < k. O
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2.3 Théoréme de Lowenheim-Skolem, Catégoricité

Théoréme 2.18 (Léwenheim-Skolem ascendant). Si MM est une L-structure infinie
alors pour tout cardinal k > max{|L|,| M|} il existe une extension élémentaire N = M
de cardinal k.

Démonstration. Soient (¢;);e. des nouveaux symboles de constantes et considérons I’en-
semble d’énoncés
Yi=ThM, M) U{c; #c; 1 # j}.

Chaque fragment fini de > ne mentionne qu’un nombre fini de constantes, qui peuvent
étre interprétés par des éléments distincts de 90T car 91 est infini. Donc X est finiment
consistant a un modele DM par compacité, qui est donc une extension élémentaire de
M de cardinal supérieur ou égal a k. Par Lowenheim-Skolem descendant il existe une
sous-structure élémentaire 9 de ' contenant M et de cardinal k, qui est alors une
extension élémentaire de 9. O]

Convention. Le cardinal d’une théorie 7" dans un langage £, notée |T'| est par conven-
tion le cardinal de ’ensemble des formules du langage £, c’est-a-dire |T'| := max{Ro, |L|}.
En particulier on dit que T" est dénombrable si |L| < Ny.

Théoréme 2.19 (Théoréme de Léwenheim-Skolem). Si T est une théorie qui a un
modele infini alors T a un modéle de cardinal Kk pour tout cardinal k > |T.

Démonstration. Par Lowenheim-Skolem ascendant et descendant. O

Définition. Une théorie T est k-catégorique si T a un unique modéle de cardinal k a
isomorphisme prés. Une théorie est totalement catégorique si T est k-catégorique pour
tout x infini.

Proposition 2.20. Une théorie T qui n’a que des modéles infinis et qui est k-catégorique
pour un cardinal k > |T| est compléte.

Démonstration. Soit M le modéle de T de cardinal x. Toujours par Léwenheim-Skolem
ascendant et descendant, tout modéle de T" est élémentairement équivalent a un modéle
de cardinal x, donc a M. O

Exemple 2.21. — La théorie des ensembles infinis est totalement catégorique.

— La théorie DLO? est Ny-catégorique, mais pas k-catégorique pour tout cardinal
k > Ny. Considérons par exemple un ordre £ x Q et (k + 1) x Q avec ordre
lexicographique. Il ne sont pas isomorphes, car dans le premier chaque segment
final non-vide est de cardinal x, mais dans le second il y a un segment final
isomorphe a Q.

— La théorie des corps algébriquement clos de caractéristique p > 0 est catégorique
en tout cardinal infini non-dénombrable, car deux tels corps sont caractérisés
par leur degré de transcendance, qui est égal a leur cardinal si celui est non-
dénombrable. Par contre cette théorie n’est pas Ny-catégorique, car pour un corps
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dénombrable algébriquement clos le dregré de transcendance peut prendre tout
valeur dans w + 1. Il y a donc 8y modéles dénombrables non-isomorphes.

— La théorie des groupes abéliens divisibles sans torsion est catégorique en tout
cardinal infini non-dénombrable. En effet tout groupe abélien divisible sans tor-
sion peut étre regardé comme un Q-espace vectoriel, qui est caractérisé par sa
dimension, et donc par son cardinal si celui est non-dénombrable. Il y a N,
modéles dénombrables non-isomorphes, de dimension entre 1 et w inclus.

— La théorie des groupes abéliens d’exposant p premier est totalement catégorique.
C’est un espace vectoriel sur IF,, qui est de méme cardinal infini que sa dimension.

Exercice 2.22. Déterminer les cardinaux x pour lesquels la théorie de la relation
d’équivalence & une infinité de classes toutes infinies est x-catégorique. Méme question
pour la théorie de la relation d’équivalence & deux classes infinies.

Exercice 2.23. Soit £L = {P, : i € w} ou les P; sont des relations unaires. Soit 7" la
théorie dans le langage £ qui dit que les P; sont deux a deux disjoints et que chaque
P, est infini.

1. Vérifier que T n’est catégorique en aucun cardinal k.

2. Montrer que 1" est compléte.

Pour terminer cette partie nous allons énoncer le théoréme de Morley qui est le point
de départ de la théorie de la stabilité. La démonstration de ce théoréme ne sera pas
faite dans ce cours.

Fait 2.1 (Théoréme de Morley 1965). Une théorie dénombrable qui est catégorique
en un cardinal infini non-dénombrable est catégorique en tout cardinal infini non-
dénombrable.

2.4 Applications en algébre

Puisque la théorie d'un corps algébriquement clos de caractéristique donnée est com-
pléte, tous les coprs algébriquement clos de méme caractéristique sont élémentairement
équivalents. Le théoréme suivant nous permet de changer de caractéristique.

Théoréme 2.24 (Principe de Transfert). Soit ¢ un énoncé dans le langage des an-
neaux. Alors les assertions suivantes sont équivalentes :

1. ¢ est vrai dans tout corps algébriquement clos de caractéristique nulle ;

2. @ est vrai dans tout corps algébriquement clos de caractéristique p > 0, pour
tout p premier sauf un nombre fini.

3. @ est vrai dans un corps algébriquement clos de caractéristique p > 0, pour une
infinité de nombres p premier.
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Démonstration. Soi P ’ensembles des nombres premiers, et ¢ un ultrafiltre non-principal
sur P. Pour p € P soit K, un corps algébriquement clos de caractéristique p. Comme
tout K, satisfait la théorie ACF, I'ultraproduit K = [], K,/U aussi. En plus, pour
tout n > 0 presque tout K, satisfait I'énoncé n =14 ---+1 # 0. Donc K est un corps
algébriquement clos de caractéristique zéro.

Soit I C P un ensemble infini tel qu’il y ait un corps K, algébriquement clos de carac-
téristique p satisfaisant . On considére un ultrafiltre U contenant I. Par le critére de
Los ¢ est satisfaite dans K, et donc dans tout corps algébriquement clos de caractéris-
tique zéro, puisque ACF est compléte. Il est donc impossible que —p puisse étre vrai
dans un corps algébriquement clos de caractéristique p pour une infinite de p différents,
car sinon tout corps algébriquement clos de caractéristique zéro satisfaisait a la fois ¢
et —p. O

Nous allons en déduire un théoréme d’Ax.

Théoréme 2.25 (Ax 1969E[). Soit K un corps algébriquement clos, et f une application
rationnelle par morceaux de K™ dans K™ pour m > 0. Si f est injective alors [ est
surjective.

Démonstration. Supposons que f = f(Z, a) utilise des paramétres a. Supposons d’abord
que K =F, =, F,m est la cloture algébrique de F), et f(z,a) définit une fonction
injective de K™ dans K™. Alors a est dans IF,,n pour n suffisamment grand et la restric-
tion de f(z,a) définit une fonction injective de F,u dans Fju:, qui est donc surjective.
Ainsi f(Z,a) est surjective sur K™, et K satisfait 1’énoncé

pn! y

vy [Vava' (f(z,9) = f(2,9) = 2 =7') - Vz37 f(7,9) = .

Cet énoncé est donc vrai dans tout corps algébriquement clos de caractéristique posi-
tive, et par transfert également dans tout corps algébriquement clos de caractéristique
Z€rO0. O

1. Ax a en fait montré plus généralement que tout endomorphisme injectif d’une variété algébrique
est surjective.
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Chapitre 3

Types et élimination des quanteurs

Dans ce chapitre nous introduisons la notion de types, notion centrale en théorie des
modeéles pour I'étude des structures, et verrons leur utilisation pour I’élimination des
quanteurs.

3.1 Ensembles définissables

Nous commencons par 1’étude des parties définies par des formules dans une structure.

Définition 3.1. Soit 9 une L-structure. Une partie D de M" est un ensemble défi-
nissable dans M §'il existe une formule ¢(Z,y) et des parameétres b dans M tels que

D={aeM": M oa,b)}.
On note Def(9M) la famille des ensembles définissables de 1.

Remarque 3.2. Etant donné D, ni la formule ¢ ni ’ensemble b sont forcément uniques.
Si B C M on dit que D est définissable avec des paramétres dans B, ou B-définissable,
si on peut choisir une formule ¢(Z,b) définissant D avec b C B. On dit que D est
définissable atomique, sans quanteur, existentiel etc. s’il y a une telle formule qui définit
D.

Si 91 est une extension élémentaire de 9 et D C M™ est un ensemble définissable
dans 91, alors D a une extension canonique en un ensemble D' C N définissable
dans N, tel que D' N M™ = D : si D est défini par une formule ¢(z,b) (b C M) alors
D' :={a€ N": M ¢(a,b)}. En pratique on confondra D’ avec D.

Exercice 3.3. Vérifier que D’ ne dépend pas du choix de ¢ pour D.

Exercice 3.4. Soit 9t C 9. Montrer que M < MM si et seulement si pour toute partie
non vide définissable D C N & parameétres dans M on a D N M # ().

Exemple 3.5. Dans un groupe (G, 1,-,71), le centre C' de G est défini par ¢(z) :=
Vy xy = yx. Soit Y(x,y) := (xy = yx). Pour tout a € G, le centralisateur Cg(a) de a
dans G est défini par ¢(z,a).

21
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Exercice 3.6. Montrer que I’ensemble des nombres premiers est une partie définissable
dans la structure (N, -). A-t-on besoin de paramétres ?

Exercice 3.7. Montrer que 'ordre sur R est définissable sans paramétre dans la struc-
ture (R, +, -).

Exercice 3.8. La famille Def(90) est close par

1. combinaisons booléennes finies : si A, B € Def(9), le complémentaire de A,
I'union et U'intersection de A et B sont dans Def(90t),

2. produits cartésiens : si A, B € Def(), A x B € Def(9M),

3. projections : si A est une partie définissable de M™*™ alors la projection de A
sur M™ est définissable,

4. spécialisations : si A est une partie définissable de M™+™ et si b € M™ alors
A(b) :={a e M": (a,b) € A} € Def(IM),

5. permutations des coordonnées : si A est une partie définissable de M™ et ¢ une
permutation de {1,...,n} alors

o(A) = {(ac),---»aom) : (a1,...,a,) € A} € Def(IM).

La famille Def(901) est en fait la plus petite famille de parties de | J,,., M", contenant
les ensembles définissables atomiques et étant close par combinaisons booléennes finies,
produits cartésiens et projections.

3.2 Types

Définition 3.9. Soit 2t une L-structure, A C M et a un uple de M. Le type de a sur
A (dans 9N) est 'ensemble des L£(A)-formules satisfaites par a, ¢’est-a-dire ’ensemble

tp(a/A) = {p(z) € L(A) : M |= p(a)}.

En général on omet le modele ambiant 9 sauf quand il y a ambiguité.

Plus généralement, un n-type partiel sur A est un ensemble de L(A)-formules en n
variables libres Z telle que toute partie finie ait une réalisation dans 9t. Un type (com-
plet) est un type partiel maximal. L’ensemble des n-types sur A est noté S, (A) (ou le
modele ambient 9 est omis de la notation). On pose S(A) = |, ., Sn(4).

Si p est un type (partiel) et a satisfait toutes les formules de p, on dit que @ est une
réalisation de p, ou que a réalise p, noté a = p ou a oy p.

Si T est une théorie, on note S, (7") ensemble de tous les types sur () dans tous les

modeles de T', et S(T') =, ., Su(T).

Si un type partiel ne consiste que de formules sans quanteurs ou existentielles, on parle
d’un type partiel sans quanteurs ou existentiel ; un type sans quanteurs/existentiel est
un tel type partiel maximal. Notamment tpsqgy(a/A) est ’ensemble des formules sans

quanteurs avec parameétres dans A satisfaites par a dans 91.
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Remarque 3.10. Comme il y a au plus |£] + |A| + w formules avec paramétres dans
A, il y a au plus 2/£HA+ types sur A.

Remarque 3.11. Un type sur A est complet ssi pour toute L£(A)-formule ¢(Z, soit
©(Z) € p soit —p(Z) € p. En fait, si ni p(Z) € p ni -p(Z) € p, par maximalité il y
a des partie finie py, p1 C p telles que ni po(Z) U {p(Z)} ni p1(Z) U {—=p(Z)} ait une
réalisation dans 9. Mais pg U p; a une réalisation m dans M, et soit m f=om ¢(Z) soit
m E=om —@(Z), ce qui donne une contradiction. La réciproque est évidente.

Exemple 3.12. Soit M = (Z, <). Les uples (2,5,9) et (3,4,8) ont méme type sans
quanteurs. Par contre, si on pose ¢(x,y,2z) = It z <t < y alors M = p(2,5,9) mais
M = —p(3,4,8), et ces deux uples n’ont pas méme type.

Exercice 3.13. Montrer qu’'un type tp(a/A) est bien un type complet.
Exercice 3.14. Montrer qu’on peut compléter tout type partiel en un type complet.

Exercice 3.15. Soit 9t une L-structure et A C M. Alors un n-type p(z) n’est rien
d’autre qu'une L£(¢)-théorie qui étend Th(91, A), on l'on a substitué Z pour .

Remarque 3.16. Soient M et DN deux L-structures, A C M et a € M™.

— Si 9 C M alors tpsqy(a/A) = tpsqy(a/A).

— Si M < N alors tpgy(a/A) = tpy(a/A).
Par exemple si M = (2Z,<) et N = (Z,<) alors tpsqy(0,2) = tpsqy(0,2) mais
tpsm(o’ 2) 7é tp‘)’t(o’ 2)‘

On peut considérer type type complet comme type réalisé dans une extension élémen-
taire.

Proposition 3.17. Soit M une L-structure, A C M et p € S, (A). Alors il existe une
extension élémentaire N = M et un n-uple a dans N tel que p = tpy(a/A).

Démonstration. On considére X = Th(9, M)Up(¢), ou ¢ sont des nouvelles constantes.
Puisque toute partie finie de p a une réalisation dans 2, toute partie finie de X est
realisable dans 91 en interprétant ¢ par un n-uple convenable de M. Donc ¥ a un
modele M. Comme N = Th(M, M), il est extension élémentaire de M (en identifiant
M > m et m™). On pose a = ¢ ; il est évident que tpy(a/A) = p. O

Remarque 3.18. Soit ¢ un isomorphisme partiel de 9t dans N, et a € dom(o). Alors
tpsqep(@) = tpsay(o(a)); si o est élémentaire, alors tpgy(a) = tpy(o(a)).

Pour la réciproque, on doit s’autoriser a remplacer 99 par une extension élémentaire.
D’abord un lemme préparatoire.

Lemme 3.19. Soit M une L-structure et o un automorphisme partiel élémentaire.
Alors il existe une extension élémentaire N = M et un isomorphisme partiel élémen-
taire 7 : M — N de domaine M qui prolonge o.
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Démonstration. Associons a chaque m € 9 une nouvelle constante m’ et considérons
I'ensemble des énoncés suivants dans le langage LU {m, m': m € M},

Y= Th(ON, M) U {p(m',a(n)) : M E ¢(m,n) et n € dom(o)}.
Montrons que X est consistant. Pour cela considérons en une partie finie
Yo :=0(m) U{p(m;,o(n;)) i€ I}

Alors
M |= 3(Ti)ier /\90(9?% o(n;)), car M= I(Ts)ier /\ o, 7;)
i€l iel

et o est élémentaire. On peut donc interpréter les m’ dans 91 tel que (I, M, M') = Zo.
Par compacité il existe un modeéle 91 de ¥ ; comme N = Th(M, M) on a M < N.
Considérons 7 : M — N défini par m ~ (m')™. En prenant m = 71, on voit que la
formule m’ = o(m) est dans ¥ pour tout n € dom(o), doncs 7 prolonge o. De plus,
pour tout m € M,

N = p(m) ssi M = p(m) ssi N = o(7(m)),

donc 7 est un isomorphisme partiel élémentaire. O

Proposition 3.20. Soient a et b deuzx uples d’une L-structure M, et A C M. Alors a
et b ont méme type sur A si et seulement s’il existe une extension élémentaire N = M
et un automorphisme o de N qui fire A et envoie a sur b.

Démonstration. Puisque tpyy(a/A) = tpey(b/A), il y a un isomorphisme partiel oy de
I qui fixe A et envoie @ sur b (et ainsi la sous-structure engendré par Aa sur celle
engendré par Ab). D’aprés le lemme on peut construire une chaine d’extensions
élémentaires

Mo <My < .. <M, < ..

avec My = M et une chaine

00 Co0o1C...Co

= n

d’isomorphismes partiels élémentaires o; : 9M; — M, telle que pour tout i < w le
domaine de 09,41 contient My, et 'image de g4 contient My, 1 (aux étapes paires
on prolonge oy; et aux étapes impaires a;ilﬂ). Alors 91 = Uiew N, est une extension
¢lémentaire de M et | J,., 0; est un automorphisme de N qui fixe A et envoie a sur b.
La réciproque est évidente. O

Exercice 3.21 (Svenonius). Soit 9% une L-structure, A C M un ensemble de para-
métres et D une partie de M"™ définissable dans 91. Alors D est définissable a para-
métres dans A si et seulement si D est invariant par tout automorphisme fixant A de
toute extension élémentaire de 1.
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Comme pour les théories on peut munir S,,(A) d’une topologie, en prenant les ensembles

[p] = {p € Su(A): ¢ € p}

comme base de fermés, pour ¢ € L(A) avec variables libres xy, ..., z,. Puisque [-¢]
est le complément de [¢], c’est une base d’ouvert-fermés, et la topologie est totalement
discontinue. Le théoréme de compacité nous dit que S, (A) est compact.

Plus généralement, on peut considérer des types en une infinité de variables libres
(z; 11 < «); tout le développement précédent va aussi bien pour eux.

3.3 Elimination des quanteurs

Quand on considére une théorie sur un langage donné, il est intéressant d’isoler un sous-
ensemble des formules du premier ordre suffisant pour décrire les ensembles définissables
dans les modeéles de cette théorie. L’étude des propriétés des modéles en question s’avére
ainsi simplifiée. Le cas particulier de I’élimination des quanteurs est le cas ou toute
formule est équivalente modulo la théorie & une formule sans quanteurs.

Définition 3.22. Une théorie T' élimine les quanteurs si pour tout n > 0 et toute
formule ¢ (Z) ot T est un n-uplet de variables il existe une formule ¢(Z) sans quanteur

telle que T'F VZ(p(Z) <> ¥(T)).

Notons que si une théorie T' élimine les quanteurs alors le type de tout uple dans un
modéle de T est déterminé par son type sans quanteurs. Réciproquement, pour vérifier
I'élimination des quanteurs (ou plus généralement 1’élimination & un sous-ensemble
de formules), on utilisera la méthode de va-et-vient afin de montrer que deux uples
ayant méme type sans quanteurs ont méme type et on pourra conclure a l'aide de la
caractérisation suivante.

Proposition 3.23. Soit T' une théorie et ® un ensemble non vide de formules de L
tels que pour tout entier n > 0, deux n-uples extraits de modeles de T' ont méme types
des qu’ils satisfont les mémes formules de ®. Alors pour toute formule 1 (z) de L il
existe une combinaison booléenne p(Z) d’éléments de O telle que

T HVa(() & o).

En particulier si pour tout n > 0, tout M =T, tout N = T, tout a € M" et tout
b € N™ l’égalité tpsqop(a) = tpsay(b) implique que tpgy(a) = tpy(b), alors T' élimine
les quanteurs.

Démonstration. Soit ¥ (Z) une formule de L. Si ¢ n’est satisfaite dans aucun modéle
de T, on considére une formule 6 de ® et on a

T +Vz [(Z) < (0(T) A —0(T))]
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Sinon, soit M = T et a € M™ tel que M |= 1»(a). Considérons ¢ un n-uple de nouvelles
constantes. Alors I’ensemble d’énoncés

TU{p(@):pe®et Mg p(a)}U{-p(@): pc®et M= —p(a)}U{-(@©)}

est inconsistant par hypothése. Par compacité une partie finie est inconsistante, ce qui
nous donne une combinaison booléenne ¢;(z) d’éléments de @ telle que M |= w5 (a) et
T U{ps(¢)} U{—1(¢)} est inconsistant. Ainsi M = pz(a) et

T+ VZ(pa(T) = ().

Soit maintenant (91, a;);c; une énumération de tous les types possibles d’un n-uple
dans un modele M; de T tel que M; |= ¢ (a;). Alors

TU{~pa(0): i€ 1} U{p(e)}

est inconsistant. Par compacité, il existe donc I fini tel que

TEVz[p(E) = \/ va()]

i€ly
Alors 1 est équivalente modulo T"a \/;; ¥, O

Exemple 3.24. Considérons la théorie T' de la relation d’équivalence a une infinité de
classes toutes infinies dans le langage £ = {E'}. Soient 9y et My deux modeles de T
On vérifie alors que les isomorphismes partiels de 91; dans M5 & domaine fini forment
un systéme de va-et-vient. On en déduit que T est compléte et élimine les quanteurs.
En particulier :

— Il y a un unique 1-type.

— Il y a trois 2-types : le type déterminé par x; = xo, celui déterminé par (z; #

x9) A E(x1,29) et enfin celui déterminé par —E(xq, z3).

On peut remarquer que tout type de S(7T) est réalisé dans tout modéle de T'.

Exemple 3.25. La théorie des ordres totaux denses sans extrémité élimine les quan-
teurs, car les isomorphismes partiels finis forment un systéme de va-et-vient. Les 1-types
sur A correspondent donc a la coupure qu’ils déterminent sur A. En particulier il y a
six classes de 1-types sur Q :

pg={r=qtpourqeQ, pqs+={g<x<q:q >q}pourqeqQ,
Pioo = {2z >q: q € Q}, P =14 <z <q: ¢ <q} pour ¢ € Q,
P =1{r<q:qeQ}, pr={¢ <r<q:qd <r<gqlpourreR\Q.

Exercice 3.26. Soit K un corps. On exprime la théorie T" des K-espaces vectoriels
infinis dans le langage Lx = {0,+,—, A\ : k € K} ou pour tout k € K, )\ est une
fonction unaire qui est interprétée dans un K-espace vectoriel par la multiplication par
k. Montrer que T est compléte et élimine les quanteurs.
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Remarque 3.27. La théorie des groupes abéliens divisibles sans torsion non triviaux
correspond a la théorie des Q-e.v. infinis : on définit dans un groupe divisible sans
torsion A/, par pr = gy qui est une formule sans quanteur. On en déduit que cette
théorie élimine elle aussi les quanteurs.

Les propriétés d’élimination dépendent du langage choisi :

Remarque 3.28 (Morleyisation). Soit 7' une théorie quelconque. Pour toute formule
©(z) on rajoute une nouvelle relation R, (%) au langage, et 'axiome Vz [¢(Z) <> R,(7)]
a la théorie, pour former le langage L' et la théorie T". Alors T" elimine facilement les
quanteurs : une L-formule ¢ est équivalente & R, ; quant aux £'-formules on remplace
d’abord les éventuelles sous-formules R, par ¢ pour obtenir une £-formule équivalente.
Ceci a pour effet de changer la notion de sous-structure : si 91 et 91 sont deux modéles
de T avec M C N, ils ont des expansions canoniques a des modéles de T” en interpretant

R?::{meM:Qﬁ):gp(m)}

(et similairement pour ). Mais comme L’-structures on a 9t C N si et seulement si
M <IN

Voici une condition plus faible que I’élimination des quantificateurs.

Définition 3.29. Une théorie T est modéle-compléte si toute inclusion de modeéles de
T est élémentaire.

Proposition 3.30. Une théorie qui élimine les quanteurs est modele-compléte.

Démonstration. Soient M et N des modeles de T" avec M C N, et p(m) un énoncé a
paramétres dans 9. Alors ¢(Z) est équivalent dans tout modeéle de 7" & une formule
() sans quanteurs, et

M= p(m) & M=p(m) < NEpm) < N p@m). O

Exemple 3.31. La L,,,-théorie de R est modéle-compléte, mais n’élimine pas les
quanteurs : 3y y? = x n’est pas équivalente & une formule sans quanteurs. Par contre,
R élimine les quanteurs si on rajoute 'ordre au langage.

Théoréme 3.32. Une théorie est modeéle-compleéte si et seulement si toute formule est
équivalente modulo T a une formule existentielle.

Démonstration. Sitoute formule est équivalente a une formule existentielle, considérons
deux modeéles M C N, et une formule p(m) vraie dans M. Elle est équivalente & une
formule 3z ¢(Z, m) avec 1) sans quanteurs, et on trouve n € M tels que M |= ¥ (n, m).
Donc M = ¢(n,m), et N |= Iz (z,m), d’ot M |= ¢(m). On a bien NM < MN.

Réciproquement, supposons que 7' soit modéle-compléte, et notons qu'une conjonction
ou disjonction de deux formules existentielles est équivalente a une formule existentielle.
Considérons deux modeles 9 et I de T, ainsi que deux uples m € M et n € N.
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Supposons que les formules existentielles satisfaites par m dans 991 forment un sous-
ensemble des formules existentielles satisfaites par i dans M. Soient {c,, : m € M} des
nouvelles constantes, et considérons

O =ThM, N)U{e(Cmys---sCmy, 1) s M= @(ma,...,mi,m), p atomique}.

Chaque sous-ensemble fini ®y(¢,n) de ® est interpretable dans 91, comme
M =3z [\ ®o(z,m) implique N = 3z A\ Do(2, 7).

Donc il y a un modele 9t de P, extension élémentaire de D1, qui contient une copie
de 9, 'ensemble M’ = {c%’ :m € M}, comme sous-structure; notons que 1'uple
correspondant & m est n. Par modeéle-complétude 9 < V. Pour chaque formule on a

M = p(m) & M = p(n) < N i) < NE pn).

Donc m et n satisfont les mémes formules. Par la proposition chaque formule est
équivalente a une combinaison booléenne de formules existentielles.

I1 nous reste de voir qu'une formule universelle p(Z) est équivalente & une formule
existentielle. Soit ®(z) la collection des formules existentielles en Z qui impliquent
©(z) modulo T, et

U(z) = {~9(2) : (7) € &(2)}.

Soient ¢ des nouvelles constantes, et supposons que

Tuv(e)U{p(©)}
a un modele 9. Si @, @) est la collection des formules existentielles satisfaites par e
alors TU®y(d)U{—¢(d)} n’a pas de modéle (¢ et d doivent satisfaire les mémes formules

par la premiére partie de la preuve), et il y a une partie finie ®f(d) U {—=p(d)} qui est
inconsistante avec 7. Mais ¢a signifie que (z) := A ®((Z) implique ¢(Z) modulo T
Donc 1(z) € ®(z), et M = —1)(¢), en contradiction avec M = P (c).

Il y a donc une partie finie Uy(Z) de ¥(Z) telle que TU W (Z) U{¢(Z)} est inconsistant.
Donc A\ ¥o(Z) implique —¢(z) modulo T, et ¢(z) implique

o(2) = \/{u(@) : ~(z) € Wo(2)}

modulo 7. Comme ¢(Z) implique ¢(z) modulo T" pour toute ¥ (z) € ®(z), la formule
©(T) est équivalente & Yy(Z). O

Donc pour une théorie modéle-compléte, les formules existentielles forment un ensemble
d’élimination, ot on n’a méme pas besoin des combinaisons booléennes.
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3.4 Les corps algébriquement clos

Nous vérifions dans cette section que la théorie des corps algébriquement clos élimine
les quanteurs et nous en déduisons une preuve du théoréeme des zéros de Hilbert.

Proposition 3.33 (Tarski, 1948). La théorie des corps algébriquement clos élimine les
quanteurs (dans le langage des anneauzr Lopy, = {0,1,+,—, - }).

Démonstration. Soient K; et Ky deux corps algébriquement clos et a € K et be K,
deux uples satisfaisant les mémes formules atomiques. Dans ce cas K; et Ky ont méme
caractéristique car 1 + --- 4+ 1 = 0 est une formule atomique pour tout p. De plus a et
———
p
b satisfont les mémes équations polynomiales sur le corps premier, donc ils engendrent
deux sous-corps ki et kg isomorphes. On peut supposer, en passant & des extensions
¢lémentaires, que K et Ky sont de degré de transcendance infini. On a vu (voir exemple
qu’il existe alors un va-et-vient de K sur K5 contenant I’isomorphisme de k; sur
ks qui envoie @ sur b. Donc @ et b ont méme type. O]

Exemple 3.34. Dans la théorie d’un corps algébriquement clos K un 1-type p sur un
sous-corps k est déterminé
— soit par le polyndéme minimal sur k£ d’une réalisation de p (éléments algébriques),
— soit par 'ensemble {P(z) # 0 : P € k[X]} (éléments transcendants).

Remarque 3.35. Soit K un corps commutatif considéré dans le langage L,.,. La
famille des ensembles atomiques de K est formée des parties définies par des équations
polynoémiales. Si on clét par intersections finies, on obtient les fermés de Zariski. Alors
si on clot par combinaisons booléennes finies, on obtient les ensembles constructibles. Si
K est algébriquement clos, il élimine les quanteurs, et la projection d’'un constructible
est encore constructible (Théoréme de Chevalley).

Lemme 3.36. Soit S un systéme fini d’équations et d’inéquations (en plusieurs incon-
nues), a coefficients dans un corps k. St S a une solution dans une extension K de k,
il a une solution dans toute extension algébriqguement close de k.

Démonstration. On peut voir S comme une formule sans quanteur (1, ..., Ty, b1, ..., by,)
dans le langage des anneaux ou les z; correspondent aux inconnues et les b; sont les
coefficients dans le corps k. Alors il existe a € K tel que K |= ¢(a,b). Soit K; une
extension de K algébriquement close. Comme ¢ est sans quanteur, K; = ¢(a, b).

Considérons une autre extension Ky de k algébriquement close. Alors les clétures
algébriques ki de k dans K, et ky de k dans K, sont isomorphes au-dessus de k.
Comme la théorie des corps algébriquement clos élimine les quanteurs, k; < K et
ks < K et donc comme K = 37¢(Z,b) on a ky = 37p(z,b), d’oit ky = ITp(Z,b) et
Ky = 3z0(z,b). O
Théoréme 3.37 (Théoréme des zéros de Hilbert). Soit K un corps algébriquement

clos, I un idéal de K[X, ..., X,] et P € K[Xy, ..., X,]. Supposons que pour tout a € K",
si Q(a) = 0 pour tout Q € I alors P(a) = 0. Alors il existe m tel que P™ € 1.



30 CHAPITRE 3. TYPES ET ELIMINATION DES QUANTEURS

Démonstration. Supposons que P™ ¢ [ pour tout m, et soit J un idéal contenant
I mais aucun des P, maximal pour ces propriétés. On vérifie facilement que J est
premier : Si QR € J mais Q ¢ J et R ¢ J, alors par maximalité il y a un entier m et
des polynomes S, S" € J et T, T’ tels que

P"=TQ+S=TR+S9.

Ainsi P = (TQ+ S) (T"R+ S’) € J, une contradiction.

Soit L le corps de fractions de K[Xy, ..., X,,|/J. Ainsi L contient K. Soient Q1, ..., Q,
des générateurs de J. Alors le systéme S := {@Q; =0, ...,Q, = 0, P # 0} a une solution
X + J dans L, et donc d’aprés le lemme précédent une solution dans K, mais cette
solution contredit I’hypothese. O



Chapitre 4

Modéles atomiques, modeéles saturés

Dans ce chapitre nous nous intéressons a des modeéles réalisant peu, ou beaucoup de
types.

4.1 Types isolés et omission de types

Définition 4.1. Un type p(Z) sur A dans un modéle M est algébrique s’il y a une
L(A)-formule ¢(z) € p(Z) qui n’a qu'un nombre fini de réalisations. Un uple a est
algébrique sur A si tp(a/A) Dest.

Exercice 4.2. Un uple a est algébrique sur A si et seulement s’il est contenu dans
chaque sous-structure élémentaire contenant A de toute extension élémentaire de 91.

Nous avons vu qu’on peut toujours trouver un modéle qui réalise un type. Mais est-ce
qu’on peut en trouver un qui ne le réalise pas?

Définition 4.3. Un type p(z) sur A est principal, ou isolé, s’il y a une formule ¢(Z)
dans p(7) telle que Th(M, A) U{x(Z)} = p(Z). Dans ce cas, la formule ¢(Z) isole p(T)
sur A.

Une reformulation nous donne : ¢(z) isole tp(a/A) si et seulement si
Th(I, A) U {p(a)} b= Th(Im, Aa).

Topologiquement, ¢(z) isole p € S, (T) si p est 'unique type de S, (T") contenant (),
c’est-a-dire si 'ouvert fermé [p(Z)] de S, (T) est réduit a {p}.

Exercice 4.4. Un type algébrique est isolé.
Lemme 4.5. tpyy,(ab/A) est isolé ssi tpoy(a/Ab) et tpy(b/A) le sont.

Démonstration. Si (z,7) isole tpy(ab/A), alors ¢(Z, b) isole tpy(a/Ab), et Iz (z,7)
isole tpyy (b/A). Réciproquement, si ¢(z, b) isole tpyy(a/Ab) et 1(y) isole tpgy(b/A), alors

Th(M, A) U {¢(b)} = Th(9, Ab) et Th(IM, Ab) U {x(a,b)} = Th(IM, Aab)}.
Donc (7, 7) A (y) isole tpgy(ab/A). O

31
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Il est évident qu’un type principal est réalisé dans chaque modéle contenant A, comme
37 () fait partie de Th(9, A).

Exemple 4.6. Soit M = (Z, <) et T = Th(M). Pour chaque m > 1, notons d,,(x,y)
une formule exprimant qu’il existe exactement m — 1 éléments strictement compris
entre x et y, c’est-a-~dire si z et y sont a distance m. On peut vérifier que tout type de
So(T) est de I'un des types suivants

— le type isolé par la formule x; = x5,

— pour chaque m > 1, le type isolé par la formule (x; < x2) A d, (21, 732),

— pour chaque m > 1, le type isolé par la formule (x; > x9) A d, (71, 22),

— le type contenant les formules z; < x5 et —d,, (21, x9) pour tout m > 1,

— le type contenant les formules z1 > x5 et —d,, (21, x2) pour tout m > 1.
Remarquons que les deux derniers types ne sont pas réalisés dans 9.

Voici une méthode pratique permettant de construire une sous-structure élémentaire
dénombrable vérifiant des propriétés voulues :

Proposition 4.7 (Théorie de Henkin). Soit £ un langage, T une L-théorie, k > |L]
un cardinal infini, et C = {¢; : i < Kk} des nouvelles constantes. On choisit une
énumération (p;(z) : i < k) des L(C)-formules a une variable libre telle que chaque p;
ne contient que de nouvelles constantes ¢; avec j < i, et on forme la L(C)-théorie de
Henkin

Ty =T U{3zp(x) = pi(c) 1 i < Kk}

Alors tout modéle M non-vide de T a une L(C)-expansion Me modele de Ty. De
plus, dans tout modéle Me = Ty Vensemble {c'C i < k) forme une sous-structure
L(C)-élémentaire.

Démonstration. Si O = T on interpréte ¢; récursivement pour i < k par une réalisation
de pi(z), s’ il y en a, et par n'importe que élément de M sinon. Il est évident que
I'expansion M ainsi obtenue satisfait chaque formule Jxy; () — ¢;(¢;), et donc Mo =
Ty. De plus, si Me |= Ty alors Pensemble {¢'€ : i < r} satisfait le Test de Tarski. [

Définition 4.8. Soit 7" une théorie et p un type de S(7'). On dira qu'un modéle de T'
omet p s’il ne réalise pas p.

Rappelons que dans un espace topologique une partie X est maigre si elle est une
réunion dénombrable de fermés d’intérieur vide (autrement dit, son complémentaire est
une intersection dénombrable d’ouverts denses). Alors le théoréme de Baire implique
que dans un espace localement compact, le complément d’une partie maigre est toujours
dense.

Théoréme 4.9 (Omission des types). Soit T une théorie dans un langage L dénom-
brable, et pour tout n < w soit X,, une partie maigre de S, (T). Alors il existe un modéle
M =T qui omet tous les types dans X,,, pour tout n < w.
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Démonstration. On considére la théorie de Henkin T pour 'ensemble C' = {¢; : i < w}
de témoins de Henkin. Soit p(Z) un fermé d’intérieur vide dans S, (7).

On montre d’abord que pour tout ¢ € C l'ouvert Ty \ [p(¢)] est dense dans Ty. Soit
donc [p(c)] un ouvert non-vide dans T} ; il faut montrer que

Ty U{o(@)} ¥ p().

Soit (¢; : 4 < ¢) un segment initial de C' contenant ¢ et ¢. Soient = et Z’ les parties de
(x; : 1 < L) correspondant a ¢ et & dans (¢; : i < (), et T’ = (x; : i < {) \ Z. On pose

V(T 2") = (@) A \ Frpi(x) = il).

i<l

Alors [37" ¢ (z, Z")] est un ouvert non-vide de S,,(T") puisque [p(&)] est non-vide dans
Ty. Comme p(Z) est d’intérieur vide, il ne contient pas [3z” ¢ (z, 2”)], et il y a un modéle
M = T et m dans M tel que m f=on Jy(Z,y) mais m oy p. Soit m” dans M tel
que M |= ¥ (m, m”). Alors on peut interpréter ¢ = m; pour i < £ et récursivement
trouver des interprétations dans M pour les (¢; : ¢ > ) afin d’étendre 9t en une
L(C)-structure modeéle de Ty. Par construction, M | ¢(¢) mais Mo = p(c). Ainsi
Theio)(Me) € [¢(0)]\ [p(0)]

D’aprés le théoreme de Baire, I'intersection

ﬂ{—'p(é) n<w,p€X, ceC"}

est de complément dense dans T . Soit 7" une théorie compléte dans ce complément,
et Mo = 1. Alors (¢'€ 1 i < w) est une sous-structure élémentaire de M qui omet tous
les types dans les X, pour n < w. O

4.2 Modéles

Définition 4.10. Soit 91 une L-structure, A C B C M, et A un cardinal infini.

— B est atomique sur A C M si tp(b/A) est isolé pour chaque uple fini b de B.
Comme toujours, on supprime «sur ().

— B est construit sur A s’il existe une énumération (b; : i < «) de B\ A tel que
tp(b;i /A, bj 1 j < i) est isolé pour tout i < a. L’énumération (b; : i < «) s’appelle
une construction de B sur A.

— 9N est premier sur A si 9 se plonge élémentairement dans tout modéle de
Th(9m, A).

— M est minimal sur A s’il n’y a pas de sous-structure élémentaire propre de 9t
contenant A.

— M est \-homogéne si 'ensemble des isomorphismes partiels élémentaires dont
le domaine est de cardinalite < A forme un systéme de va-et-vient, et homogéne
si 9 est |M|-homogene.
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— M est fortement A-homogéne si tout isomorphisme partiel élémentaire dont le

domaine est de cardinalite < A se prolonge en un automorphisme, et fortement
homogéne si M est fortement |M|-homogene.

— M est A-universel si M réalise tout A-type sur @), et universel si M est M-

universel.

— I est A-saturée si M réalise tout 1-type sur un domaine A C M de cardinalité

< A, et saturée si M est |M|-saturé.

Proposition 4.11. Soit 9 une L-structure, A C B C M, et A\ un cardinal infini.

1.

S G o e

7.

Si B\ A est dénombrable et B est atomique sur A, alors B est construit sur A.
St B est construit sur A, alors B est atomique sur A.

Si M est construit sur A, alors MM est premier sur A.

Si L(A) est dénombrable et M est premier sur A, alors M est construit sur A.
St M est fortement A-homogeéne, alors M est A-homogene.

St M est N\-saturée et A C M est de cardinalité < X\, alors M réalise tout A-type
sur A.

M est A\-saturée ssi M est A\-universel et \-homogéne.

Démonstration. 1. Découle du Lemme (4.5

2.

Soit (b; : i < «) une construction de B sur A. On montre par récurrence que
{b; : i < j} est atomique sur A pour tout j < «a. C’est évident pour j = 0
ou j limite. Soit j = k+1et b € {b; : 4 < k}. On pose b' = b\ {by}. Alors
tp(bi/A,b; =i < k) est isolé par une formule o(x,b") avec p € L(A) et b’ €
{b; : i < k}. Cette méme formule isole tp(b/A, V', b"). Puisque tp(b'b”/A) est
isolé par hypothése de récurrence, tp(byb'b"”/A) est isolé, ainsi que tp(b/A), par
le lemme [4.5

Soit (a; : ¢ < ) une construction de Mt sur A. Puisque tout type isolé est réalisé
dans tout modéle 9 de Th(M, A), on trouve par récurrence transfinie sur j une
suite (b; : i < ) d’éléments de N telle que (MM, A, a; 1 < j) = (M, A, b; 1 < ).

Si 90t n’est pas atomique sur A, alors il réalise un type non-principal p € S(A).
Par le théoréme il y a un modeéle D de Th(9M, A) qui omet p, et M ne peut
pas se plonger élémentairement dans 91 sur A comme la réalisation de p n’a pas
d’image possible. D’autre part, si £(A) est dénombrable, alors il y a un modéle
dénombrable de Th(90, A) par le corollaire Ainsi un modéle premier sur A

est atomique et dénombrable, d’ot construit d’apreés le 1.

5. Suit immédiatement des définitions.

Soit p(x; : i < A) € Sy(A), et pour i < A soit z; = (x; : j < i) et p;(Ty,2;) la
restriction de p aux variables (Z;, x;). Alors par A-saturation on trouve récursi-
vement des réalisations m; € M de p;(m;, x;), et (m; i < \) | p.

Exercice. O
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Remarque 4.12. Si |[A| < XA < |S(A)| pour un sous-ensemble A d’un modéele de T,
alors il n’y a pas de modéle saturé de cardinal A (un tel modéle devrait contenir une
copie A’ de A, et ensuite réalisations de tous les types sur A').

Exercice 4.13. Soit B construit sur A. Montrer que |B| < [L£(A)].

Proposition 4.14. Une théorie complete dénombrable a un modele atomique ssi les
types isolés sont denses dans S(T).

Démonstration. Soit M = T atomique, et [p(Z)] un ouvert non-vide de S,,(T"). Alors
37 p(Z) est dans T par complétude, et il y a m dans M avec M | ¢(m). Ainsi
tp(m) € [¢p(Z)] est un type isolé.

Réciproquement, supposons que les types isolés soient denses dans S(7'), et soit M = T.
On étend récursivement 9 en un modéle de la théorie de Henkin Ty pour un ensemble
C = (¢ : i < w) de constantes, telle que tp,.(¢) est isolé pour tout uple fini ¢ dans
C. On suppose qu’on a déja trouve des interprétations cijmc dans C pour j < i tel
que tp,(c; © j < 1) est isolé par une formule ¢;(z). Si M = —~3zy;(r,¢; : j < i), on
choisit un type p; isolé dans [¢;(Z) A z; = x;]. Si p; est isolé par ¥;(z, x;) et réalisé dans
9 par un uplet (m; : j < i), alors (m; : j < @) réalise ¢; et a donc le méme type

que (¢ 1 i < j). Iy a donc m € M réalisant ¥;(z,c; : j < i), et on peut prendre
c; ¢ =m.

Si M = Jrpi(x,¢j : j < i), on prend p; isolé dans [¢;(Z) A ¢;(z;, T)], qui est alors un
ouvert non-vide ; le reste de I’argument est le méme. O

Proposition 4.15. Une théorie compléte a un modéle construit sur toute partie A d’un
modele ssi les types isolés sont denses dans S1(A) pour toute partie A d’un modéle.

Démonstration. Soit M =T et A C M.

Si T a un modéle N construit sur A (c’est-a-dire M = Th(M, A) et N est construit
sur A), alors pour tout ouvert non-vide [p(z,a)] de S1(A) on a Jx p(x,a) € Th(M, A),
donc M = Jzp(z,a), et il y an € N tel que N = ¢(n,a). Alors tp(n/A) € [¢(x,a)]
est isolé d’aprés la proposition [4.11]2.

Réciproquement, supposons que sur tout ensemble de paramétres les types isolés soient
denses. On construit récursivement une suite A = Ay C A; C --- C M de parties de
M : On prends des réunions aux étapes limites, on s’arréte si A; satisfait le test de
Tarski, et sinon, si ¢(z) est une L£(A;)-formule qui a une réalisation dans M mais
aucune dans A;, on choisit un type p; isolé dans [p(z)] C S1(A;). Alors p; est réalisé
dans 90 par un élément a;, et on pose A; 11 = A; U {a;}.

On s’arréte au plus tard quand on a épuisé M, et quand on s’arréte, on a trouvé une
sous-structure élémentaire de 9t construite sur A. O

Proposition 4.16. 1. Deuz modéles atomiques dénombrables d’une théorie com-
pléte sont isomorphes. Plus généralement, si (M, A) = (N, B), M\ A et N\ B
sont dénombrables, M est atomique sur A et N est atomique sur B, alors tout
isomorphisme élémentaire partiel og : A — B se prolonge en un isomorphisme.
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2. Deux modeles saturés de méme cardinal \ d’une théorie compléte sont isomor-
phies. Plus précisement, tout isomorphisme élémentaire partiel og : A — B de
deux parties de cardinal < X\ se prolonge en un isomorphisme.

Démonstration. Si 9N et I sont deux modeéles de la méme théorie compléte, I'ap-
plication vide est un isomorphisme partiel. Donc l'isomorphie des modéles est une
conséquence de la possibilité de prolongement.

Dans le cas 1. on pose A = w. Soient (m; : i < A) et (n; : ¢ < A) des énumérations de
M\ A et de N\ B. On construit par récurrence une suite d’isomorphismes élémentaires
partiels (o; : ¢ < A) de 9 dans N, tels que o; étend o; pour j > 4, et pour tout i > 0,
le domaine de o; contient {my : k < i}, et 'image de o; contient {ny : k < i}, avec
|Dom(o;) \ A| = |Im(o; \ B|] < 2- |i|. Ceci est clair pour ¢ = 0; pour ¢ limite on peut
prendre o; = (J;_, 0; (uniquement dans le cas 2.).

Supposons qu’on a trouvé o;, et soit A; le domaine et B; I'image de ;. Dans le cas
1. le type tp(m;/A;) est isolé par une formule p(z, A;) d’aprés le lemme [4.5); comme
M = Jrp(z, A;) et o; est élémentaire, N = Jx p(x, B;); soit n € N tel que N |=
o(n, B;). Comme o; est élémentaire, p(z, B;) isole tp(n/B;) = o;(tp(m;/A;)). Donc on
peut étendre o; en envoyant m; sur n. De méme, comme tp(n;/B;,n) est isolé par une
formule ¢ (x, B;,n), on trouve m € M réalisant 1(x, A;, m;).

Dans le cas 2. le type o;(tp(m;/A;)) est réalisé dans 91 par un élément n par saturation
de M, si ¢/ = o U {m; — n}, le type o'~ (tp(n;/B;,n)) est réalisé dans 9 par un
élément m par saturation de 9.

Dans les deux cas on ajoute au plus deux éléments au domaine et a 'image, ce qui
conserve la condition sur leur cardinalité.

Enfin, 0 = {J,_, 0; est I'isomorphisme recherché entre 9t et 1. O
Remarque 4.17. Il en découle que si L£(A) est dénombrable, alors deux modéles
premiers sur A sont A-isomorphes. Cependant, en général on peut avoir des modéles
premiers non-isomorphes.

Exemple 4.18. 1. (Z,<) et (Q, <) sont atomiques, (Q, <) est saturé, mais (Z, <)
n’est pas saturé : il omet le 2-type qui dit que la distance entre x et y est infini.

2. (Z,0,+) est atomique ; sa théorie n’a pas de modeéle saturé de cardinal w : pour
tout ensemble P de nombres premiers il y a le type qui dit que x est divisible
par p si et seulement si p € P; ca fait 2¥ types sur () qu’on ne peut pas tous
réaliser dans un modéle dénombrable.

3. Qet IF‘p sont les corps algébriquement clos atomiques. C est saturé (de cardinal

2¢), et Q(x; : i < w) est saturé dénombrable.

Exemple 4.19. Voici une théorie qui n’a pas de modéle atomique : Le langage com-
porte un ordre < et un prédicat unaire P ; on considére la théorie de R, ou on a ajoute
une constante pour chaque rationel ¢ € QQ, et P est interpreté par Q. Alors tout modéle
contiendra une copie de Q; on peut construire un modele 91 de fagcon que pour une
certaine coupure irrationnel sur QQ toute réalisation satisfait P. Mais s’il y a un modéle
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atomique My, il s'injecte dans R et dans N, et toutes les réalisations de cette coupure
dans MM, satisfont a la fois =P et P. Donc il n’y en a pas; comme on peut repeter
avec chaque coupure irrationnel, aucune telle coupure est réalise dans My. Mais DMy
s'injecte dans R et ne réalise que des coupures irrationnelles. Ca signifie que le domaine
de My est Q, et My ne comporte aucun élément réalisant =P, contradiction.

Exemple 4.20. Th(Z,0,+) n’a pas de modéle premier. En fait, pour p premier on
pose
Zipy ={™:m € Z,n > 0,pfn}.

On montre (par élimination des quanteurs dans un langage avec un predicat pour
divisibilité par p, pour tout nombre premier p) que @p Zp est un modeéle de Th(Z)
dans lequel Z ne se plonge pas. Puisque Z est minimal, il n’y a pas de modéle premier.

Exercice 4.21. Montrer que si 91 est premier et minimal sur A, alors c’est le seul
modeéle premier sur A a A-isomorphisme preés.

Proposition 4.22. Toute structure a une extension élémentaire w-saturée.

Démonstration. Soit 9T une structure. On construit une chaine
M=y <M <...<M, < ...

telle que pour tout i, ;1 réalise tous les types dans S;(M;). Pour cela considérons
une énumération (p;);es des types dans S;(M;) et 'ensemble d’énoncés

2= Upi(e)

jeJ

ou (c¢j)jes est une famille de nouvelles constantes. Par compacité ¥ est consistant
puisque toute partie finie de chaque p; est réalisée dans (9;, M;).

L’union 9 := [JM; est une extension élémentaire de chaque 9; ; montrons qu’elle est
w-saturée. Fn effet, si A est une partie finie de N, il existe i tel que A C M;. Soit p un
type dans S;(A). Il a une complétion dans S;(9;), qui est réalisé dans M, par un
élément a. Mais alors a réalise p dans 1. O

Exercice 4.23. Pour tout 9 et tout A il y a une extension élémentaire 1 > 9N qui
est A-saturée.

Exercice 4.24. Si [£]| < XA et AT = 2% une théorie compléte a un modele saturé de
cardinal \T.

Le théoréme suivant donne une caractérisation fondamentale des théories Ny-catégoriques.

Théoréme 4.25. RYLL-NARDZEWSKI, SVENONIUS, ENGELER Les conditions sui-
vantes sont équivalentes pour une théorie compléte dénombrable :

1. T est Ny-catégorique.
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2. Tout type dans S(T) est isolé.
3. S,(T) est fini pour chaque n < w.

4. Pour chaque n < w il n’y a qu’un nombre fini de formules inéquivalentes modulo
T an vartables libres xq, ..., x,.

Démonstration. 3. < 4. Si S, (T) est fini, on trouve facilement des formules isolant
les types dans S,(7); une formule en n variables libres sera donc équivalente a une
combinaison booléenne de ces formules. La réciproque est évidente.

3. = 2. = 1. Si S,(T) est fini pour chaque n, alors chaque type sur ) est isolé et
tout modéle de T est atomique ; par le théoréme deux modéles dénombrables sont
isomorphes.

1. = 2. Si T est w-catégorique, comme tout type non-isolé sur () peut étre ou bien réalisé
ou bien omis dans un modeéle dénombrable par le théoréme d’omission des types, tout
type sur () est principal.

2. = 3. Pour n <w et p e S,(T) soit ¢,(Z) une formule isolant p. Si S,,(T") est infini,
alors par compactité ensemble {—p,(Z) : p € S,(T)} est consistant et on peut le
completer en un type ¢(z). Mais ¢, € ¢, une contradiction. O

Exercice 4.26. Montrer qu'une théorie dénombrable compléte est Ny-catégorique si
et seulement si tout modéle dénombrable est w-saturé.

4.3 Théories menues et modéles dénombrables

Définition 4.27. Une théorie dénombrable est menue si S(T") est dénombrable.

Lemme 4.28. Si T est menue, M =T et m est un uple fini de M, alors S, (m) est
fini pour tout n < w.

Démonstration. Si @ et b sont des uples finis (dans une extension élémentaire 91) et
tp(am) = tp(bm), alors tp(a/m) = tp(b/m). O

Proposition 4.29. Une théorie complete dénombrable a un modéle saturé dénombrable
sst elle est menue.

Démonstration. 11 est évident que la condition est nécessaire, puisqu’'un modéle dé-
nombrable n’a qu'un nombre dénombrables d’uples finis, et ne réalise qu'un nombre
dénombrable de types. Réciproquement, soit 991, un modéle dénombrable d’une théorie
T menue, qui réalise tous les types dans S(T") (qui existe puisque tous les types peuvent
étre réalisés dans un modéle, qu’on peut prendre dénombrable par Lowenheim-Skolem
descendant). Pour tout i < w soit ;1 une extension élémentaire dénombrable de I;
qui réalise tous les types sur tous les uples finis de 91;. Cela existe puisqu’il n’y a qu'un
nombre dénombrable d’uples finis dans 2, et S, (m) est dénombrable pour chaque
uple fini m et tout n < w d’aprés le lemme Soit M = J,_, M, une extension
élémentaire de chaque 91;. Alors 9 est dénombrable ; comme tout uple fini de 9t est
déja dans 91; pour ¢ suffisamment grand, 9 est w-saturé, donc saturé. O
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Si 9N est une structure dénombrable, alors 91 devient atomique dans ’expansion qui
rajoute une constante pour chaque élément de M. On ne peut donc pas caractériser
'existence d’un modéle atomique par une condition sur le cardinal de S(7T'). Par contre,
I’autre direction est vraie.

Lemme 4.30. Soit T' menue. Alors les types isolés sont denses : toute formule peut étre
complétée en un type complet, sur tout uple fini de parametres contenant les parametres
de la formule.

Démonstration. D’aprés le lemme on peut supposer m = (). Si [p(Z)] est non-
vide et ne contient aucun type isolé, alors pour tout [¢/(Z)] C [p(Z)] non-vide contient
un type isolé. On peut donc récursivement trouver une suite de formules ¢, (Z) pour
n € 25 avec ¢y = ¢ et tel que [p,0(T)] et [p,1(Z)] sont non-vides et disjoints dans
©,(Z) : Comme ¢, n’isole pas de type, il y a deux types po,p1 € [p] et un formule
¥ € po \ p1. Il suffit de prendre @, = @, AU et v -1 = @, A, et

Alors pour tout 1 € 2 les types partiels {¢,, : n < w} sont disjoints, et se complétent
en 2% types de S(T). O

Remarque 4.31. La démonstration ne suppose pas que T soit compléte, et 7 = ()
est possible. Cependant, dés qu’on parle d’un parameétre m issu d’un modéle 91, on se
place dans la théorie compléte Th(IN, m).

Proposition 4.32. S5i T est menue, elle a un modéle atomique dénombrable. Plus
précisément, pour tout uple fini m dans un modéle M de T il y a un modele dénombrable
My < M atomique sur m.

Démonstration. D’aprés le lemme on peut supposer m = (). On construit récursi-
vement une interprétation de la théorie de Henkin T avec constantes (¢; : ¢ < w), de
maniére que tp(c;/c; : j < i) est isolé pour tout ¢ < w. Cela est possible puisque ¢;(z)
contient un type isolé. Alors {¢" : i < w) est construit. O

Définition 4.33. Le spectre d’'une théorie est la fonction (T, k) qui & un cardinal x
associe le nombre de modéles non-isomorphes de cardinal k.

I(T,Ry) = 1 ssi T est Ryp-catégorique. Alors se pose la questions des possibles valeurs
de I(T,Rp) en fonction de T. On a vu que I(ACF,,Ry) = N, en toute caractéris-
tique, les modeéles étant déterminés par leur degré de transcendance, qui est < w.
Si T = Th((Q,<),Q) est la théorie DLO? avec des constantes pour le modéle dé-
nombrable, alors I(T,R,) = 2% car toute coupure sur Q est réalisé dans un modéle
dénombrable, mais un tel modeéle ne peut réaliser qu'un nombre dénombrable de cou-
pures. Par ailleurs, c’est la valeur maximale, car si M est un ensemble dénombrable,
il y a au plus Rj™ = X; maniéres pour y interpreter une relation (n + 1)-aire ou une
fonction n-aire, et au plus Ngﬁl < 2% maniéres pour en faire un modéle de 7.

Lemme 4.34. Si I(T,R) < 2% alors T est menue.



40 CHAPITRE 4. MODELES ATOMIQUES, MODELES SATURES

Démonstration. On montre que si S(T') > Ry alors S(T) = 2%. Comme tout type dans
S(T') est réalisé dans un modéle dénombrable, mais un tel modeéle ne réalise que R,
types dans S(T), cela implique I(T,Rg) = 2%, car deux modéles isomorphes réalisent
les mémes types sur ().

On rappelle que la dérivée X' d'un espace topologique X est X privé de ses points
isolés, avec la topologie induite. Pour un ordinal a on pose X @+ = (X)) et pour
un ordinal limite A on pose XM = Na<x X@ 1y a alors un ordinal a tel que X (®) =
X (at+l) — x (o)

Comme chaque formule isole au plus un point de S,(7) (modulo la dérivée précé-
dente), et que tout point de S, (T) \ S, (7)) est isolé par une formule (modulo la
dérivée précédente), on a |S,(T)| < Rg + [S,(T))|. En particulier, si S,(7T) n’est pas
dénombrable, S, (7")* non plus. Mais tout ouvert-fermé [p] qui contient un point p de
Sn(T)[OO) en contient plusieurs, car sinon p serait dans la prochaine dérivée. On peut
donc trouver une formule v telle que [ A 1] et [p A =1)] contiennent tous les deux un
point de S, (7)) ; comme S,,(T)>) est non-vide, on démarre avec [¥ = z] = S, (T) et
on construit un arbre binaire avec branches consistants. Ainsi S, (7)) = 2%, O]

Exemple 4.35. Soit £ = {<,¢;:i <w} et T =DLO°U{¢; < ¢i11 11 <w}. Clest une
expansion par constantes d’une théorie avec élimination des quanteurs; elle élimine
donc elle-méme les quanteurs, et on voit facilement qu’elle est compléte. Elle a trois
modeéles en fonction de la valeur de lim; ¢; : on peut avoir lim; ¢; = oo, donc les ¢; sont
cofinal dans le modéle, ou bien lim; ¢; est rationel, donc dans le modéle, ou bien lim; ¢;
est une coupure irrationnelle.

Exemple 4.36. Plus généralement, pour n > 3 soit 7}, l'expansion de la théorie
précédente par n — 2 relations unaires (P; : j < n — 2) qui partitionnent le domaine,
telle que ¢; € Py pour tout i < w. Alors les cas ou lim; ¢; est dans le modéle se scinde
en n — 2 cas en fonction du j tel que lim; ¢; € P;. Ainsi I(7,,, X)) = n.

Théoréme 4.37. [(T,Ny) # 2.

Démonstration. Si I(T,Rg) < 2% alors T est menue d’aprés le lemme et a un
modéle atomique et un modéle saturé, d’aprés les propositions et [£.29 Si T n’est
pas Np-catégorique, il y a un type non-isolé, et le modéle atomique n’est pas isomorphe
au modele saturé. Il nous faut trouver un modéle intermédiaire, non-isomorphe aux
deux.

Soit 7 la réalisation d’un type non-isolé, et 9t un modéle dénombrable atomique (donc
premier et construit) sur m, qui existe d’aprés la proposition Alors O n’est
pas atomique puisqu’il contient m. Mais comme T n’est pas Nyp-catégorique, il y a
n < w tel qu’il y a une infinité de formules en n variables libres inéquivalentes modulo
T'; ces formules restent inéquivalentes modulo Th(9%, m), et Th(9M,m) n’est pas V-
catégorique. Mais 91 en est un modele atomique, qui donc n’est pas saturé. Mais cela
implique que 991 n’est pas saturé en tant que modéle de 7" non plus. O

Conjecture 4.38 (Vaught). Si I(T,Rg) < 2%, alors I(T,Rg) < N.
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