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Chapitre 1

Langage, structures et théories

1.1 Quelques exemples
Les mathématiques traitent de divers structures mathématiques : Groupes, corps, es-
paces vectoriels, graphes, espaces de fonctions, surfaces, ou encore l’univers ensembliste.
La théorie des modèles, dans un premier temps, fait abstraction de la nature spécifique
des ces structures et cherche leurs points communs abstraits :

— Les structures consistent d’un ensemble sous-jacent, leur domaine,
— sur lequel il y a des fonctions et relations (on peut voir des constantes comme

fonctions d’arité 0).
Pour la théorie des ensembles, par exemple, on n’a que deux relations, l’égalité = et
l’appartenance ∈. Pour un graphe, on a également deux relations, l’égalité et les liens
(arêtes). Dans un groupe il y a l’égalité, ainsi qu’une fonction binaire, le produit (et
éventuellement une constante 1 et une fonction unaire, l’inversion). Enfin, un corps
possède, à part de l’égalité, deux fonctions binaires (et éventuellement deux constantes
0 et 1, et une fonction unaire, l’inversion additive).
Avec ce langage, on peut exprimer des propriétés de la structure concernée.

Exemple 1.1. 1. L’énoncé
∀x∃y x = y • y

est vrai dans Q mais faux dans Z si on interprète • par l’addition ; il est vrai
dans C mais faux dans R si on interprète • par la multiplication.

2. Si R(x, y) est une relation binaire, l’énoncé

∀x∀y (x = y ↔ ∀z(R(z, x)↔ R(z, y)))

est l’axiome d’extensionalité si on interprète R comme appartenance, mais pour
un graphe dirait que deux sommets qui ont les mêmes voisins sont égaux.

1.2 Langage et structures
Formalisons.
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2 CHAPITRE 1. LANGAGE, STRUCTURES ET THÉORIES

Définition 1.2. Un langage L consiste en :
— une collection {fi : i ∈ I} de symboles de fonction, chaque symbole f étant doté

d’une arité nf ∈ N,
— une collection {Rj : j ∈ J} de symboles de relation, chaque symbole R étant

doté d’une arité nR ∈ N.
On considère les constantes comme des fonctions d’arité 0. Une relation d’arité 0 est
une constante propositionnelle.

Définition 1.3. Une L-structure M consiste d’un ensembleM , le domaine de M, ainsi
que

— pour chaque symbole de fonction f d’une fonction fM : Mnf →M , et
— pour chaque symbole de relation R d’un sous-ensemble RM de MnR .

Remarque 1.4. 1. Une fonction d’arité 0 est souvent note c, et son interprétation
cM est un élément de M . Une constante propositionnelle est interpreté soit par
vrai, soit par faux.

2. Habituellement, on ne considère que les structures non-vides. On note cepen-
dant que deux structures vides peuvent toujours différer par la valeur de leurs
constantes propositionnelles, s’il y en a.

3. Tous nos langages comporteront l’égalité = sans la mentionner explicitement ;
de plus l’égalité sera toujours interpreté par la diagonale de M2.

4. Souvent on confond M et M .

5. L’application f 7→ fM et R 7→ RM est l’interprétation de L dans M.

Exemple 1.5. 1. Le langage des ordres Lord = {<} ne contient que deux relations
binaires = et <. Les structures 〈Z, <〉 et 〈Q, <〉 sont des Lord-structures.

2. Le langage des groupes Lgp = {1, ·, −1} contient une constante 1, une fonction
binaire ·, une fonction unaire −1 et l’égalité.

3. Le langage des anneaux Lann = {0, 1,+,−, ·} contient deux constantes 0 et 1,
deux fonctions binaires +, ·, une fonction unaire −, et l’égalité.

4. Le langage Lens de la théorie des ensembles contient une relation binaire ∈, et
l’égalité.

1.3 Satisfaction et conséquence

Afin d’exprimer certaines propriétés d’une structure, on considère des formules obtenues
à partir du langage de base. On se restreint ici à un langage finitaire (formules de
longueur finie) et du premier ordre (on ne quantifie que sur des éléments de l’univers).
Les logiques infinitaires (avec des conjonctions et disjonctions infinies) ou de second
ordre (où l’on quantifie sur les parties) ont des propriétés bien différentes.
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Remarque 1.6. En théorie des ensembles on quantifie bien sur les parties, par exemple
dans ∃x (x ⊆ y ∧ ϕ(x). Mais c’est toujours une quantification sur les éléments du
domaine, et ne concerne que les parties de x qui se trouvent dans ce domaine.

Définition 1.7 (Termes). Soit L un langage. L’ensemble des termes de L (ou L-termes)
est donné par la récurrence suivante :

— toutes les variables sont des L-termes,
— si f est une fonction n-aire de L et t1, . . . , tn sont des termes, alors f(t1, . . . , tn)

est un terme.

Définition 1.8 (Formules). Soit L un langage. L’ensemble des formules de L (ou
L-formules) est donné par la récurrence suivante :

— Les formules atomiques : si R est une relation n-aire de L et t1, . . . , tn sont des
termes alors R(t1, . . . , tn) est une formule,

— Combinaisons booléennes (négation, conjonction, disjonction) : si ϕ et ψ sont
des formules alors ¬ϕ (non ϕ), (ϕ ∧ ψ) (ϕ et ψ) et (ϕ ∨ ψ) (ϕ ou ψ) sont des
formules,

— Quantifications universelle et existentielle : si ϕ est une formule et x est une
variable alors ∀xϕ (pour tout x on a ϕ) et ∃xϕ (il existe x tel que ϕ) sont des
formules.

Si ϕ est une formule et x est une variable, alors les occurrences de x dans les formules
∀xϕ et ∃xϕ sont liées au quanteur (ou quantificateur) ∀ ou ∃, exceptées celles qui
étaient liées auparavant dans la formule ϕ. Une variable qui n’est pas liée est libre.

En particulier toutes les occurrences des variables dans une formule sans quanteur sont
libres. Un énoncé (ou formule close) est une formule sans variable libre.

Remarque. Une formule est un mot fini constitué de symboles de constantes, fonc-
tions et relations de L, de symboles de variables, de connecteurs et de séparateurs (les
paranthèses et la virgule). Ainsi si le langage est dénombrable, l’ensemble des formules
l’est aussi.

Exemple 1.9. 1. Les termes de Lord sont les variables ; les formules atomiques de
Lord sont les égalités et les inégalités.

2. Les termes de Lgp sont les mots en les variables et leurs inverses (avec parenthé-
sage pour indiquer l’ordre des opérations en l’absence d’un axiome d’associati-
vité). Les formules atomiques sont les équations entre mots.

3. Les termes de Lann sont les polynômes sur Z en plusieurs variables (encore avec
parenthésage). Les formules atomiques sont les équations entre polynômes.

Pour être tout à fait rigoureux dans nos futures définitions et démonstrations par
induction sur la construction des formules, il est nécessaire de vérifier que la lecture des
formules est unique. Nous laissons la vérification de ce résultat syntaxique au lecteur :
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Fait 1.1 (Lecture unique). 1. Chaque terme est soit une variable, soit une constante,
soit de la forme f(t1, . . . , tn) où f est une fonction d’arité n et t1, . . . , tn sont
des termes. Cette écriture est uniquement déterminée.

2. Chaque formule est
— soit atomique et de la forme R(t1, . . . , tn) où R est une relation d’arité n et

t1, . . . , tn sont des termes,
— soit de la forme ¬ϕ où ϕ est une formule,
— soit de la forme (ϕ1 ∧ ϕ2) ou de la forme (ϕ1 ∨ ϕ2) où ϕ1 et ϕ2 sont deux

formules,
— soit de la forme ∃xϕ ou de la forme ∀xϕ où ϕ est une formule et x est une

variable.
Cette écriture est uniquement déterminée.

Notation. Par la suite on désignera par x̄, ȳ,. . . des uples finis de variables, et par ā,
b̄, m̄,. . . des uples finis d’éléments d’une structure. Si x̄ est un uple de variables qui
contient les variables d’un terme t ou les variables libres d’une formule ϕ, on note
souvent t(x̄) ou ϕ(x̄) pour fixer une arité pour le terme t ou la formule ϕ. Si m̄ est un
uple de même longueur que x̄, alors t(m̄) désigne le terme t où chaque occurrence de
xi ∈ x̄ a été remplacé par mi ∈ m̄, et ϕ(m̄) désigne la formule ϕ où chaque occurrence
libre de xi ∈ x̄ a été remplacé par mi ∈ m̄. On parle alors d’une terme ou d’une formule
avec paramètres.

Définition 1.10 (Interprétation). Soit L un langage etM une L-structure. L’interprétation
tM(m̄) ∈ M d’un L-terme t(m̄) avec paramètres dans M est donnée par la récurrence
suivante :

— si m ∈M est un paramètre, alors mM = m,
— si f est une fonction n-aire et t1(m̄), . . . , tn(m̄) sont des L-termes avec para-

mètres dans M, alors f(t1, . . . , tn)M(m̄) = fM(tM1 (m̄), . . . , tMn (m̄)).

Définition 1.11 (Satisfaction). Soit L un langage et M une L-structure. La satis-
faction dans M d’une formule ϕ(m̄) avec paramètres dans M, notée M |= ϕ(m̄), est
donnée par la récurrence suivante :

— M |= R(t1, . . . , tn)(m̄) ssi (tM1 (m̄), . . . , tMn (m̄)) ∈ RM,
— M |= ¬ϕ(m̄) ssi M 2 ϕ(m̄),
— M |= (ϕ1 ∧ ϕ2)(m̄) ssi M |= ϕ1(m̄) et M |= ϕ2(m̄),
— M |= (ϕ1 ∨ ϕ2)(m̄) ssi M |= ϕ1(m̄) ou M |= ϕ2(m̄),
— M |= ∀xϕ (x, m̄) ssi pour tout n ∈M on a M |= ϕ(n, m̄),
— M |= ∃xϕ (x, m̄) ssi il existe n ∈M tel que M |= ϕ(n, m̄).

Si ϕ(m̄) est satisfaite dans M, on dit également que ϕ(m̄) est vraie dans M, que M
satisfait ϕ(m̄) ou que m̄ satisfait ou réalise ϕ(x̄) dans M. Ce dernier est aussi noté
m̄ |=M ϕ(x̄).

C’est cette définition qui donne le sens usuel aux connecteurs booléens et aux quanti-
ficateurs.
Il arrive que deux formules signifient la même chose.
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Définition 1.12. 1. Soient ϕ(x̄) et ψ(x̄) deux formules. On dit que ϕ(x̄) implique
ψ(x̄), ou que ψ(x̄) est conséquence de ϕ(x̄), si pour toute L-structure M et tout
m̄ ∈M , si M |= ϕ(m̄) alors M |= ψ(m̄).
Les formules ϕ(x̄) et ψ(x̄) sont équivalentes, noté ϕ(x̄) ≡ ψ(x̄), si ϕ(x̄) |= ψ(x̄)
et ψ(x̄) |= ϕ(x̄).

2. Soient Φ(x̄) et Ψ(x̄) deux ensembles de formules. On dit que Φ(x̄) implique
Ψ(x̄), ou que Ψ(x̄) est conséquence de Φ(x̄), si pour toute L-structure M et
tout m̄ ∈ M , si M |= ϕ(m̄) pour tout ϕ(x̄) ∈ Φ(x̄) alors M |= ψ(m̄) pour tout
ψ(x̄) ∈ Ψ(x̄).
Les ensembles Φ(x̄) et Ψ(x̄) sont équivalentes, noté Φ(x̄) ≡ Ψ(x̄), si Φ(x̄) |= Ψ(x̄)
et Ψ(x̄) |= Φ(x̄).

Exercice 1.13. Toute formule est équivalente à une formule ne contenant ni le connec-
teur booléen ∨, ni le quanteur ∀.

On vérifie facilement que dans une conjonction ou une disjonction de plusieurs for-
mules, tout choix de parenthèses donne une formule équivalente. On supprimera donc
en général les parenthèses superflues.
Par la suite, nous utiliserons les abréviations suivantes :

— ϕ→ ψ pour ¬ϕ ∨ ψ,
— ϕ↔ ψ pour (ϕ→ ψ) ∧ (ψ → ϕ).

Exercice 1.14. Deux formules ϕ(x̄) et ψ(x̄) sont équivalentes si et seulement toute
L-structure satisfait ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Exercice 1.15. Toute formule est équivalente à une formule prénexe, c’est-à-dire à
une formule de la forme Q1x1Q2x2 . . . Qnxnϕ où les Qi sont des quanteurs et ϕ est une
formule sans quanteur.

1.4 Modèles, théories et axiomes
Définition 1.16 (Modèle). Soit L un langage et Φ un ensemble de L-énoncés. Une
L-structure M est un modèle de Φ si M |= ϕ pour tout ϕ ∈ Φ. On dit que Φ est
consistant si Φ a un modèle.

Remarque 1.17. Ceci est la définition sémantique de la consistance. La définition
syntaxique demande que Φ ne permet pas d’en déduire une contradiction ; le théorème
de complétude de Gödel dit que les deux sont équivalents.

Définition 1.18 (Théorie). Soit L un langage. Une L-théorie est un ensemble consis-
tant de L-énoncés clos par conséquence. Une théorie T est complète si pour tout L-
énoncé ϕ on a soit ϕ ∈ T soit ¬ϕ ∈ T .
Un système d’axiomes pour une théorie T est un ensemble Φ de L-énoncés tel que T
est l’ensemble des conséquences de Φ.
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En particulier un système d’axiomes pour une théorie T est une partie de T . Si T
permet un système fini d’axiomes, T est finiment axiomatisable.

Exemple 1.19. SoitM une L-structure. Alors l’ensemble Th(M) de tous les L-énoncés
vrais dans M est une théorie complète.

Exercice 1.20. Deux théories complètes qui ont un modèle commun sont égales.

Exemple 1.21. 1. La Lord-théorie DLOo des ordres denses sans extrémités est
donnée par les axiomes suivants :
— Ordre : ∀x ∀y ∀z [(x < y ∧ y < z)→ x < z],

∀x ∀y (x < y ∨ x = y ∨ y < x),
∀x¬x < x.

— Dense : ∀x ∀ y [x < y → ∃z (x < z ∧ z < y)].
— Sans extrémités : ∀x∃y ∃z (y < x ∧ x < z).
Ceci est une théorie complète finiment axiomatisable.

2. La Lgp-théorie des groupes est donnée par les axiomes suivants :
— Associativité : ∀x ∀y ∀z (x · y) · z = x · (x · z),
— Élément neutre : ∀x x · 1 = 1 · x = x,
— Inverse : ∀x x · · ·x−1 = x−1 · x = 1.
Ceci est une théorie incomplète finiment axiomatisable.

3. La Lgp-théorie des groupes abéliens sans torsion est donnée par les axiomes
suivants :
— La théorie des groupes,
— Commutativité : ∀x∀y x · y = y · x.
— Sans torsion : Pour tout n ∈ N× l’axiome ∀x xn 6= 1, où xn est une abbré-

viation pour x · · · x︸ ︷︷ ︸
n

.

Ceci est une théorie complète récursivement axiomatisable (la liste infinie d’axiomes
est donné par un schéma récursif).

4. La Lann-théorie ACF des corps algébriquement clos est donnée par les axiomes
suivants :
— 〈M,+〉 est un groupe abélien.
— 〈M \ {0}, ·〉 est un groupe abélien.
— Distributivité : ∀x∀y ∀z x · (y + z) = x · y + x · z.
— Pour tout n ∈ N l’axiome ∀x1 . . . ∀xn ∃y yn + x1y

n−1 + · · ·+ xn = 0.
Ceci est une théorie incomplète récursivement axiomatisable. Ses complétions
sont données en spécifiant la caractéristique, soit en caractéristique p > 0 par un
seul axiome 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0, soit en caractéristique 0 par un schéma d’axiomes

1 + · · ·+ 1︸ ︷︷ ︸
n

6= 0 pour tout n > 0.

5. La théorie Th(N, 0,+, ·) de l’arithmétique. D’après le théorème d’incomplétude
de Gödel, elle n’est pas récursivement axiomatisable.
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1.5 Élémentaire, mon cher Watson !
Définition 1.22 (Équivalence élémentaire). Deux L-structures M et N sont élémen-
tairement équivalentes (noté M ≡ N) si elles satisfont les mêmes énoncés.

Ainsi M ≡ N ssi Th(M) = Th(N).

Exemple 1.23. 1. 〈Q, <〉 ≡ 〈R, <〉, deux modèles de DLOo.
2. 〈Q,+〉 ≡ 〈R,+〉, deux modèles de la théorie des groupes abéliens divisibles sans

torsion.
3. 〈Z,+〉 /≡ 〈Q,+〉 car ∀x∃y x = y + y est satisfaite dans Q mais pas dans Z.

Exercice 1.24. Une théorie est complète si ses modèles sont tous élémentairement
équivalents.

Définition 1.25 (Plongement). Soit L un langage et M et N deux L-structures. Une
application σ : M → N est un plongement M→ N si

— pour tout symbole de fonction f ∈ L d’arité n et m̄ ∈ Mn on a σ(fM(m̄)) =
fN(σ(m̄)), et

— pour tout symbole de relation R ∈ L d’arité n et m̄ ∈ Mn on a m̄ ∈ RM ssi
σ(m̄) ∈ RN.

Un isomorphisme est un plongement surjectif. Un automorphisme de M est un isomor-
phisme de M vers M.
Un plongement σ : M→ N est élémentaire si pour tout L-formule ϕ(x̄) et tout m̄ dans
M on a M |= ϕ(m̄) ssi N |= ϕ(σ(m̄)).

Puisque l’égalité fait partie des relations, un plongement est toujours injectif. La pro-
position suivante montre en particulier qu’un isomorphisme est toujours élémentaire.

Proposition 1.26. Soient M et N deux L-structures.
1. Si σ est un plongement de M vers N alors pour toute formule sans quanteurs

ϕ(m̄) avec paramètres m̄ dans M on a M |= ϕ(m̄) ssi N |= ϕ(σ(m̄)).
2. Si σ est un isomorphisme de M sur N alors pour toute formule ϕ(x1, ..., xk) et

tout m̄ = (m1, ...,mk) ∈Mk, M |= ϕ(m̄) ssi N |= ϕ(σ(m̄)).

Démonstration. 1. Par récurrence sur les termes on montre facilement que pour
tout terme t(m̄) avec paramètres on a σ(tM(m̄)) = tN(σ(m̄)). Ensuite l’énoncé
est vrai pour les formules atomiques par définition d’un plongement ; il est clai-
rement préservé par combinaison booléenne.

2. D’après la première partie l’énoncé est vrai pour les formules sans quanteurs, et
préservé par les combinaisons booléennes. Soit doncM |= ∃xϕ(x, m̄). Alors il y a
n ∈M tel que M |= ϕ(n, m̄) ; par hypothèse de récurrence N |= ϕ(σ(n), σ(m̄)),
d’où N |= ∃xϕ(x, σ(m̄)). Réciproquement, si N |= ∃xϕ(x, σ(m̄)) il y a n′ ∈ N tel
que N |= ∃xϕ(n′, σ(m̄)). Comme σ est surjectif il y a n ∈M avec σ(n) = n′. Par
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hypothèse de récurrence M |= ϕ(n, m̄), d’où M |= ∃xϕ(x, m̄). La démonstration
pour un quanteur universel est analogue (ou bien on utilise que ∀xϕ ≡ ¬∃x¬ϕ).

Exercice 1.27. Si M est une L-structure finie et N ≡M alors N ∼= M.

Définition 1.28 (Sous-structure). Soit M une L-structure. Une partie A ⊆M est une
sous-structure de M si A est clos par les fonctions dans L. Dans ce cas on munit A
d’une L-structure A en posant fA = fM �A pour tout symbole de fonction f ∈ L, et
RA = RM ∩ AnR pour tout symbole de relation R ∈ L. Si A est une sous-structure de
M, on note A ⊆M.
Une sous-structure A ⊆ M est élémentaire si pour toute L-formule ϕ(ā) avec para-
mètres ā dans A on a A |= ϕ(ā) ssi M |= ϕ(ā). Dans ce cas on dit que M est une
extension élémentaire de A, et on note A 4M.

On note que si M 4 N alors M ≡ N.

Remarque 1.29. 1. Soit M une L-structure et A une partie de M . Il existe une
plus petite sous-structure de M contenant A, la sous-structure engendrée par
A, qui est la clôture de A par les fonctions de L.

2. La notion de sous-structure dépend du langage choisi. Par exemple, N est une
sous-structure de 〈Z, <〉 et de 〈Z, 0,+〉 mais pas de 〈Z, 0,+,−〉.

Notation. Pour une L-structure M et un ensemble A de paramètres dans M , on
peut former le langage LA = L ∪ {a : a ∈ A} où l’on rajoute les éléments de A
comme nouvelles constantes, et considérer l’expansion MA de M en une LA-structure
en interprétant aMA = a pour a ∈ A. On note Th(M, A) la LA-théorie de MA, qui
correspond donc à l’ensemble des énoncés à paramètres dans A qui sont vrais dans M.

On appelle Th(M,M) le diagramme élémentaire de M.

Exercice 1.30. Soit M ⊆ N. Les trois conditions suivantes sont équivalentes :
1. M 4 N,
2. Th(M,M) = Th(N,M),
3. l’inclusion M ↪→ N est un plongement élémentaire.

Exercice 1.31. Soit K un corps.
1. Remarquer que toute Lann-sous-structure de 〈K, 0, 1,+,−, ·〉 est un anneau.
2. Ajouter une fonction f au langage telle que toute sous-structure de 〈K, 0, 1,+,−, ·, f〉

soit un corps.

Exercice 1.32. Donner un exemple de structures M ⊆ N tel que
1. M n’est pas élémentairement équivalente à N.
2. M est élémentairement équivalente à N, mais n’en est pas une sous-structure

élémentaire.
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Exercice 1.33. Soient M1 ⊆M2 ⊆M3.
— Si M1 4M2 et M2 4M3 alors M1 4M3.
— Si M1 4M3 et M2 4M3 alors M1 4M2.
— Trouver un exemple tel que M1 4M2 et M1 4M3 mais M2 64M3.

Exercice 1.34. Soit I un ensemble totalement ordonné et (Mi)i∈I une chaîne de L-
structures (i.e. Mi ⊆Mj pour tout i < j).

1. Montrer que
⋃
i∈IMi est canoniquement doté d’une L-structure M telle que

Mi ⊆M pour tout i ∈ I.
2. Montrer que si la chaîne est élémentaire (i.e. Mi 4 Mj pour tout i < j), alors

Mi 4M pour tout i ∈ I.

Voici un critère utile pour vérifier qu’une sous-structure est élémentaire. Ce critère
n’utilise que la satisfaction dans la grande structure :

Proposition 1.35 (Test de Tarski). Soit M une L-structure, et A ⊆ M . Alors la
L-structure A induite sur A en fait une sous-structure élémentaire de M ssi pour toute
formule ϕ(x, ā) avec paramètres dans A, si M |= ∃xϕ(x, ā) alors il existe b ∈ A tel que
M |= ϕ(b, ā).

Démonstration. Si A 4 M et M |= ∃xϕ(x, ā), alors A |= ∃xϕ(x, ā) et on trouve bien
b ∈ A tel que A |= ϕ(b, ā). Alors M |= ϕ(b, ā).
Réciproquement supposons que A ⊆M satisfont le critère de Tarski. On note d”abord
que A est clos par fonctions : si f ∈ L est une fonction et ā dans A, alors M |= ∃x x =
f(ā), et donc on trouve b ∈ A avec b = f(ā). Ainsi on peut bien parler de la structure
A induite sur A par M.
On montre par récurrence sur les formules que A |= ϕ(ā) ssi M |= ϕ(ā), pour toute
formule ϕ(ā) avec paramètres dans A. C’est vrai pour les formules sans quanteurs car
A ⊆M ; de plus la propriété est préservée par combinaison booléenne. Soit donc ϕ(x, ā)
une L-formule avec paramètres dans A telle queM |= ∃xϕ(x, ā). Par le critère de Tarski
il existe b ∈ A tel que M |= ϕ(b, ā). Par hypothèse de récurrence A |= ϕ(b, ā)d’où
A |= ∃xϕ(x, ā). Réciproquement, si A |= ∃xϕ(x, ā), alors il existe b ∈ A tel que
A |= ϕ(b, ā) ; par hypothèse de récurrence M |= ϕ(b, ā) et donc M |= ∃xϕ(x, ā).

Corollaire 1.36 (Théorème de Löwenheim-Skolem Descendant). Soient N une L-
structure infinie, A un ensemble de paramètres dans N , et κ un cardinal infini tel que
max(|A|, |L|) ≤ κ ≤ |N|. Alors il y a une sous-structure élémentaire M 4 N contenant
A et de cardinal κ.

Démonstration. On peut supposer que |A| = κ. On fixe a ∈ A, et pour toute L-
formule ϕ(x, ȳ) on choisit une fonction fϕ : N |ȳ| → N telle que si N |= ∃xϕ(x, m̄) alors
N |= ϕ(fϕ(m̄), m̄) pour tout M dans N (et fϕ(m̄) = a sinon). Soit M la clôture de A
par toutes les fonctions de L et par toutes les fonctions fϕ pour toutes les L-formules
avec au moins une variable libre. Alors la structure induite M en fait une sous-structure
de N, qui est élémentaire par le test de Tarski.
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Exercice 1.37. Montrer qu’il existe un modèle dénombrable de ZFC (en supposant
que ZFC est consistant). Pourquoi est-ce que cela ne contredit pas le théorème de
Cantor que |X| < |P(X)| pour tout X ?

La théorie des modèles permet bien de faire du modélisme !

1.6 Le va-et-vient
Le va-et-vient est une méthode utile pour montrer que deux structures sont élémentai-
rement équivalentes, voire même isomorphes dans le cas dénombrable.

Définition 1.38 (Isomorphisme partiel). Soient M et N deux L-structures. Un iso-
morphisme partiel de M dans N est un isomorphisme σ d’une sous-structure A ⊆ M
sur une sous-structure B ⊆ N. Il est élémentaire si pour toute L-formule ϕ(ā) avec
paramètres dans A on a M |= ϕ(ā) ssi N |= ϕ(σ(ā)).

Ainsi l’adjectif élémentaire fait référence à la satisfaction dans M et dans N. Comme
tout isomorphisme, σ préserve la satisfaction par rapport à A et B.

Définition 1.39 (Va-et-vient). Soient M et N deux L-structures. Une famille non vide
F d’isomorphismes partiels de M dans N est un (système de) va-et-vient entre M et
N si pour tout σ ∈ F ,

— pour tout m ∈M , il existe τ ∈ F prolongeant σ tel que m ∈ Dom(τ) (le va),
— pour tout n ∈ N , il existe τ ∈ F prolongeant σ tel que n ∈ Im(τ) (le vient).

Deux structures M et N sont ∞-équivalentes s’il existe un va-et-vient entre elles.

Exemple 1.40. Deux ordres totaux denses sans extrémité sont ∞-équivalents : On
voit facilement que la famille d’isomorphismes partiels entre parties finies forme un
va-et-vient.

Exemple 1.41. Deux corps algébriquement clos K1 et K2 de même caractéristique et
de degré de transcendance infini sont ∞-équivalents.
Soit F la famille des isomorphismes entre des sous-corps finiment engendrés respecti-
vement de K1 et K2. Comme K1 et K2 ont même caractéristique, F est non vide car
leurs corps premiers sont isomorphes.
Soit σ ∈ F un isomorphisme de k1 sur k2, et soit a ∈ K1. Si a est algébrique sur k1,
et P ∈ k1[X] est son polynôme minimal, alors σ(P ) est un polynôme irréductible de
k2[X] qui a une racine b dans K2, qui est algébriquement clos. On peut donc envoyer a
sur b pour prolonger σ en un isomorphisme τ : k1(a)→ k2(b). Sinon a est transcendant
sur k1. Comme k2 est finiment engendré et K2 est de degré de transcendance infini, il
existe b ∈ K2 transcendant sur k2. Même conclusion que dans le cas précédent.

Exercice 1.42. Soit K un corps. On considère LK = {0,+, λk : k ∈ K} le langage des
K-espaces vectoriels, les λk étant des fonctions unaires (les fonctions scalaires). Soient
E et F deux K-espaces vectoriels vus comme LK-structures. Montrer que si E et F
sont de dimension infinie alors ils sont ∞-équivalents.
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Exercice 1.43. Donner un exemple de deux ordres totaux discrets infinis qui ne sont
pas ∞-équivalents.

Exercice 1.44. Montrer que la relation d’∞-équivalence est bien une relation d’équi-
valence.

Proposition 1.45. Deux structures dénombrables ∞-équivalentes sont isomorphes.

Démonstration. Soit F un va-et-vient entre deux structures dénombrables M et N. On
choisit une énumération (mi)i∈N de M et une énumération (ni)i∈N de N . En commen-
çant avec n’importe quel σ0 ∈ F on trouve inductivement une suite croissante (σi)i∈ω
d’isomorphismes partiels dans F telle que pour tout i ∈ N

mi ∈ Dom(σ2i+1) et ni ∈ Im(σ2i+2).

Alors σ =
⋃
i∈N σi est l’isomorphisme recherché.

La méthode de va-et-vient sera souvent utilisée pour montrer que deux structures sont
élémentairement équivalentes :

Proposition 1.46. Un va-et-vient consiste d’isomorphismes partiels élémentaires. En
particulier, si M et N sont ∞-équivalentes, alors M ≡ N.

Démonstration. On montre par récurrence sur les formules que pour tout σ ∈ F et
toute L-formules ϕ(m̄) avec paramètres dans Dom(σ) on a M |= ϕ(m̄) ssi N |=
ϕ(σ(m̄)).
Pour une formule atomique, on a M |= ϕ(m̄) ssi Dom(σ) |= ϕ(m̄) ssi Im(σ) |= ϕ(σ(m̄))
ssi N |= ϕ(σ(m̄)). La propriété étant préservée par combinaisons booléennes, considé-
rons une formule existentielle. Si M |= ∃xϕ(x, m̄), il y a a ∈M tel que M |= ϕ(a, m̄).
Soit τ une prolongation de σ avec a ∈ Dom(τ). Par hypothèse de récurrence N |=
ϕ(τ(a), τ(m̄), d’où N |= ∃xϕ(x, τ(m̄)), et donc N |= ∃xϕ(x, σ(m̄)). L’autre direction
est par symétrie.

Exercice 1.47. Montrer que deux ordres totaux denses sans extrémité sont élémentai-
rement équivalents. En particulier 〈Q, <〉 ≡ 〈R, <〉. En déduire que DLOo est complet.

Exercice 1.48. Déduire de l’exemple 1.41 que la théorie ACFp des corps algébrique-
ment clos de caractéristique p (premier ou 0) est complète.
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Chapitre 2

La compacité

2.1 Ultraproduits
Définition 2.1 (Filtres et ultrafiltres). Soit I un ensemble. Un ensemble non vide F
de parties de I est un filtre sur I si :

— ∅ /∈ F ,
— si X, Y ∈ F alors X ∩ Y ∈ F ,
— si X ∈ F et X ⊆ Y ⊆ I alors Y ∈ F .

Un filtre F est un ultrafiltre si pour toute partie A de I, soit A soit I \ A est dans F .
Un ultrafiltre F est principal s’il y a a ∈ I tel que F = {A : a ∈ A}.

Exemple 2.2. Si I est infini, alors l’ensemble des parties co-finies de I forme un filtre,
le filtre de Fréchet.

Exercice 2.3. 1. Montrer que F est un ultrafiltre ssi F est maximal pour l’inclu-
sion.

2. Montrer que si I est fini, tout ultrafiltre sur I est principal.
3. Montrer qu’un ultrafiltre U est non-principal ss’il contient le filtre de Fréchet.
4. Soit U un ultrafiltre et X ⊆ I avec X /∈ U . Montrer que UX = {Y \X : Y ∈ U}

est un ultrafiltre sur I \X.

À l’aide du lemme de Zorn, tout filtre est contenu dans un ultrafiltre.

Définition 2.4 (Ultraproduit). Soit (Mi)i∈I une famille de L-structures non-vides et
U un ultrafiltre sur I. L’ultraproduit

∏
i∈I Mi/U , aussi noté

∏
UMi, est la structure M

suivante :
1. le domaine de M est le produit

∏
i∈IMi modulo la relation d’équivalence

(ai)i∈I ∼ (bi)i∈I si et seulement si {i ∈ I : ai = bi} ∈ U .

On notera [ai]I la classe modulo U de l’uple (ai)i∈I , et [āi]I = ([a1
i ]I , . . . , [a

n
i ]I).

2. pour toute fonction f de L, on pose fM([āi]I) = [fMi(āi)]I .

13
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3. pour toute relation R de L, on pose

RM := {([āi]I ]I) ∈MnR : {i ∈ I : āi ∈ RMi} ∈ U}.

Remarque 2.5. Si on permet des structures vides, alors soitX = {i ∈ I : Mi = ∅} ∈ U
et alors M = ∅, soit enlève ces indices et on considère l’ultraproduit

∏
UX Mi.

Exercice 2.6. Vérifier que ∼ est une relation d’équivalence, et que les fonctions et
relations sont bien définies, c’est-à-dire qu’elle ne dépendent pas du choix des repré-
sentants. Noter de plus que la définition de =M correspond à la vraie égalité sur M .

Exercice 2.7. Que peut-on dire de l’ultraproduit si l’ultrafiltre est principal ?

Théorème 2.8 (Critère de Łos). Soit U un ultrafiltre sur I et (Mi)i∈I une famille de
L-structures. Si ϕ([m̄i]I) est une L-formule avec paramètres dans l’ultraproduit M :=∏
UMi, alors

M |= ϕ([m̄i]I) si et seulement si {i ∈ I : Mi |= ϕ(m̄i)} ∈ U .

En particulier, si θ est un énoncé alors M |= θ ssi il existe X ∈ U tel que Mi |= θ pour
tout i ∈ X. Si T est une théorie telle que Mi |= T pour tout i ∈ I, alors M |= T .

Démonstration. On vérifie par récurrence sur les termes que pour tout L-terme t(x̄)
on a

tM([m̄i]I) = [tMi(m̄i)]I .

Ensuite, on montre le critère de Łos par récurrence sur les formules. Par définition de
l’ultraproduit et par ce qui précède le critère est évident pour les formules atomiques.
Supposons le critère vérifié pour deux formules ϕ et ψ (avec paramètres qu’on sup-
prime). Alors M |= (ϕ ∧ ψ) ssi M |= ϕ et M |= ψ ssi

X := {i ∈ I : Mi |= ϕ} ∈ U et Y := {i ∈ I : Mi |= ψ} ∈ U

ssi X ∩ Y ∈ U car U est un filtre. Or, X ∩ Y = {i ∈ I : Mi |= (ϕ ∧ ψ)}, ce qui montre
le critère pour (ϕ ∧ ψ). Le cas d’une disjonction est analogue.
Quant à la négation, M |= ¬ϕ ssi X /∈ U . Comme U est un ultrafiltre (c’est ici qu’un
simple filtre ne suffit pas), X /∈ U ssi I \X ∈ U . Or, I \X = {i ∈ I : Mi |= ¬ϕ}, et le
critère est également vérifié pour ¬ϕ.
Enfin, si M |= ∃xϕ(x, [m̄i]I), soit [ni]I ∈M tel que M |= ϕ([ni]I , [m̄i]I). Alors

Y = {i ∈ I : Mi |= ϕ(ni, m̄i)} ∈ U .

Or, X = {i ∈ I : Mi |= ∃xϕ(x, m̄i)} ⊇ Y , et X ∈ U . Réciproquement, si X ∈ U ,
choisissons pour tout i ∈ X un ni ∈Mi tel que Mi |= ϕ(ni, m̄i) (et choisissons ni ∈Mi

arbitraire pour i /∈ X. Alors

X = {i ∈ I : Mi |= ϕ(nim̄i)} ∈ U ,

et par hypothèse M |= ϕ([ni]I , [m̄i]I), d’où M |= ∃xϕ(x, [m̄i]I). Le critère est alors
vérifié pour la formule ∃xϕ(x, [m̄i]I).

Exercice 2.9. Soit U un ultrafiltre sur I. Montrer que l’application diagonale m 7→
[m]I est un plongement élémentaire de M dans l’ultrapuissance

∏
UM, aussi notée MU .
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2.2 Le théorème de compacité

Théorème 2.10 (Compacité). Soit Σ un ensemble d’énoncés tel que tout sous-ensemble
fini de Σ a un modèle. Alors Σ a un modèle.

Démonstration. Considérons Σ un ensemble d’énoncés finiment consistant. Pour toute
partie finie i de Σ soit Mi un modèle de i. Nous allons utiliser le critère de Łos pour
montrer qu’un ultraproduit des Mi est modèle de Σ.
Soit I l’ensemble des parties finies de Σ, et pour tout i ∈ I soit Ii := {j ∈ I : i ⊆ j}.
Alors F := {X ⊆ I : Ii ⊆ X pour un i ∈ I} est un filtre sur I. En effet : I∅ = I ∈ F ;
∅ /∈ F ; si Ii ⊆ X et Ij ⊆ Y alors Ii∪j ⊆ X ∩ Y ∈ F ; si Ii ⊆ X ⊆ Y alors Ii ⊆ Y ∈ F .
Soit U un ultrafiltre contenant F et M =

∏
UMi. Alors M est un modèle de Σ : si

θ ∈ Σ alors Mi |= θ pour tout i ∈ I{θ} ∈ U , donc M |= θ par le critère de Łos.

Exercice 2.11. Montrer que le théorème de compacité est équivalent à l’énoncé sui-
vant : soient Σ un ensemble d’énoncés et ϕ une conséquence de Σ. Alors ϕ est consé-
quence d’une partie finie de Σ.

Exercice 2.12. A l’aide du théorème de compacité vérifier les assertions suivantes :

1. Une théorie qui, pour tout entier n, a un modèle de cardinalité plus grand que
n, a un modèle infini.

2. Il n’existe pas de théorie dans la langage Lord dont les modèles sont précisément
les ordres finis.

3. Il n’existe pas de théorie dans la langage Lann dont les modèles sont précisément
les corps finis.

Le théorème de compacité s’exprime topologiquement de la façon suivante : nous mu-
nissons l’ensemble T des théories complètes dans le langage L d’une topologie. A tout
énoncé ϕ, on associe l’ensemble [ϕ] des théories complètes contenant ϕ. Alors les [ϕ]
forment une base d’ouverts pour une topologie, car si ϕ1 et ϕ2 sont deux énoncés,
[ϕ1] ∩ [ϕ2] = [ϕ1 ∧ ϕ2]. Muni de cette topologie, T est un espace séparé : si T1 et T2

sont deux théories complètes distinctes alors il existe un énoncé ϕ ∈ T1 tel que ϕ /∈ T2.
Donc [ϕ] et [¬ϕ] sont des voisinages disjoints respectivement de T1 et T2. Cet espace
T est de plus totalement discontinu, c’est-à-dire il admet une base d’ouverts qui sont
fermés : le complémentaire de [ϕ] est [¬ϕ]. Par conséquent, toute partie connexe de T
est soit vide, soit réduite à un point.

Exercice 2.13. Montrer que le théorème de compacité est équivalent à la compacité
de cet espace T .

Exercice 2.14. Les ouverts-fermés de T sont les parties de la forme [ϕ] pour ϕ un
énoncé de T .

Voici quelques applications du théorème de compacité.
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Corollaire 2.15. Soit M une L-structure et ϕi(x̄) une L formule avec paramètres
dans M pour tout i ∈ I. Si pour tout I0 ⊆ I fini les formules {ϕi(x̄) : i ∈ I0} ont une
réalisation commune dans M , alors il existe une extension élémentaire N de M et ā
dans N tel que N |= ϕi(ā) pour tout i ∈ I.

Démonstration. Soit c̄ un n-uple de nouvelle constantes, et L′ = L∪{m : m ∈M}∪{c̄}.
Considérons l’ensemble de L′-énoncés

Σ := Th(M,M) ∪ {ϕi(c̄) : i ∈ I}

Par hypothèse, pour toute partie finie Σ0 de Σ, il existe āΣ0 dans M tel que M |= Σ0,
où c̄ est interprété par āΣ0 . Par compacité Σ est consistant et a un modèle N. Alors
M 4 N (en identifiant les constantes m ∈ M avec leur interprétation mN dans N), et
si ā = c̄N ∈ N |ā| alors N |= ϕi(ā) pour tout i ∈ I.

Exemple 2.16. 1. Les entiers non-standards : il existe une extension élémentaire
de la structure 〈N, 0, 1,+, ·〉 contenant un entier (non-standard) non nul qui est
divisible par tous les entiers standards non nuls (les entiers de N∗).

2. Les réels non-standards : il existe une extension élémentaire R′ de la structure
〈R, 0, 1,+,−, ·, <〉 contenant un réel c (non-standard) strictement positif qui est
infiniment petit, c’est-à-dire tel que 0 < c < 1

n
pour tout entier (standard) n ∈

N∗. On a alors pour tout r′ ∈ R′ borné (tel qu’il existe n ∈ N avec −n < r′ < n),
il existe un unique réel standard r ∈ R infiniment proche de r′, i.e. |r − r′| est
infiniment petit. On appelle r la partie standard de r′.

Proposition 2.17 (Théorème de l’extension élémentaire commune). Toute famille
(Mi : i ∈ I) de L-structures élémentairement équivalentes a une extension élémentaire
«commune» : il existe une L-structure N telle que tous les Mi se plongent élémentai-
rement dans N.

Démonstration. On peut supposer que les domaines des (Mi : i ∈ I) sont disjoints.
Considérons l’ensemble d’énoncés

Σ :=
⋃
i∈I

Th(Mi,Mi)

dans le langage L′ = L ∪
⋃
i∈IMi. Remarquons que si N est un modèle de Σ, alors

l’application Mi 3 m 7→ mN est un plongement élémentaire de Mi dans N. Par com-
pacité, il est donc suffisant de montrer que tout fragment fini Σ0 de Σ est consistant.
Soit ϕi(m̄i) la conjonction des formules de Σ0∩Th(Mi,Mi). Alors Mi |= ∃x̄ϕi(x̄) pour
tout i ; comme M1 et Mi sont élémentairement équivalentes, on a aussi M1 |= ∃x̄ϕi(x̄).
Ainsi

M1 |= ∃x̄1 . . . x̄k (ϕi1(x̄1) ∧ · · · ∧ ϕik(x̄k),

et on trouve m̄′1, . . . , m̄′k dans M1 tel que

M1 |= ϕi1(m̄
′
1) ∧ · · · ∧ ϕik(m̄′k).

Ainsi M1 est un modèle de Σ0 eEn interprétant m̄ij par m̄′j pour j ≤ k.
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2.3 Théorème de Löwenheim-Skolem, Catégoricité
Théorème 2.18 (Löwenheim-Skolem ascendant). Si M est une L-structure infinie
alors pour tout cardinal κ ≥ max{|L|, |M |} il existe une extension élémentaire N <M
de cardinal κ.

Démonstration. Soient (ci)i∈κ des nouveaux symboles de constantes et considérons l’en-
semble d’énoncés

Σ := Th(M,M) ∪ {ci 6= cj : i 6= j}.
Chaque fragment fini de Σ ne mentionne qu’un nombre fini de constantes, qui peuvent
être interprétés par des éléments distincts de M car M est infini. Donc Σ est finiment
consistant a un modèle N′ par compacité, qui est donc une extension élémentaire de
M de cardinal supérieur ou égal à κ. Par Löwenheim-Skolem descendant il existe une
sous-structure élémentaire N de N′ contenant M et de cardinal κ, qui est alors une
extension élémentaire de M.

Convention. Le cardinal d’une théorie T dans un langage L, notée |T | est par conven-
tion le cardinal de l’ensemble des formules du langage L, c’est-à-dire |T | := max{ℵ0, |L|}.
En particulier on dit que T est dénombrable si |L| ≤ ℵ0.

Théorème 2.19 (Théorème de Löwenheim-Skolem). Si T est une théorie qui a un
modèle infini alors T a un modèle de cardinal κ pour tout cardinal κ ≥ |T |.

Démonstration. Par Löwenheim-Skolem ascendant et descendant.

Définition. Une théorie T est κ-catégorique si T a un unique modèle de cardinal κ à
isomorphisme près. Une théorie est totalement catégorique si T est κ-catégorique pour
tout κ infini.

Proposition 2.20. Une théorie T qui n’a que des modèles infinis et qui est κ-catégorique
pour un cardinal κ ≥ |T | est complète.

Démonstration. SoitM le modèle de T de cardinal κ. Toujours par Löwenheim-Skolem
ascendant et descendant, tout modèle de T est élémentairement équivalent à un modèle
de cardinal κ, donc à M .

Exemple 2.21. — La théorie des ensembles infinis est totalement catégorique.
— La théorie DLOo est ℵ0-catégorique, mais pas κ-catégorique pour tout cardinal

κ > ℵ0. Considérons par exemple un ordre κ × Q et (κ + 1) × Q avec ordre
lexicographique. Il ne sont pas isomorphes, car dans le premier chaque segment
final non-vide est de cardinal κ, mais dans le second il y a un segment final
isomorphe à Q.

— La théorie des corps algébriquement clos de caractéristique p ≥ 0 est catégorique
en tout cardinal infini non-dénombrable, car deux tels corps sont caractérisés
par leur degré de transcendance, qui est égal à leur cardinal si celui est non-
dénombrable. Par contre cette théorie n’est pas ℵ0-catégorique, car pour un corps
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dénombrable algébriquement clos le dregré de transcendance peut prendre tout
valeur dans ω + 1. Il y a donc ℵ0 modèles dénombrables non-isomorphes.

— La théorie des groupes abéliens divisibles sans torsion est catégorique en tout
cardinal infini non-dénombrable. En effet tout groupe abélien divisible sans tor-
sion peut être regardé comme un Q-espace vectoriel, qui est caractérisé par sa
dimension, et donc par son cardinal si celui est non-dénombrable. Il y a ℵ0

modèles dénombrables non-isomorphes, de dimension entre 1 et ω inclus.
— La théorie des groupes abéliens d’exposant p premier est totalement catégorique.

C’est un espace vectoriel sur Fp qui est de même cardinal infini que sa dimension.

Exercice 2.22. Déterminer les cardinaux κ pour lesquels la théorie de la relation
d’équivalence à une infinité de classes toutes infinies est κ-catégorique. Même question
pour la théorie de la relation d’équivalence à deux classes infinies.

Exercice 2.23. Soit L = {Pi : i ∈ ω} où les Pi sont des relations unaires. Soit T la
théorie dans le langage L qui dit que les Pi sont deux à deux disjoints et que chaque
Pi est infini.

1. Vérifier que T n’est catégorique en aucun cardinal κ.

2. Montrer que T est complète.

Pour terminer cette partie nous allons énoncer le théorème de Morley qui est le point
de départ de la théorie de la stabilité. La démonstration de ce théorème ne sera pas
faite dans ce cours.

Fait 2.1 (Théorème de Morley 1965). Une théorie dénombrable qui est catégorique
en un cardinal infini non-dénombrable est catégorique en tout cardinal infini non-
dénombrable.

2.4 Applications en algèbre

Puisque la théorie d’un corps algébriquement clos de caractéristique donnée est com-
plète, tous les coprs algébriquement clos de même caractéristique sont élémentairement
équivalents. Le théorème suivant nous permet de changer de caractéristique.

Théorème 2.24 (Principe de Transfert). Soit ϕ un énoncé dans le langage des an-
neaux. Alors les assertions suivantes sont équivalentes :

1. ϕ est vrai dans tout corps algébriquement clos de caractéristique nulle ;

2. ϕ est vrai dans tout corps algébriquement clos de caractéristique p > 0, pour
tout p premier sauf un nombre fini.

3. ϕ est vrai dans un corps algébriquement clos de caractéristique p > 0, pour une
infinité de nombres p premier.
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Démonstration. Soi P l’ensembles des nombres premiers, et U un ultrafiltre non-principal
sur P . Pour p ∈ P soit Kp un corps algébriquement clos de caractéristique p. Comme
tout Kp satisfait la théorie ACF, l’ultraproduit K =

∏
P Kp/U aussi. En plus, pour

tout n > 0 presque tout Kp satisfait l’énoncé n = 1 + · · ·+ 1 6= 0. Donc K est un corps
algébriquement clos de caractéristique zéro.
Soit I ⊆ P un ensemble infini tel qu’il y ait un corps Kp algébriquement clos de carac-
téristique p satisfaisant ϕ. On considère un ultrafiltre U contenant I. Par le critère de
Łos ϕ est satisfaite dans K, et donc dans tout corps algébriquement clos de caractéris-
tique zéro, puisque ACF0 est complète. Il est donc impossible que ¬ϕ puisse être vrai
dans un corps algébriquement clos de caractéristique p pour une infinite de p différents,
car sinon tout corps algébriquement clos de caractéristique zéro satisfaisait à la fois ϕ
et ¬ϕ.

Nous allons en déduire un théorème d’Ax.

Théorème 2.25 (Ax 1969 1). Soit K un corps algébriquement clos, et f une application
rationnelle par morceaux de Km dans Km pour m > 0. Si f est injective alors f est
surjective.

Démonstration. Supposons que f = f(x̄, ā) utilise des paramètres ā. Supposons d’abord
que K = F̃p =

⋃
n Fpn! est la clôture algébrique de Fp et f(x̄, ā) définit une fonction

injective de Km dans Km. Alors ā est dans Fpn! pour n suffisamment grand et la restric-
tion de f(x̄, ā) définit une fonction injective de Fpn! dans Fpn! , qui est donc surjective.
Ainsi f(x̄, ā) est surjective sur Km, et K satisfait l’énoncé

∀ȳ [∀x̄∀x̄′ (f(x̄, ȳ) = f(x̄′, ȳ)→ x̄ = x̄′)→ ∀z̄∃x̄ f(x̄, ȳ) = z̄].

Cet énoncé est donc vrai dans tout corps algébriquement clos de caractéristique posi-
tive, et par transfert également dans tout corps algébriquement clos de caractéristique
zéro.

1. Ax a en fait montré plus généralement que tout endomorphisme injectif d’une variété algébrique
est surjective.
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Chapitre 3

Types et élimination des quanteurs

Dans ce chapitre nous introduisons la notion de types, notion centrale en théorie des
modèles pour l’étude des structures, et verrons leur utilisation pour l’élimination des
quanteurs.

3.1 Ensembles définissables
Nous commençons par l’étude des parties définies par des formules dans une structure.

Définition 3.1. Soit M une L-structure. Une partie D de Mn est un ensemble défi-
nissable dans M s’il existe une formule ϕ(x̄, ȳ) et des paramètres b̄ dans M tels que

D = {ā ∈Mn : M |= ϕ(ā, b̄)}.

On note Def(M) la famille des ensembles définissables de M.

Remarque 3.2. Étant donnéD, ni la formule ϕ ni l’ensemble b̄ sont forcément uniques.
Si B ⊆M on dit que D est définissable avec des paramètres dans B, ou B-définissable,
si on peut choisir une formule ϕ(x̄, b̄) définissant D avec b̄ ⊆ B. On dit que D est
définissable atomique, sans quanteur, existentiel etc. s’il y a une telle formule qui définit
D.
Si N est une extension élémentaire de M et D ⊆ Mn est un ensemble définissable
dans M, alors D a une extension canonique en un ensemble D′ ⊆ Nn définissable
dans N, tel que D′ ∩Mn = D : si D est défini par une formule ϕ(x̄, b̄) (b̄ ⊆ M) alors
D′ := {ā ∈ Nn : N |= ϕ(ā, b̄)}. En pratique on confondra D′ avec D.

Exercice 3.3. Vérifier que D′ ne dépend pas du choix de ϕ pour D.

Exercice 3.4. Soit M ⊆ N. Montrer que M 4 N si et seulement si pour toute partie
non vide définissable D ⊆ N à paramètres dans M on a D ∩M 6= ∅.

Exemple 3.5. Dans un groupe 〈G, 1, ·, −1〉, le centre C de G est défini par ϕ(x) :=
∀y xy = yx. Soit ψ(x, y) := (xy = yx). Pour tout a ∈ G, le centralisateur CG(a) de a
dans G est défini par ψ(x, a).

21
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Exercice 3.6. Montrer que l’ensemble des nombres premiers est une partie définissable
dans la structure 〈N, ·〉. A-t-on besoin de paramètres ?

Exercice 3.7. Montrer que l’ordre sur R est définissable sans paramètre dans la struc-
ture 〈R,+, ·〉.

Exercice 3.8. La famille Def(M) est close par
1. combinaisons booléennes finies : si A,B ∈ Def(M), le complémentaire de A,

l’union et l’intersection de A et B sont dans Def(M),
2. produits cartésiens : si A,B ∈ Def(M), A×B ∈ Def(M),
3. projections : si A est une partie définissable de Mn+m alors la projection de A

sur Mn est définissable,
4. spécialisations : si A est une partie définissable de Mn+m et si b̄ ∈Mm alors

A(b̄) := {ā ∈Mn : (ā, b̄) ∈ A} ∈ Def(M),

5. permutations des coordonnées : si A est une partie définissable de Mn et σ une
permutation de {1, . . . , n} alors

σ(A) := {(aσ(1), . . . , aσ(n) : (a1, . . . , an) ∈ A} ∈ Def(M).

La famille Def(M) est en fait la plus petite famille de parties de
⋃
n>0M

n, contenant
les ensembles définissables atomiques et étant close par combinaisons booléennes finies,
produits cartésiens et projections.

3.2 Types
Définition 3.9. Soit M une L-structure, A ⊆M et ā un uple de M . Le type de ā sur
A (dans M) est l’ensemble des L(A)-formules satisfaites par ā, c’est-à-dire l’ensemble

tpM(ā/A) = {ϕ(x̄) ∈ L(A) : M |= ϕ(ā)}.

En général on omet le modèle ambiant M sauf quand il y a ambiguïté.
Plus généralement, un n-type partiel sur A est un ensemble de L(A)-formules en n
variables libres x̄ telle que toute partie finie ait une réalisation dans M. Un type (com-
plet) est un type partiel maximal. L’ensemble des n-types sur A est noté Sn(A) (où le
modèle ambient M est omis de la notation). On pose S(A) =

⋃
n<ω Sn(A).

Si p est un type (partiel) et ā satisfait toutes les formules de p, on dit que ā est une
réalisation de p, ou que ā réalise p, noté ā |= p ou a |=M p.
Si T est une théorie, on note Sn(T ) l’ensemble de tous les types sur ∅ dans tous les
modèles de T , et S(T ) =

⋃
n<ω Sn(T ).

Si un type partiel ne consiste que de formules sans quanteurs ou existentielles, on parle
d’un type partiel sans quanteurs ou existentiel ; un type sans quanteurs/existentiel est
un tel type partiel maximal. Notamment tpsqM(ā/A) est l’ensemble des formules sans
quanteurs avec paramètres dans A satisfaites par ā dans M.
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Remarque 3.10. Comme il y a au plus |L|+ |A|+ ω formules avec paramètres dans
A, il y a au plus 2|L|+|A|+ω types sur A.

Remarque 3.11. Un type sur A est complet ssi pour toute L(A)-formule ϕ(x̄, soit
ϕ(x̄) ∈ p soit ¬ϕ(x̄) ∈ p. En fait, si ni ϕ(x̄) ∈ p ni ¬ϕ(x̄) ∈ p, par maximalité il y
a des partie finie p0, p1 ⊆ p telles que ni p0(x̄) ∪ {ϕ(x̄)} ni p1(x̄) ∪ {¬ϕ(x̄)} ait une
réalisation dans M. Mais p0 ∪ p1 a une réalisation m̄ dans M , et soit m̄ |=M ϕ(x̄) soit
m̄ |=M ¬ϕ(x̄), ce qui donne une contradiction. La réciproque est évidente.

Exemple 3.12. Soit M = 〈Z, <〉. Les uples (2, 5, 9) et (3, 4, 8) ont même type sans
quanteurs. Par contre, si on pose ϕ(x, y, z) = ∃t x < t < y alors M |= ϕ(2, 5, 9) mais
M |= ¬ϕ(3, 4, 8), et ces deux uples n’ont pas même type.

Exercice 3.13. Montrer qu’un type tp(ā/A) est bien un type complet.

Exercice 3.14. Montrer qu’on peut compléter tout type partiel en un type complet.

Exercice 3.15. Soit M une L-structure et A ⊆ M . Alors un n-type p(x̄) n’est rien
d’autre qu’une L(c̄)-théorie qui étend Th(M, A), où l’on a substitué x̄ pour c̄.

Remarque 3.16. Soient M et N deux L-structures, A ⊆M et ā ∈Mn.
— Si M ⊆ N alors tpsqM(ā/A) = tpsqN(ā/A).
— Si M 4 N alors tpM(ā/A) = tpN(ā/A).

Par exemple si M = 〈2Z, <〉 et N = 〈Z, <〉 alors tpsqM(0, 2) = tpsqN(0, 2) mais
tpM(0, 2) 6= tpN(0, 2).

On peut considérer type type complet comme type réalisé dans une extension élémen-
taire.

Proposition 3.17. Soit M une L-structure, A ⊆M et p ∈ Sn(A). Alors il existe une
extension élémentaire N <M et un n-uple ā dans N tel que p = tpN(ā/A).

Démonstration. On considère Σ = Th(M,M)∪p(c̄), où c̄ sont des nouvelles constantes.
Puisque toute partie finie de p a une réalisation dans M, toute partie finie de Σ est
realisable dans M en interprétant c̄ par un n-uple convenable de M . Donc Σ a un
modèle N. Comme N |= Th(M,M), il est extension élémentaire de M (en identifiant
M 3 m et mN). On pose ā = c̄N ; il est évident que tpN(ā/A) = p.

Remarque 3.18. Soit σ un isomorphisme partiel de M dans N, et ā ∈ dom(σ). Alors
tpsqM(ā) = tpsqN(σ(ā)) ; si σ est élémentaire, alors tpM(ā) = tpN(σ(ā)).

Pour la réciproque, on doit s’autoriser à remplacer M par une extension élémentaire.
D’abord un lemme préparatoire.

Lemme 3.19. Soit M une L-structure et σ un automorphisme partiel élémentaire.
Alors il existe une extension élémentaire N < M et un isomorphisme partiel élémen-
taire τ : N→ N de domaine M qui prolonge σ.
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Démonstration. Associons à chaque m ∈M une nouvelle constante m′ et considérons
l’ensemble des énoncés suivants dans le langage L ∪ {m,m′ : m ∈M},

Σ := Th(M,M) ∪ {ϕ(m̄′, σ(n̄)) : M |= ϕ(m̄, n̄) et n̄ ∈ dom(σ)}.

Montrons que Σ est consistant. Pour cela considérons en une partie finie

Σ0 := θ(m̄) ∪ {ϕ(m̄′i, σ(n̄i)) : i ∈ I}.

Alors
M |= ∃(x̄i)i∈I

∧
i∈I

ϕ(x̄i, σ(n̄i)), car M |= ∃(x̄i)i∈I
∧
i∈I

ϕ(x̄i, n̄i)

et σ est élémentaire. On peut donc interpréter les m′ dans M tel que (M,M,M ′) |= Σ0.
Par compacité il existe un modèle N de Σ ; comme N |= Th(M,M) on a M 4 N.
Considérons τ : M → N défini par m 7→ (m′)N. En prenant m̄ = n̄, on voit que la
formule m̄′ = σ(m̄) est dans Σ pour tout n̄ ∈ dom(σ), doncs τ prolonge σ. De plus,
pour tout m̄ ∈M,

N |= ϕ(m̄) ssi M |= ϕ(m̄) ssi N |= ϕ(τ(m̄)),

donc τ est un isomorphisme partiel élémentaire.

Proposition 3.20. Soient ā et b̄ deux uples d’une L-structure M, et A ⊆M . Alors ā
et b̄ ont même type sur A si et seulement s’il existe une extension élémentaire N <M
et un automorphisme σ de N qui fixe A et envoie ā sur b̄.

Démonstration. Puisque tpM(ā/A) = tpM(b̄/A), il y a un isomorphisme partiel σ0 de
M qui fixe A et envoie ā sur b̄ (et ainsi la sous-structure engendré par Aā sur celle
engendré par Ab̄). D’après le lemme 3.19 on peut construire une chaîne d’extensions
élémentaires

M0 4M1 4 .... 4Mn 4 ...

avec M0 = M et une chaîne

σ0 ⊆ σ1 ⊆ ... ⊆ σn ⊆ · · ·

d’isomorphismes partiels élémentaires σi : Mi → Mi telle que pour tout i < ω le
domaine de σ2i+1 contient M2i et l’image de σ2i+2 contient M2i+1 (aux étapes paires
on prolonge σ2i et aux étapes impaires σ−1

2i+1). Alors N =
⋃
i∈ωMi est une extension

élémentaire de M et
⋃
i∈ω σi est un automorphisme de N qui fixe A et envoie ā sur b̄.

La réciproque est évidente.

Exercice 3.21 (Svenonius). Soit M une L-structure, A ⊆ M un ensemble de para-
mètres et D une partie de Mn définissable dans M. Alors D est définissable à para-
mètres dans A si et seulement si D est invariant par tout automorphisme fixant A de
toute extension élémentaire de M.
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Comme pour les théories on peut munir Sn(A) d’une topologie, en prenant les ensembles

[ϕ] = {p ∈ Sn(A) : ϕ ∈ p}

comme base de fermés, pour ϕ ∈ L(A) avec variables libres x1, . . . , xn. Puisque [¬ϕ]
est le complément de [ϕ], c’est une base d’ouvert-fermés, et la topologie est totalement
discontinue. Le théorème de compacité nous dit que Sn(A) est compact.
Plus généralement, on peut considérer des types en une infinité de variables libres
(xi : i < α) ; tout le développement précédent va aussi bien pour eux.

3.3 Elimination des quanteurs

Quand on considère une théorie sur un langage donné, il est intéressant d’isoler un sous-
ensemble des formules du premier ordre suffisant pour décrire les ensembles définissables
dans les modèles de cette théorie. L’étude des propriétés des modèles en question s’avère
ainsi simplifiée. Le cas particulier de l’élimination des quanteurs est le cas où toute
formule est équivalente modulo la théorie à une formule sans quanteurs.

Définition 3.22. Une théorie T élimine les quanteurs si pour tout n > 0 et toute
formule ψ(x̄) où x̄ est un n-uplet de variables il existe une formule ϕ(x̄) sans quanteur
telle que T ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Notons que si une théorie T élimine les quanteurs alors le type de tout uple dans un
modèle de T est déterminé par son type sans quanteurs. Réciproquement, pour vérifier
l’élimination des quanteurs (ou plus généralement l’élimination à un sous-ensemble
de formules), on utilisera la méthode de va-et-vient afin de montrer que deux uples
ayant même type sans quanteurs ont même type et on pourra conclure à l’aide de la
caractérisation suivante.

Proposition 3.23. Soit T une théorie et Φ un ensemble non vide de formules de L
tels que pour tout entier n > 0, deux n-uples extraits de modèles de T ont même types
dès qu’ils satisfont les mêmes formules de Φ. Alors pour toute formule ψ(x̄) de L il
existe une combinaison booléenne ϕ(x̄) d’éléments de Φ telle que

T ` ∀x̄(ψ(x̄)↔ ϕ(x̄)).

En particulier si pour tout n > 0, tout M |= T , tout N |= T , tout ā ∈ Mn et tout
b̄ ∈ Nn l’égalité tpsqM(ā) = tpsqN(b̄) implique que tpM(ā) = tpN(b̄), alors T élimine
les quanteurs.

Démonstration. Soit ψ(x̄) une formule de L. Si ψ n’est satisfaite dans aucun modèle
de T , on considère une formule θ de Φ et on a

T ` ∀x̄ [ψ(x̄)↔ (θ(x̄) ∧ ¬θ(x̄))]
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Sinon, soit M |= T et ā ∈Mn tel que M |= ψ(ā). Considérons c̄ un n-uple de nouvelles
constantes. Alors l’ensemble d’énoncés

T ∪ {ϕ(c̄) : ϕ ∈ Φ et M |= ϕ(ā)} ∪ {¬ϕ(c̄) : ϕ ∈ Φ et M |= ¬ϕ(ā)} ∪ {¬ψ(c̄)}

est inconsistant par hypothèse. Par compacité une partie finie est inconsistante, ce qui
nous donne une combinaison booléenne ϕā(x̄) d’éléments de Φ telle que M |= ϕā(ā) et
T ∪ {ϕā(c̄)} ∪ {¬ψ(c̄)} est inconsistant. Ainsi M |= ϕā(ā) et

T ` ∀x̄(ϕā(x̄)→ ψ(x̄)).

Soit maintenant (Mi, āi)i∈I une énumération de tous les types possibles d’un n-uple
dans un modèle Mi de T tel que Mi |= ψ(āi). Alors

T ∪ {¬ϕāi(c̄) : i ∈ I} ∪ {ψ(c̄)}

est inconsistant. Par compacité, il existe donc I0 fini tel que

T ` ∀x̄ [ψ(x̄)→
∨
i∈I0

ϕāi(x̄)].

Alors ψ est équivalente modulo T à
∨
i∈I0 ϕāi .

Exemple 3.24. Considérons la théorie T de la relation d’équivalence à une infinité de
classes toutes infinies dans le langage L = {E}. Soient M1 et M2 deux modèles de T .
On vérifie alors que les isomorphismes partiels de M1 dans M2 à domaine fini forment
un système de va-et-vient. On en déduit que T est complète et élimine les quanteurs.
En particulier :

— Il y a un unique 1-type.
— Il y a trois 2-types : le type déterminé par x1 = x2, celui déterminé par (x1 6=

x2) ∧ E(x1, x2) et enfin celui déterminé par ¬E(x1, x2).
On peut remarquer que tout type de S(T ) est réalisé dans tout modèle de T .

Exemple 3.25. La théorie des ordres totaux denses sans extrémité élimine les quan-
teurs, car les isomorphismes partiels finis forment un système de va-et-vient. Les 1-types
sur A correspondent donc à la coupure qu’ils déterminent sur A. En particulier il y a
six classes de 1-types sur Q :

pq = {x = q} pour q ∈ Q, pq+ = {q < x < q′ : q′ > q} pour q ∈ Q,
p+∞ = {x > q : q ∈ Q}, pq− = {q′ < x < q : q′ < q} pour q ∈ Q,
p−∞ = {x < q : q ∈ Q}, pr = {q′ < x < q : q′ < r < q} pour r ∈ R \Q.

Exercice 3.26. Soit K un corps. On exprime la théorie T des K-espaces vectoriels
infinis dans le langage LK := {0,+,−, λk : k ∈ K} où pour tout k ∈ K, λk est une
fonction unaire qui est interprétée dans un K-espace vectoriel par la multiplication par
k. Montrer que T est complète et élimine les quanteurs.
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Remarque 3.27. La théorie des groupes abéliens divisibles sans torsion non triviaux
correspond à la théorie des Q-e.v. infinis : on définit dans un groupe divisible sans
torsion λp/q par px = qy qui est une formule sans quanteur. On en déduit que cette
théorie élimine elle aussi les quanteurs.

Les propriétés d’élimination dépendent du langage choisi :

Remarque 3.28 (Morleyisation). Soit T une théorie quelconque. Pour toute formule
ϕ(x̄) on rajoute une nouvelle relation Rϕ(x̄) au langage, et l’axiome ∀x̄ [ϕ(x̄)↔ Rϕ(x̄)]
à la théorie, pour former le langage L′ et la théorie T ′. Alors T ′ elimine facilement les
quanteurs : une L-formule ϕ est équivalente à Rϕ ; quant aux L′-formules on remplace
d’abord les éventuelles sous-formules Rψ par ψ pour obtenir une L-formule équivalente.
Ceci a pour effet de changer la notion de sous-structure : si M et N sont deux modèles
de T avecM ⊆ N, ils ont des expansions canoniques a des modèles de T ′ en interpretant

RM
ϕ := {m̄ ∈M : M |= ϕ(m̄)}

(et similairement pour N). Mais comme L′-structures on a M ⊆ N si et seulement si
M � N.

Voici une condition plus faible que l’élimination des quantificateurs.

Définition 3.29. Une théorie T est modèle-complète si toute inclusion de modèles de
T est élémentaire.

Proposition 3.30. Une théorie qui élimine les quanteurs est modèle-complète.

Démonstration. Soient M et N des modèles de T avec M ⊆ N, et ϕ(m̄) un énoncé à
paramètres dans M. Alors ϕ(x̄) est équivalent dans tout modèle de T à une formule
ψ(x̄) sans quanteurs, et

M |= ϕ(m̄)⇔M |= ψ(m̄)⇔ N |= ψ(m̄)⇔ N |= ϕ(m̄).

Exemple 3.31. La Lann-théorie de R est modèle-complète, mais n’élimine pas les
quanteurs : ∃y y2 = x n’est pas équivalente à une formule sans quanteurs. Par contre,
R élimine les quanteurs si on rajoute l’ordre au langage.

Théorème 3.32. Une théorie est modèle-complète si et seulement si toute formule est
équivalente modulo T à une formule existentielle.

Démonstration. Si toute formule est équivalente à une formule existentielle, considérons
deux modèles M ⊆ N, et une formule ϕ(m̄) vraie dans M. Elle est équivalente à une
formule ∃x̄ ψ(x̄, m̄) avec ψ sans quanteurs, et on trouve n̄ ∈M tels que M |= ψ(n̄, m̄).
Donc N |= ψ(n̄, m̄), et N |= ∃x̄ ψ(x̄, m̄), d’où M |= ϕ(m̄). On a bien M � N.
Réciproquement, supposons que T soit modèle-complète, et notons qu’une conjonction
ou disjonction de deux formules existentielles est équivalente à une formule existentielle.
Considérons deux modèles M et N de T , ainsi que deux uples m̄ ∈ M et n̄ ∈ N .
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Supposons que les formules existentielles satisfaites par m̄ dans M forment un sous-
ensemble des formules existentielles satisfaites par n̄ dans N. Soient {cm : m ∈M} des
nouvelles constantes, et considérons

Φ = Th(N, N) ∪ {ϕ(cm1 , . . . , cmk
, n̄) : M |= ϕ(m1, . . . ,mk, m̄), ϕ atomique}.

Chaque sous-ensemble fini Φ0(c̄, n̄) de Φ est interpretable dans N, comme

M |= ∃x̄
∧

Φ0(x̄, m̄) implique N |= ∃x̄
∧

Φ0(x̄, n̄).

Donc il y a un modèle N′ de Φ, extension élémentaire de N, qui contient une copie
de M, l’ensemble M′ = {cN′m : m ∈ M}, comme sous-structure ; notons que l’uple
correspondant à m̄ est n̄. Par modèle-complétude M′ � N′. Pour chaque formule on a

M |= ϕ(m̄)⇔M′ |= ϕ(n̄)⇔ N′ |= ϕ(n̄)⇔ N |= ϕ(n̄).

Donc m̄ et n̄ satisfont les mêmes formules. Par la proposition 3.23 chaque formule est
équivalente à une combinaison booléenne de formules existentielles.
Il nous reste de voir qu’une formule universelle ϕ(x̄) est équivalente à une formule
existentielle. Soit Φ(x̄) la collection des formules existentielles en x̄ qui impliquent
ϕ(x̄) modulo T , et

Ψ(x̄) = {¬ψ(x̄) : ψ(x̄) ∈ Φ(x̄)}.

Soient c̄ des nouvelles constantes, et supposons que

T ∪Ψ(c̄) ∪ {ϕ(c̄)}

a un modèle M. Si Φ0(x̄) est la collection des formules existentielles satisfaites par c̄M,
alors T∪Φ0(d̄)∪{¬ϕ(d̄)} n’a pas de modèle (c̄ et d̄ doivent satisfaire les mêmes formules
par la première partie de la preuve), et il y a une partie finie Φ′0(d̄) ∪ {¬ϕ(d̄)} qui est
inconsistante avec T . Mais ça signifie que ψ(x̄) :=

∧
Φ′0(x̄) implique ϕ(x̄) modulo T .

Donc ψ(x̄) ∈ Φ(x̄), et M |= ¬ψ(c̄), en contradiction avec M |= Φ′0(c̄).
Il y a donc une partie finie Ψ0(x̄) de Ψ(x̄) telle que T ∪Ψ0(x̄)∪{ϕ(x̄)} est inconsistant.
Donc

∧
Ψ0(x̄) implique ¬ϕ(x̄) modulo T , et ϕ(x̄) implique

ψ0(x̄) :=
∨
{ψ(x̄) : ¬ψ(x̄) ∈ Ψ0(x̄)}

modulo T . Comme ψ(x̄) implique ϕ(x̄) modulo T pour toute ψ(x̄) ∈ Φ(x̄), la formule
ϕ(x̄) est équivalente à ψ0(x̄).

Donc pour une théorie modèle-complète, les formules existentielles forment un ensemble
d’élimination, où on n’a même pas besoin des combinaisons booléennes.
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3.4 Les corps algébriquement clos
Nous vérifions dans cette section que la théorie des corps algébriquement clos élimine
les quanteurs et nous en déduisons une preuve du théorème des zéros de Hilbert.

Proposition 3.33 (Tarski, 1948). La théorie des corps algébriquement clos élimine les
quanteurs (dans le langage des anneaux Lann = {0, 1,+,−, ·}).

Démonstration. Soient K1 et K2 deux corps algébriquement clos et ā ∈ K1 et b̄ ∈ K2

deux uples satisfaisant les mêmes formules atomiques. Dans ce cas K1 et K2 ont même
caractéristique car 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0 est une formule atomique pour tout p. De plus ā et

b̄ satisfont les mêmes équations polynomiales sur le corps premier, donc ils engendrent
deux sous-corps k1 et k2 isomorphes. On peut supposer, en passant à des extensions
élémentaires, queK1 etK2 sont de degré de transcendance infini. On a vu (voir exemple
1.41) qu’il existe alors un va-et-vient de K1 sur K2 contenant l’isomorphisme de k1 sur
k2 qui envoie ā sur b̄. Donc ā et b̄ ont même type.

Exemple 3.34. Dans la théorie d’un corps algébriquement clos K un 1-type p sur un
sous-corps k est déterminé

— soit par le polynôme minimal sur k d’une réalisation de p (éléments algébriques),
— soit par l’ensemble {P (x) 6= 0 : P ∈ k[X]} (éléments transcendants).

Remarque 3.35. Soit K un corps commutatif considéré dans le langage Lann. La
famille des ensembles atomiques de K est formée des parties définies par des équations
polynômiales. Si on clôt par intersections finies, on obtient les fermés de Zariski. Alors
si on clôt par combinaisons booléennes finies, on obtient les ensembles constructibles. Si
K est algébriquement clos, il élimine les quanteurs, et la projection d’un constructible
est encore constructible (Théorème de Chevalley).

Lemme 3.36. Soit S un système fini d’équations et d’inéquations (en plusieurs incon-
nues), à coefficients dans un corps k. Si S a une solution dans une extension K de k,
il a une solution dans toute extension algébriquement close de k.

Démonstration. On peut voir S comme une formule sans quanteur ϕ(x1, ..., xn, b1, ..., bm)
dans le langage des anneaux où les xi correspondent aux inconnues et les bi sont les
coefficients dans le corps k. Alors il existe ā ∈ K tel que K |= ϕ(ā, b̄). Soit K1 une
extension de K algébriquement close. Comme ϕ est sans quanteur, K1 |= ϕ(ā, b̄).
Considérons une autre extension K2 de k algébriquement close. Alors les clôtures
algébriques k̄1 de k dans K1 et k̄2 de k dans K2 sont isomorphes au-dessus de k.
Comme la théorie des corps algébriquement clos élimine les quanteurs, k̄1 4 K1 et
k̄2 4 K2 et donc comme K1 |= ∃x̄ϕ(x̄, b̄) on a k̄1 |= ∃x̄ϕ(x̄, b̄), d’où k̄2 |= ∃x̄ϕ(x̄, b̄) et
K2 |= ∃x̄ϕ(x̄, b̄).

Théorème 3.37 (Théorème des zéros de Hilbert). Soit K un corps algébriquement
clos, I un idéal de K[X1, ..., Xn] et P ∈ K[X1, ..., Xn]. Supposons que pour tout ā ∈ Kn,
si Q(ā) = 0 pour tout Q ∈ I alors P (ā) = 0. Alors il existe m tel que Pm ∈ I.
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Démonstration. Supposons que Pm /∈ I pour tout m, et soit J un idéal contenant
I mais aucun des Pm, maximal pour ces propriétés. On vérifie facilement que J est
premier : Si QR ∈ J mais Q /∈ J et R /∈ J , alors par maximalité il y a un entier m et
des polynomes S, S ′ ∈ J et T, T ′ tels que

Pm = TQ+ S = T ′R + S ′.

Ainsi P 2m = (TQ+ S) (T ′R + S ′) ∈ J , une contradiction.
Soit L le corps de fractions de K[X1, ..., Xn]/J . Ainsi L contient K. Soient Q1, ..., Qr

des générateurs de J . Alors le système S := {Q1 = 0, ..., Qr = 0, P 6= 0} a une solution
X̄ + J dans L, et donc d’après le lemme précédent une solution dans K, mais cette
solution contredit l’hypothèse.



Chapitre 4

Modèles atomiques, modèles saturés

Dans ce chapitre nous nous intéressons à des modèles réalisant peu, ou beaucoup de
types.

4.1 Types isolés et omission de types
Définition 4.1. Un type p(x̄) sur A dans un modèle M est algébrique s’il y a une
L(A)-formule ϕ(x̄) ∈ p(x̄) qui n’a qu’un nombre fini de réalisations. Un uple ā est
algébrique sur A si tp(ā/A) l’est.

Exercice 4.2. Un uple ā est algébrique sur A si et seulement s’il est contenu dans
chaque sous-structure élémentaire contenant A de toute extension élémentaire de M.

Nous avons vu qu’on peut toujours trouver un modèle qui réalise un type. Mais est-ce
qu’on peut en trouver un qui ne le réalise pas ?

Définition 4.3. Un type p(x̄) sur A est principal, ou isolé, s’il y a une formule ϕ(x̄)
dans p(x̄) telle que Th(M, A)∪ {ϕ(x̄)} |= p(x̄). Dans ce cas, la formule ϕ(x̄) isole p(x̄)
sur A.

Une reformulation nous donne : ϕ(x̄) isole tp(ā/A) si et seulement si

Th(M, A) ∪ {ϕ(ā)} |= Th(M, Aā).

Topologiquement, ϕ(x̄) isole p ∈ Sn(T ) si p est l’unique type de Sn(T ) contenant ϕ(x̄),
c’est-à-dire si l’ouvert fermé [ϕ(x̄)] de Sn(T ) est réduit à {p}.

Exercice 4.4. Un type algébrique est isolé.

Lemme 4.5. tpM(āb̄/A) est isolé ssi tpM(ā/Ab̄) et tpM(b̄/A) le sont.

Démonstration. Si ϕ(x̄, ȳ) isole tpM(āb̄/A), alors ϕ(x̄, b̄) isole tpM(ā/Ab̄), et ∃x̄ ϕ(x̄, ȳ)
isole tpM(b̄/A). Réciproquement, si ϕ(x̄, b̄) isole tpM(ā/Ab̄) et ψ(ȳ) isole tpM(b̄/A), alors

Th(M,A) ∪ {ψ(b̄)} |= Th(M, Ab̄) et Th(M, Ab̄) ∪ {ϕ(ā, b̄)} |= Th(M, Aāb̄)}.

Donc ϕ(x̄, ȳ) ∧ ψ(ȳ) isole tpM(āb̄/A).

31
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Il est évident qu’un type principal est réalisé dans chaque modèle contenant A, comme
∃x̄ ϕ(x̄) fait partie de Th(M, A).

Exemple 4.6. Soit M = 〈Z, <〉 et T = Th(M). Pour chaque m ≥ 1, notons dm(x, y)
une formule exprimant qu’il existe exactement m − 1 éléments strictement compris
entre x et y, c’est-à-dire si x et y sont à distance m. On peut vérifier que tout type de
S2(T ) est de l’un des types suivants

— le type isolé par la formule x1 = x2,
— pour chaque m ≥ 1, le type isolé par la formule (x1 < x2) ∧ dm(x1, x2),
— pour chaque m ≥ 1, le type isolé par la formule (x1 > x2) ∧ dm(x1, x2),
— le type contenant les formules x1 < x2 et ¬dm(x1, x2) pour tout m ≥ 1,
— le type contenant les formules x1 > x2 et ¬dm(x1, x2) pour tout m ≥ 1.

Remarquons que les deux derniers types ne sont pas réalisés dans M.

Voici une méthode pratique permettant de construire une sous-structure élémentaire
dénombrable vérifiant des propriétés voulues :

Proposition 4.7 (Théorie de Henkin). Soit L un langage, T une L-théorie, κ ≥ |L|
un cardinal infini, et C = {ci : i < κ} des nouvelles constantes. On choisit une
énumération (ϕi(x) : i < κ) des L(C)-formules à une variable libre telle que chaque ϕi
ne contient que de nouvelles constantes cj avec j < i, et on forme la L(C)-théorie de
Henkin

TH = T ∪ {∃xϕi(x)→ ϕi(ci) : i < κ}.

Alors tout modèle M non-vide de T a une L(C)-expansion MC modèle de TH . De
plus, dans tout modèle MC |= TH l’ensemble {cMC

i : i < κ} forme une sous-structure
L(C)-élémentaire.

Démonstration. SiM |= T on interprète ci récursivement pour i < κ par une réalisation
de ϕi(x), s’il y en a, et par n’importe que élément de M sinon. Il est évident que
l’expansionMC ainsi obtenue satisfait chaque formule ∃xϕi(x)→ ϕi(ci), et doncMC |=
TH . De plus, si MC |= TH alors l’ensemble {cMC

i : i < κ} satisfait le Test de Tarski.

Définition 4.8. Soit T une théorie et p un type de S(T ). On dira qu’un modèle de T
omet p s’il ne réalise pas p.

Rappelons que dans un espace topologique une partie X est maigre si elle est une
réunion dénombrable de fermés d’intérieur vide (autrement dit, son complémentaire est
une intersection dénombrable d’ouverts denses). Alors le théorème de Baire implique
que dans un espace localement compact, le complément d’une partie maigre est toujours
dense.

Théorème 4.9 (Omission des types). Soit T une théorie dans un langage L dénom-
brable, et pour tout n < ω soit Xn une partie maigre de Sn(T ). Alors il existe un modèle
M |= T qui omet tous les types dans Xn, pour tout n < ω.
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Démonstration. On considère la théorie de Henkin TH pour l’ensemble C = {ci : i < ω}
de témoins de Henkin. Soit p(x̄) un fermé d’intérieur vide dans Sn(T ).
On montre d’abord que pour tout c̄ ∈ C l’ouvert TH \ [p(c̄)] est dense dans TH . Soit
donc [ϕ(c̄′)] un ouvert non-vide dans TH ; il faut montrer que

TH ∪ {ϕ(c̄′)} 6|= p(c̄).

Soit (ci : i < `) un segment initial de C contenant c̄ et c̄′. Soient x̄ et x̄′ les parties de
(xi : i < `) correspondant à c̄ et c̄′ dans (ci : i < `), et x̄′′ = (xi : i < `) \ x̄. On pose

ψ(x̄, x̄′′) = ϕ(x̄′) ∧
∧
i<`

∃xϕi(x)→ ϕi(xi).

Alors [∃x̄′′ ψ(x̄, x̄′′)] est un ouvert non-vide de Sn(T ) puisque [ϕ(c̄′)] est non-vide dans
TH . Comme p(x̄) est d’intérieur vide, il ne contient pas [∃x̄′′ ψ(x̄, x̄′′)], et il y a un modèle
M |= T et m̄ dans M tel que m̄ |=M ∃ȳ ψ(x̄, ȳ) mais m̄ 6|=M p. Soit m′′ dans M tel
que M |= ψ(m̄, m̄′′). Alors on peut interpréter cMC

i = mi pour i < ` et récursivement
trouver des interprétations dans M pour les (ci : i ≥ `) afin d’étendre M en une
L(C)-structure modèle de TH . Par construction, MC |= ϕ(c̄′) mais MC 6|= p(c̄). Ainsi
ThL(C)(MC) ∈ [ϕ(c̄′)] \ [p(c̄)].
D’après le théorème de Baire, l’intersection⋂

{¬p(c̄) : n < ω, p ∈ Xn, c̄ ∈ Cn}

est de complément dense dans TH . Soit T ′ une théorie complète dans ce complément,
et NC |= T ′. Alors (cNC

i : i < ω) est une sous-structure élémentaire de N qui omet tous
les types dans les Xn pour n < ω.

4.2 Modèles

Définition 4.10. Soit M une L-structure, A ⊆ B ⊆M , et λ un cardinal infini.
— B est atomique sur A ⊆ M si tp(b̄/A) est isolé pour chaque uple fini b̄ de B.

Comme toujours, on supprime «sur ∅».
— B est construit sur A s’il existe une énumération (bi : i < α) de B \ A tel que

tp(bi/A, bj : j < i) est isolé pour tout i < α. L’énumération (bi : i < α) s’appelle
une construction de B sur A.

— M est premier sur A si M se plonge élémentairement dans tout modèle de
Th(M, A).

— M est minimal sur A s’il n’y a pas de sous-structure élémentaire propre de M
contenant A.

— M est λ-homogène si l’ensemble des isomorphismes partiels élémentaires dont
le domaine est de cardinalite < λ forme un système de va-et-vient, et homogène
si M est |M|-homogène.
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— M est fortement λ-homogène si tout isomorphisme partiel élémentaire dont le
domaine est de cardinalite < λ se prolonge en un automorphisme, et fortement
homogène si M est fortement |M|-homogène.

— M est λ-universel si M réalise tout λ-type sur ∅, et universel si M est |M|-
universel.

— M est λ-saturée si M réalise tout 1-type sur un domaine A ⊆M de cardinalité
< λ, et saturée si M est |M|-saturé.

Proposition 4.11. Soit M une L-structure, A ⊆ B ⊆M , et λ un cardinal infini.

1. Si B \A est dénombrable et B est atomique sur A, alors B est construit sur A.
2. Si B est construit sur A, alors B est atomique sur A.
3. Si M est construit sur A, alors M est premier sur A.
4. Si L(A) est dénombrable et M est premier sur A, alors M est construit sur A.
5. Si M est fortement λ-homogène, alors M est λ-homogène.
6. Si M est λ-saturée et A ⊆M est de cardinalité < λ, alors M réalise tout λ-type

sur A.
7. M est λ-saturée ssi M est λ-universel et λ-homogène.

Démonstration. 1. Découle du Lemme 4.5.
2. Soit (bi : i < α) une construction de B sur A. On montre par récurrence que
{bi : i < j} est atomique sur A pour tout j ≤ α. C’est évident pour j = 0
ou j limite. Soit j = k + 1 et b̄ ∈ {bi : i ≤ k}. On pose b̄′ = b̄ \ {bk}. Alors
tp(bk/A, bi : i < k) est isolé par une formule ϕ(x, b̄′′) avec ϕ ∈ L(A) et b̄′′ ∈
{bi : i < k}. Cette même formule isole tp(bk/A, b̄

′, b̄′′). Puisque tp(b̄′b̄′′/A) est
isolé par hypothèse de récurrence, tp(bkb̄

′b̄′′/A) est isolé, ainsi que tp(b̄/A), par
le lemme 4.5.

3. Soit (ai : i < α) une construction de M sur A. Puisque tout type isolé est réalisé
dans tout modèle N de Th(M, A), on trouve par récurrence transfinie sur j une
suite (bi : i < α) d’éléments de N telle que (M, A, ai : i ≤ j) ≡ (N, A, bi : i ≤ j).

4. Si M n’est pas atomique sur A, alors il réalise un type non-principal p ∈ S(A).
Par le théorème 4.9 il y a un modèle N de Th(M, A) qui omet p, et M ne peut
pas se plonger élémentairement dans N sur A comme la réalisation de p n’a pas
d’image possible. D’autre part, si L(A) est dénombrable, alors il y a un modèle
dénombrable de Th(M, A) par le corollaire 1.36. Ainsi un modèle premier sur A
est atomique et dénombrable, d’où construit d’après le 1.

5. Suit immédiatement des définitions.
6. Soit p(xi : i < λ) ∈ Sλ(A), et pour i < λ soit x̄i = (xj : j < i) et pi(x̄i, xi) la

restriction de p aux variables (x̄i, xi). Alors par λ-saturation on trouve récursi-
vement des réalisations mi ∈M de pi(m̄i, xi), et (mi : i < λ) |= p.

7. Exercice.
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Remarque 4.12. Si |A| < λ < |S(A)| pour un sous-ensemble A d’un modèle de T ,
alors il n’y a pas de modèle saturé de cardinal λ (un tel modèle devrait contenir une
copie A′ de A, et ensuite réalisations de tous les types sur A′).

Exercice 4.13. Soit B construit sur A. Montrer que |B| ≤ |L(A)|.

Proposition 4.14. Une théorie complète dénombrable a un modèle atomique ssi les
types isolés sont denses dans S(T ).

Démonstration. Soit M |= T atomique, et [ϕ(x̄)] un ouvert non-vide de Sn(T ). Alors
∃x̄ ϕ(x̄) est dans T par complétude, et il y a m̄ dans M avec M |= ϕ(m̄). Ainsi
tp(m̄) ∈ [ϕ(x̄)] est un type isolé.
Réciproquement, supposons que les types isolés soient denses dans S(T ), et soitM |= T .
On étend récursivement M en un modèle de la théorie de Henkin TH pour un ensemble
C = (ci : i < ω) de constantes, telle que tpL(c̄) est isolé pour tout uple fini c̄ dans
C. On suppose qu’on a déjà trouve des interprétations cMC

j dans C pour j < i tel
que tpL(cj : j < i) est isolé par une formule ψi(x̄). Si M |= ¬∃xϕi(x, cj : j < i), on
choisit un type pi isolé dans [ψi(x̄)∧xi = xi]. Si pi est isolé par ϑi(x̄, xi) et réalisé dans
M par un uplet (mj : j ≤ i), alors (mj : j < i) réalise ψi et a donc le même type
que (cMC

i : i < j). Il y a donc m ∈ M réalisant ϑi(x, cj : j < i), et on peut prendre
cMC
i = m.
Si M |= ∃xϕi(x, cj : j < i), on prend pi isolé dans [ψi(x̄) ∧ ϕi(xi, x̄)], qui est alors un
ouvert non-vide ; le reste de l’argument est le même.

Proposition 4.15. Une théorie complète a un modèle construit sur toute partie A d’un
modèle ssi les types isolés sont denses dans S1(A) pour toute partie A d’un modèle.

Démonstration. Soit M |= T et A ⊆M .
Si T a un modèle N construit sur A (c’est-à-dire N |= Th(M, A) et N est construit
sur A), alors pour tout ouvert non-vide [ϕ(x, ā)] de S1(A) on a ∃xϕ(x, ā) ∈ Th(M, A),
donc N |= ∃xϕ(x, ā), et il y a n ∈ N tel que N |= ϕ(n, ā). Alors tp(n/A) ∈ [ϕ(x, ā)]
est isolé d’après la proposition 4.11.2.
Réciproquement, supposons que sur tout ensemble de paramètres les types isolés soient
denses. On construit récursivement une suite A = A0 ⊆ A1 ⊆ · · · ⊆ M de parties de
M : On prends des réunions aux étapes limites, on s’arrête si Ai satisfait le test de
Tarski, et sinon, si ϕ(x) est une L(Ai)-formule qui a une réalisation dans M mais
aucune dans Ai, on choisit un type pi isolé dans [ϕ(x)] ⊆ S1(Ai). Alors pi est réalisé
dans M par un élément ai, et on pose Ai+1 = Ai ∪ {ai}.
On s’arrête au plus tard quand on a épuisé M , et quand on s’arrête, on a trouvé une
sous-structure élémentaire de M construite sur A.

Proposition 4.16. 1. Deux modèles atomiques dénombrables d’une théorie com-
plète sont isomorphes. Plus généralement, si (M, A) ≡ (N, B), M \A et N \B
sont dénombrables, M est atomique sur A et N est atomique sur B, alors tout
isomorphisme élémentaire partiel σ0 : A→ B se prolonge en un isomorphisme.
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2. Deux modèles saturés de même cardinal λ d’une théorie complète sont isomor-
phies. Plus précisement, tout isomorphisme élémentaire partiel σ0 : A → B de
deux parties de cardinal < λ se prolonge en un isomorphisme.

Démonstration. Si M et N sont deux modèles de la même théorie complète, l’ap-
plication vide est un isomorphisme partiel. Donc l’isomorphie des modèles est une
conséquence de la possibilité de prolongement.
Dans le cas 1. on pose λ = ω. Soient (mi : i < λ) et (ni : i < λ) des énumérations de
M \A et de N \B. On construit par récurrence une suite d’isomorphismes élémentaires
partiels (σi : i < λ) de M dans N, tels que σi étend σj pour j > i, et pour tout i ≥ 0,
le domaine de σi contient {mk : k < i}, et l’image de σi contient {nk : k < i}, avec
|Dom(σi) \ A| = |Im(σi \ B| ≤ 2 · |i|. Ceci est clair pour i = 0 ; pour i limite on peut
prendre σi =

⋃
j<i σj (uniquement dans le cas 2.).

Supposons qu’on a trouvé σi, et soit Ai le domaine et Bi l’image de σi. Dans le cas
1. le type tp(mi/Ai) est isolé par une formule ϕ(x,Ai) d’après le lemme 4.5 ; comme
M |= ∃xϕ(x,Ai) et σi est élémentaire, N |= ∃xϕ(x,Bi) ; soit n ∈ N tel que N |=
ϕ(n,Bi). Comme σi est élémentaire, ϕ(x,Bi) isole tp(n/Bi) = σi(tp(mi/Ai)). Donc on
peut étendre σi en envoyant mi sur n. De même, comme tp(ni/Bi, n) est isolé par une
formule ψ(x,Bi, n), on trouve m ∈M réalisant ψ(x,Ai,mi).
Dans le cas 2. le type σi(tp(mi/Ai)) est réalisé dans N par un élément n par saturation
de N, si σ′ = σ ∪ {mi 7→ n}, le type σ′−1(tp(ni/Bi, n)) est réalisé dans M par un
élément m par saturation de M.
Dans les deux cas on ajoute au plus deux éléments au domaine et à l’image, ce qui
conserve la condition sur leur cardinalité.
Enfin, σ =

⋃
i<λ σi est l’isomorphisme recherché entre M et N.

Remarque 4.17. Il en découle que si L(A) est dénombrable, alors deux modèles
premiers sur A sont A-isomorphes. Cependant, en général on peut avoir des modèles
premiers non-isomorphes.

Exemple 4.18. 1. 〈Z, <〉 et 〈Q, <〉 sont atomiques, 〈Q, <〉 est saturé, mais 〈Z, <〉
n’est pas saturé : il omet le 2-type qui dit que la distance entre x et y est infini.

2. 〈Z, 0,+〉 est atomique ; sa théorie n’a pas de modèle saturé de cardinal ω : pour
tout ensemble P de nombres premiers il y a le type qui dit que x est divisible
par p si et seulement si p ∈ P ; ça fait 2ω types sur ∅ qu’on ne peut pas tous
réaliser dans un modèle dénombrable.

3. Q̃ et F̃p sont les corps algébriquement clos atomiques. C est saturé (de cardinal
2ω), et ˜Q(xi : i < ω) est saturé dénombrable.

Exemple 4.19. Voici une théorie qui n’a pas de modèle atomique : Le langage com-
porte un ordre < et un prédicat unaire P ; on considère la théorie de R, ou on a ajoute
une constante pour chaque rationel q ∈ Q, et P est interpreté par Q. Alors tout modèle
contiendra une copie de Q ; on peut construire un modèle M de façon que pour une
certaine coupure irrationnel sur Q toute réalisation satisfait P . Mais s’il y a un modèle
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atomique M0, il s’injecte dans R et dans M, et toutes les réalisations de cette coupure
dans M0 satisfont à la fois ¬P et P . Donc il n’y en a pas ; comme on peut repeter
avec chaque coupure irrationnel, aucune telle coupure est réalise dans M0. Mais M0

s’injecte dans R et ne réalise que des coupures irrationnelles. Ça signifie que le domaine
de M0 est Q, et M0 ne comporte aucun élément réalisant ¬P , contradiction.

Exemple 4.20. Th(Z, 0,+) n’a pas de modèle premier. En fait, pour p premier on
pose

Z(p) = {m
n

: m ∈ Z, n > 0, p - n}.

On montre (par élimination des quanteurs dans un langage avec un predicat pour
divisibilité par p, pour tout nombre premier p) que

⊕
p Z(p) est un modèle de Th(Z)

dans lequel Z ne se plonge pas. Puisque Z est minimal, il n’y a pas de modèle premier.

Exercice 4.21. Montrer que si M est premier et minimal sur A, alors c’est le seul
modèle premier sur A à A-isomorphisme près.

Proposition 4.22. Toute structure a une extension élémentaire ω-saturée.

Démonstration. Soit M une structure. On construit une chaîne

M = M0 4M1 4 ... 4Mi 4 ...

telle que pour tout i, Mi+1 réalise tous les types dans S1(Mi). Pour cela considérons
une énumération (pj)j∈J des types dans S1(Mi) et l’ensemble d’énoncés

Σ :=
⋃
j∈J

pj(cj)

où (cj)j∈J est une famille de nouvelles constantes. Par compacité Σ est consistant
puisque toute partie finie de chaque pj est réalisée dans 〈Mi,Mi〉.
L’union N :=

⋃
Mi est une extension élémentaire de chaque Mi ; montrons qu’elle est

ω-saturée. En effet, si A est une partie finie de N , il existe i tel que A ⊆Mi. Soit p un
type dans S1(A). Il a une complétion dans S1(Mi), qui est réalisé dans Mi+1 par un
élément a. Mais alors a réalise p dans N.

Exercice 4.23. Pour tout M et tout λ il y a une extension élémentaire N � M qui
est λ-saturée.

Exercice 4.24. Si |L| ≤ λ et λ+ = 2λ, une théorie complète a un modèle saturé de
cardinal λ+.

Le théorème suivant donne une caractérisation fondamentale des théories ℵ0-catégoriques.

Théorème 4.25. Ryll-Nardzewski, Svenonius, Engeler Les conditions sui-
vantes sont équivalentes pour une théorie complète dénombrable :

1. T est ℵ0-catégorique.
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2. Tout type dans S(T ) est isolé.
3. Sn(T ) est fini pour chaque n < ω.
4. Pour chaque n < ω il n’y a qu’un nombre fini de formules inéquivalentes modulo

T à n variables libres x1, . . . , xn.

Démonstration. 3. ⇔ 4. Si Sn(T ) est fini, on trouve facilement des formules isolant
les types dans Sn(T ) ; une formule en n variables libres sera donc équivalente à une
combinaison booléenne de ces formules. La réciproque est évidente.
3. ⇒ 2. ⇒ 1. Si Sn(T ) est fini pour chaque n, alors chaque type sur ∅ est isolé et
tout modèle de T est atomique ; par le théorème 4.16 deux modèles dénombrables sont
isomorphes.
1.⇒ 2. Si T est ω-catégorique, comme tout type non-isolé sur ∅ peut être ou bien réalisé
ou bien omis dans un modèle dénombrable par le théorème d’omission des types, tout
type sur ∅ est principal.
2.⇒ 3. Pour n < ω et p ∈ Sn(T ) soit ϕp(x̄) une formule isolant p. Si Sn(T ) est infini,
alors par compactité l’ensemble {¬ϕp(x̄) : p ∈ Sn(T )} est consistant et on peut le
completer en un type q(x̄). Mais ϕq ∈ q, une contradiction.

Exercice 4.26. Montrer qu’une théorie dénombrable complète est ℵ0-catégorique si
et seulement si tout modèle dénombrable est ω-saturé.

4.3 Théories menues et modèles dénombrables
Définition 4.27. Une théorie dénombrable est menue si S(T ) est dénombrable.

Lemme 4.28. Si T est menue, M |= T et m̄ est un uple fini de M , alors Sn(m̄) est
fini pour tout n < ω.

Démonstration. Si ā et b̄ sont des uples finis (dans une extension élémentaire N) et
tp(ām̄) = tp(b̄m̄), alors tp(ā/m̄) = tp(b̄/m̄).

Proposition 4.29. Une théorie complète dénombrable a un modèle saturé dénombrable
ssi elle est menue.

Démonstration. Il est évident que la condition est nécessaire, puisqu’un modèle dé-
nombrable n’a qu’un nombre dénombrables d’uples finis, et ne réalise qu’un nombre
dénombrable de types. Réciproquement, soit M0 un modèle dénombrable d’une théorie
T menue, qui réalise tous les types dans S(T ) (qui existe puisque tous les types peuvent
être réalisés dans un modèle, qu’on peut prendre dénombrable par Löwenheim-Skolem
descendant). Pour tout i < ω soit Mi+1 une extension élémentaire dénombrable de Mi

qui réalise tous les types sur tous les uples finis de Mi. Cela existe puisqu’il n’y a qu’un
nombre dénombrable d’uples finis dans Mi, et Sn(m̄) est dénombrable pour chaque
uple fini m̄ et tout n < ω d’après le lemme 4.28. Soit M =

⋃
i<ωMi, une extension

élémentaire de chaque Mi. Alors M est dénombrable ; comme tout uple fini de M est
déjà dans Mi pour i suffisamment grand, M est ω-saturé, donc saturé.
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Si M est une structure dénombrable, alors M devient atomique dans l’expansion qui
rajoute une constante pour chaque élément de M . On ne peut donc pas caractériser
l’existence d’un modèle atomique par une condition sur le cardinal de S(T ). Par contre,
l’autre direction est vraie.

Lemme 4.30. Soit T menue. Alors les types isolés sont denses : toute formule peut être
complétée en un type complet, sur tout uple fini de paramètres contenant les paramètres
de la formule.

Démonstration. D’après le lemme 4.28 on peut supposer m̄ = ∅. Si [ϕ(x̄)] est non-
vide et ne contient aucun type isolé, alors pour tout [ψ(x̄)] ⊆ [ϕ(x̄)] non-vide contient
un type isolé. On peut donc récursivement trouver une suite de formules ϕη(x̄) pour
η ∈ 2<ω avec φ∅ = ϕ et tel que [ϕηˆ0(x̄)] et [ϕηˆ1(x̄)] sont non-vides et disjoints dans
ϕη(x̄) : Comme ϕη n’isole pas de type, il y a deux types p0, p1 ∈ [ϕ] et un formule
ψ ∈ p0 \ p1. Il suffit de prendre ϕηˆ0 = ϕη ∧ ψ et ϕηˆ1 = ϕη ∧n eψ.
Alors pour tout η ∈ 2ω les types partiels {ϕη�n : n < ω} sont disjoints, et se complètent
en 2ℵ0 types de S(T ).

Remarque 4.31. La démonstration ne suppose pas que T soit complète, et x̄ = ∅
est possible. Cependant, dès qu’on parle d’un paramètre m̄ issu d’un modèle M, on se
place dans la théorie complète Th(M, m̄).

Proposition 4.32. Si T est menue, elle a un modèle atomique dénombrable. Plus
précisément, pour tout uple fini m̄ dans un modèle M de T il y a un modèle dénombrable
Mm̄ ≺M atomique sur m̄.

Démonstration. D’après le lemme 4.28 on peut supposer m̄ = ∅. On construit récursi-
vement une interprétation de la théorie de Henkin TH avec constantes (ci : i < ω), de
manière que tp(ci/cj : j < i) est isolé pour tout i < ω. Cela est possible puisque ϕi(x)
contient un type isolé. Alors {cMi : i < ω) est construit.

Définition 4.33. Le spectre d’une théorie est la fonction I(T, κ) qui à un cardinal κ
associe le nombre de modèles non-isomorphes de cardinal κ.

I(T,ℵ0) = 1 ssi T est ℵ0-catégorique. Alors se pose la questions des possibles valeurs
de I(T,ℵ0) en fonction de T . On a vu que I(ACFp,ℵ0) = ℵ0 en toute caractéris-
tique, les modèles étant déterminés par leur degré de transcendance, qui est ≤ ω.
Si T = Th((Q, <),Q) est la théorie DLOo avec des constantes pour le modèle dé-
nombrable, alors I(T,ℵ0) = 2ℵ0 , car toute coupure sur Q est réalisé dans un modèle
dénombrable, mais un tel modèle ne peut réaliser qu’un nombre dénombrable de cou-
pures. Par ailleurs, c’est la valeur maximale, car si M est un ensemble dénombrable,
il y a au plus ℵn+1

0 = ℵ0 manières pour y interpreter une relation (n + 1)-aire ou une
fonction n-aire, et au plus ℵ|L|0 ≤ 2ℵ0 manières pour en faire un modèle de T .

Lemme 4.34. Si I(T,ℵ0) < 2ℵ0, alors T est menue.
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Démonstration. On montre que si S(T ) > ℵ0 alors S(T ) = 2ℵ0 . Comme tout type dans
S(T ) est réalisé dans un modèle dénombrable, mais un tel modèle ne réalise que ℵ0

types dans S(T ), cela implique I(T,ℵ0) = 2ℵ0 , car deux modèles isomorphes réalisent
les mêmes types sur ∅.
On rappelle que la dérivée X ′ d’un espace topologique X est X privé de ses points
isolés, avec la topologie induite. Pour un ordinal α on pose X(α+1) = (X(α))′, et pour
un ordinal limite λ on pose X(λ) =

⋂
α<λX

(α). Il y a alors un ordinal α tel que X(α) =
X(α+1) = X(∞).
Comme chaque formule isole au plus un point de Sn(T ) (modulo la dérivée précé-
dente), et que tout point de Sn(T ) \ Sn(T )[∞) est isolé par une formule (modulo la
dérivée précédente), on a |Sn(T )| ≤ ℵ0 + |Sn(T )(∞)|. En particulier, si Sn(T ) n’est pas
dénombrable, Sn(T )[∞) non plus. Mais tout ouvert-fermé [ϕ] qui contient un point p de
Sn(T )[∞) en contient plusieurs, car sinon p serait dans la prochaine dérivée. On peut
donc trouver une formule ψ telle que [ϕ ∧ ψ] et [ϕ ∧ ¬ψ] contiennent tous les deux un
point de Sn(T )[∞) ; comme Sn(T )[∞) est non-vide, on démarre avec [x̄ = x̄] = Sn(T ) et
on construit un arbre binaire avec branches consistants. Ainsi Sn(T ) = 2ℵ0 .

Exemple 4.35. Soit L = {<, ci : i < ω} et T = DLOo ∪ {ci < ci+1 : i < ω}. C’est une
expansion par constantes d’une théorie avec élimination des quanteurs ; elle élimine
donc elle-même les quanteurs, et on voit facilement qu’elle est complète. Elle a trois
modèles en fonction de la valeur de limi ci : on peut avoir limi ci =∞, donc les ci sont
cofinal dans le modèle, ou bien limi ci est rationel, donc dans le modèle, ou bien limi ci
est une coupure irrationnelle.

Exemple 4.36. Plus généralement, pour n ≥ 3 soit Tn l’expansion de la théorie
précédente par n − 2 relations unaires (Pj : j < n − 2) qui partitionnent le domaine,
telle que ci ∈ P0 pour tout i < ω. Alors les cas ou limi ci est dans le modèle se scinde
en n− 2 cas en fonction du j tel que limi ci ∈ Pj. Ainsi I(Tn,ℵ0) = n.

Théorème 4.37. I(T,ℵ0) 6= 2.

Démonstration. Si I(T,ℵ0) < 2ℵ0 , alors T est menue d’après le lemme 4.34, et a un
modèle atomique et un modèle saturé, d’après les propositions 4.32 et 4.29. Si T n’est
pas ℵ0-catégorique, il y a un type non-isolé, et le modèle atomique n’est pas isomorphe
au modèle saturé. Il nous faut trouver un modèle intermédiaire, non-isomorphe aux
deux.
Soit n̄ la réalisation d’un type non-isolé, et M un modèle dénombrable atomique (donc
premier et construit) sur m̄, qui existe d’après la proposition 4.32. Alors M n’est
pas atomique puisqu’il contient m̄. Mais comme T n’est pas ℵ0-catégorique, il y a
n < ω tel qu’il y a une infinité de formules en n variables libres inéquivalentes modulo
T ; ces formules restent inéquivalentes modulo Th(M, m̄), et Th(M, m̄) n’est pas ℵ0-
catégorique. Mais M en est un modèle atomique, qui donc n’est pas saturé. Mais cela
implique que M n’est pas saturé en tant que modèle de T non plus.

Conjecture 4.38 (Vaught). Si I(T,ℵ0) < 2ℵ0 , alors I(T,ℵ0) ≤ ℵ0.
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