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Precursors

Feit-Thompson (1962/63): A finite group of odd order is
soluble. 255 pages.

Suzuki (1957): A finite group of odd order whose proper
centralisers are abelian is soluble. 9 pages.
Frobenius (1901): A finite group G with a malnormal subgroup
H splits as G = N o H, where N = (G \

⋃
g∈G Hg) ∪ {1}.

10 pages.
A proper non-trivial subgroup H ≤ G is called malnormal if
H ∩ Hg = {1} for any g ∈ G \ H.
A group G which allows for a malnormal subgroup H is called a
Frobenius group; H is the Frobenius complement, and N is the
Frobenius kernel (if it exists).
Thompson (1960): The Frobenius kernel of a finite Frobenius
group is nilpotent.
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Terence Tao:
It seems to me that the above four theorems (Frobenius,
Suzuki, Feit-Thompson, and CFSG) provide a ladder of sorts
(with exponentially increasing complexity at each step) to the
full classification, and that any new approach to the
classification might first begin by revisiting the earlier theorems
on this ladder and finding new proofs of these results first (in
particular, if one had a “robust” proof of Suzuki’s theorem that
also gave non-trivial control on “almost CA-groups” — whatever
that means — then this might lead to a new route to classifying
the finite simple groups of Lie type and bounded rank). But
even for the simplest two results on this ladder — Frobenius
and Suzuki — it seems remarkably difficult to find any proof
that is not essentially the character-based proof.

In a later blog entry Tao gives a proof of Frobenius’ Theorem
using commutative representation theory rather than
non-commutative one. But it is is heavily based on averages.
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Permutation groups
If G is a Frobenius group with (definable) Frobenius
complement H, the left action on the coset space G/H yields a
(definable) transitive permutation group such that the stabiliser
of any two points is trivial. Conversely, for a permutation group
G acting transitively on X such that the stabiliser of any two
distinct points is trivial, the centraliser of any one point is
malnormal, and G is a Frobenius group.

If G is a Frobenius group of finite Morley rank, then Nesin has
shown that the Frobenius complement is definable.
Borvik and Nesin have conjectured that Frobenius’ and
Thompson’s Theorems hold when replacing finite by finite
Morley rank:
Conjecture 1. A Frobenius group G of finite Morley rank with
Frobenius complement H splits as G = N o H for nilpotent
N = (G \

⋃
g∈G Hg) ∪ {1}.
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Sharp 2-transitivity
A permutation group is sharply 2-transitive if for any two pairs of
distinct points there is a unique permutation exchanging the
pairs. The standard example is the group of affine
transformations of some field K, i.e. the group K+ o K×.

Now any permutation g ∈ G exchanging two points x and y must
have order 2; if g′ is an involution exchanging x′ and y′, then
g′ = gh for the unique h ∈ G with h(x′) = x and h(y′) = y. Thus
all involutions are conjugate.
Conjecture 2. An infinite sharply 2-transitive permutation group
of finite Morley rank is standard for some algebraically closed
field. More precisely:

(i) A sharply 2-transitive permutation group of finite Morley
rank splits.

(ii) A sharply 2-transitive split permutation group of finite
Morley rank is standard.
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Permutation characteristic
If the Frobenius complement does not contain an involution, the
permutation characteristic of G is 2. Otherwise, all products of
two distinct involutions are conjugate, and the permutation
characteristic of G is the order of ij, for any two distinct
involutions i and j (or 0, if the order is infinite).

Kerby and Wefelscheid have shown (i) in permutation
characteristic 3; Cherlin, Grundhöfer, Nesin and Völklein have
shown (ii) in permutation characteristic 0.
We shall show (i) in permutation characteristic 2, and (ii) in
permutation characteristic 6= 2. In particular, Conjecture 2 holds
in permutation characteristic 3.
As our methods are based on the study of involutions, they tell
us nothing about a finite Morley rank Feit-Thompson Theorem
or degenerate simple groups of finite Morley rank.
They might, however, contribute to the study of the odd type
case of the Algebraicity Conjecture.
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Permutation Characteristic 2
Theorem
Let G be a connected Frobenius group with Frobenius
complement H. If H does not contain an involution, then G has
a normal definable connected subgroup N containing all
involutions, such that N ∩ H = {1}.

Corollary

An infinite sharply 2-transitive permutation group of finite
Morley rank and permutation characteristic 2 splits.

Proof.
Let G be the group, H its Frobenius complement, and N E G the
definable normal subgroup given by the Theorem. If i ∈ N is an
involution, then RM(N) ≥ RM(iH) = RM(H). Thus

2RM(H) ≤ RM(HN) ≤ RM(G) = 2RM(H).

It follows that G = N o H splits.
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Centrality of the Sylow 2-Subgroup

Definition
A decent torus is a definable divisible abelian subgroup with
dense torsion.

Decent tori have very good algebraic properties (Altınel,
Burdges, Cherlin).

Theorem
Let G be a connected group of finite Morley rank whose
connected definable abelian subgroups are decent tori. Then
its 2-Sylow subgroup is connected and central.

Deloro and Wiscons have recently obtained this Theorem as a
corollary of a more general result on the 2-structure of a
connected group of finite Morley rank.
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Permutation Characteristic 6= 2
Definition
A near-field is a skew field, except that the left distributive law
(y + z)x = yx + zx need not hold.

Fact (Karzel)

A split sharply 2-transitive permutation group is the group of
affine transformations of a near-field; the near-field
characteristic is equal to the permutation characteristic.

Definition
The kernel ker(K) of a near-field K is the set of elements with
respect to which multiplication is left distributive:

ker(K) = {x ∈ K : ∀ y, z ∈ K (y + z)x = yx + zx}.

The prime field of a near-field is always contained in the kernel.
It need not be in the centre of K, however, since conjugation is
not an automorphism of K and need not stabilize the kernel.
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Near-fields of finite Morley rank

Theorem
An infinite near-field K of finite Morley rank in characteristic 6= 2
is an algebraically closed field.

Proof.
If the kernel is infinite (in particular if char(K) = 0 or Z(K×) is
infinite), this is Borovik-Nesin or Cherlin et al.
In characteristic p > 0, note first that K is additively connected,
as for any additive proper subgroup H of finite index the
intersection

⋂
x∈K× xH is trivial, but equals a finite

subintersection, and hence is of finite index, a contradiction.
There is thus a unique type of maximal Morley rank, so K× is
multiplicatively connected as well.
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multiplicatively connected as well.
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Let A be a definable connected infinite abelian multiplicative
subgroup, and M0 an A-minimal additive subgroup. Then M0 is
additively isomorphic to the additive group of an algebraically
closed field K0, and A embeds multiplicatively into K×0 .

In fact, for any e0 ∈ M0 \ {0} and a1, . . . , an ∈ A such that
a1e0 + · · ·+ ane0 = 0, we have by right distributivity that
ae0

1 + · · ·+ ae0
n = 0, so the addition induced on A by K0 is the one

inherited from K-addition on Ae0 .
So we might replace A by Ae0 , M0 by e−1

0 M0 and e0 by 1. Then
A ⊆ M0 = K+

0 , and field multiplication on K0 is induced from K
on A× K0, but does not necessarily agree with multiplication
from K if the left factor is in K0 \ A.
In particular, A is a decent torus. Hence the centre Z(K×)
contains the Sylow 2-subgroup, which is infinite in permutation
characteristic different from 2.
We finish by the first paragraph. �
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Corollary

A sharply 2-transitive group of finite Morley rank and
permutation characteristic 3 is the group of affine
transformations of an algebraically closed field of
characteristic 3.

Proof.
A sharply 2-transitive permutation group of permutation
characteristic 3 splits (Kerby, Wefelscheid). Now use the Fact
and Theorem above.
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Merci !
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Support Committee:
http://math.univ-lyon1.fr/SoutienTunaAltinel/
Sign the petition for his release:
https://math.univ-lyon1.fr/petitionTunaAltinel/
Academics for peace:
https://barisicinakademisyenler.net/English
The Conference/Film about the Cizre massacre
https://rebellyon.info/Djizre-histoire-d-un-massacre-20196
There are currently 746 signatories on trial (among which Ayşe
Berkman, the third author), 195 convicted, 35 imprisoned.
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