Die böse Farbe
F. Wagner Lyon 1

Introductic

The class (

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

Axiomatization

Die böse Farbe

Frank O Wagner Institut Camille Jordan Université Claude Bernard Lyon 1 France

10 November 2006

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C* Codes Counting The class *C*

Thrifty amalgamatio

Die böse Farbe

Frank O Wagner Institut Camille Jordan Université Claude Bernard Lyon 1 France

10 November 2006

Introduction

Die böse Farbe

F. Wagner Lyon 1

Introduction

The CIT

The class (

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

Axiomatization

A bad field is a field of finite Morley rank with a predicate for a proper divisible non-trivial subgroup.

The question of the existence of such fields arose naturally in the study of groups of finite Morley rank, where a Borel subgroup might have the form

 $K^+ \rtimes T$

for some $T \leq K^{\times}$; if one could show that $T = K^{\times}$, this would imply the existence of involutions (i.e. a finite Morley rank version of the Feit-Thompson Theorem), and more generally the existence of elements of any finite order.

Positive characteristic

Die böse Farbe

F. Wagner Lyon 1

Introduction

The CIT

The class ${\mathcal C}$

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation In characteristic p > 0 the existence of a bad field implies that there are only finitely many p-Mersenne primes, i.e. primes of the form

$$\frac{p^n-1}{p-1},$$

which is generally believed to be false.

Moreover, the absolutely algebraic numbers form an elementary substructure; it is thus impossible to construct a bad field of positive characteristic by generic (Hrushovski amalgamation style) methods, since they cannot tell us anything about $acl(\emptyset)$.

It may, however, still be possible to construct a non-saturated generic structure (not of finite Morley rank), or a simple bad field of finite SU-rank.

Characteristic zero

Die böse Farbe

F. Wagner Lyon 1

Introduction

- The CIT
- The class ${\cal C}$
- Codes
- Counting
- The class ${\cal C}_{\mu}$
- Thrifty amalgamation
- Axiomatization

I shall sketch the recent construction of a bad field of characteristic $\ensuremath{\mathsf{0}}$

It is obtained by collapsing Poizat's green field of characteristic zero and Morley rank $\omega \cdot 2$ with a multiplicative subgroup of Morley rank ω , following the ideas of the collapse of Poizat's red field of positive characteristic and Morley rank $\omega \cdot 2$ with an additive subgroup of Morley rank ω by Baudisch, Martín Pizarro and Ziegler.

This is joint work with Andreas Baudisch, Martin Hils and Amador Martín Pizarro.

Tori

Die böse Farbe

F. Wagner Lyon 1

The CIT The class

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation Let *K* be an algebraically closed field of characteristic 0. A variety *V* will be a subvariety of some $(K^{\times})^n$.

A torus is a connected algebraic subgroup of $(K^{\times})^n$. It is given by equations of the form $x_1^{r_1} \cdot \ldots \cdot x_n^{r_n} = 1$. For tori, linear dimension (of a generic point over \mathbb{Q} , modulo torsion) equals algebraic dimension.

Given an irreducible variety *V*, its minimal torus is the smallest torus *T* such that *V* lies in some coset $\bar{a} \cdot T$. The codimension of *V* is then

 $\operatorname{cd}(V) := \operatorname{dim}(T) - \operatorname{dim}(V) = \operatorname{lin.dim}_{\mathbb{Q}}(V) - \operatorname{dim}(V).$

A subvariety $W \subseteq V$ is cd-maximal if cd(W') > cd(W) for every subvariety $W \subsetneq W' \subseteq V$. Clearly, irreducible components of V and tori cosets maximally contained in Vare examples of cd-maximal subvarieties.

The weak CIT

Die böse Farbe

F. Wagner Lyon 1

The CIT

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

Axiomatization

Poizat used Zilber's weak CIT, a consequence of Ax' differential Schanuel conjecture:

For any uniform family \mathcal{V} of varieties there is a finite set $\{T_0, \ldots, T_n\}$ of associated tori, such that for any torus T, any $V \in \mathcal{V}$ and any irreducible component $W \ni \bar{a}$ of $V \cap \bar{a} \cdot T$ there is some *i* with $W \subseteq \bar{a} \cdot T_i$ and

$$\dim(T_i) - \dim(V \cap \bar{a} \cdot T_i) = \dim T - \dim W.$$

Moreover, the minimal torus of every cd-maximal subvariety of *V* belongs to the collection $\{T_0, \ldots, T_r\}$. We will assume that the above tori are all distinct, and $T_0 = (K^{\times})^n$ and $T_1 = \{1\}^n$.

Consequences

Die böse Farbe

F. Wagner Lyon 1

Introduction

- The CIT
- The class C
- Codes
- Counting
- The class ${\cal C}_{\mu}$
- Thrifty amalgamatic
- Axiomatization

- Given *T*, the set of irreducible $V \in \mathcal{V}$ with minimal torus *T* is definable. In particular, for any irreducible $V \in \mathcal{V}$ there is a definable neighbourhood where $\operatorname{lin.dim}_{\mathbb{Q}}$ and cd remain constant.
- 2 Suppose $V \in \mathcal{V}$ decomposes into *m* irreducible components W_k with $d_k := \dim(W_k)$, $l_k := \operatorname{lin.dim}_{\mathbb{Q}}(W_k)$ and $c_k := \operatorname{cd}(W_k)$. Then this holds in some definable neighbourhood of *V*.

The class $\ensuremath{\mathcal{C}}$

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class C Codes

The class \mathcal{C}_{I}

Thrifty amalgamation Axiomatization Let C be the class of divisible hulls of finitely generated multiplicative subgroups of a field of characteristic 0, augmented by 0, and with a predicate \ddot{U} (German: grün) for a torsion-free multiplicative subgroup, such that for all finitely generated subgroups A

 $\delta(A) = 2 \operatorname{tr.deg}(A) - \operatorname{lin.dim}_{\mathbb{Q}}(\ddot{U}(A)) \ge 0.$

We shall consider structures in C in a relational (apart from multiplication) Morleyization of ACF₀; embeddings will be with respect to this language (i.e. will extend to the fields generated).

Using the weak CIT, Poizat has axiomatized C:

1 $\ddot{U}(M)$ is a torsion-free divisible multiplicative subgroup.

2 For every \emptyset -definable variety $V(\bar{x})$ of dimension *n* with $|\bar{x}| = 2n + 1$, any $\bar{a} \in V \cap \ddot{U}(M)$ lies in some associated torus. (This uses that \ddot{U} is torsion-free.)

Basic properties

Die böse Farbe

F. Wagner Lyon 1

Introductic The CIT

The class \mathcal{C}

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

Axiomatization

Let \overline{C} be the class of structures whose finitely generated substructures are in C, and for $\langle \overline{a}B \rangle \in \overline{C}$ put

 $\delta(\bar{a}/B) = 2 \operatorname{tr.deg}(\bar{a}/B) - \operatorname{lin.dim}_{\mathbb{Q}}(\ddot{U}(\langle \bar{a}B \rangle)/\ddot{U}(\langle B \rangle)).$

Properties:

$$\delta(\bar{a}\bar{b}/C) = \delta(\bar{b}/C) + \delta(\bar{a}/\bar{b}C).$$

- 2 Submodularity: $\delta(\bar{a}/B) \leq \delta(\bar{a}/B \cap \langle C\bar{a} \rangle)$ for $C \subseteq B$.
- 3 Let W be the locus of \bar{a} over $\operatorname{acl}(B)$. Then $\delta(\bar{a}/\operatorname{acl}(B)) = \dim(W) \operatorname{cd}(W)$.
- In general,

 $\delta(\bar{a}/B) = \dim(W) - \operatorname{cd}(W) - \operatorname{lin.dim}_{\mathbb{Q}}(\langle \bar{a}B \rangle \cap \operatorname{acl}(B)/B).$

Strong embeddings

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C*

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior Given $A \subseteq B \in \overline{C}$, we say that *A* is strong in *B*, denoted $A \leq B$, if $\delta(\overline{b}/A) \geq 0$ for every $\overline{b} \in B$.

1 If $C \leq M$ and $C' \leq M$, then $C \cap C' \leq M$.

2 For every $A \subseteq M$ there exists a unique

 $A \subseteq C = \langle C \rangle \leq M$ minimal such. We call such a set the (strong) closure of *A* (in *M*) and denote it by cl_{*M*}(*A*).

3 If $(A_i)_{i < \alpha}$ is an increasing sequence with $A_i \le K$ for all $i < \alpha$, then $\bigcup_i A_i \le M$.

The class C is countable up to isomorphism, and has AP and JEP with respect to strong embeddings. Let \mathfrak{M}_{ω} be its Fraïssé-Hrushovski limit. Using the weak CIT, Poizat has axiomatized its theory T_{ω} , and shown that \mathfrak{M}_{ω} is ω -saturated. It follows that $RM(\mathfrak{M}_{\omega}) = \omega \cdot 2$, and $RM(\ddot{U}(\mathfrak{M}_{\omega})) = \omega$.

Pre-algebraicity

Die böse Farbe

F. Wagner Lyon 1

Introductio

The class (

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatio

Axiomatization

■ Let $A \subseteq B \in C$ with $\operatorname{lin.dim}_{\mathbb{Q}}(B/A) = n \ge 2$. The extension B/A is minimal prealgebraic of length n if $\delta(B/A) = 0$ and $\delta(B'/A) > 0$ for every $A \subsetneq B' \subsetneq B$ (or equivalently, if $\delta(B/B') < 0$).

■ Let $B \subseteq C$. A strong ACF₀-type $p(\bar{x}) \in S_n(B)$ is minimal prealgebraic, if the extension $\langle B\bar{a} \rangle / \langle B \rangle$ is minimal prealgebraic of length *n* for some $\bar{a} \models p$ with $\ddot{U}(\bar{a})$. In particular, \bar{a} is multiplicatively independent over *B*. This is invariant under parallelism and multiplicative translation.

An ACF₀-formula $\varphi(\bar{x})$ of Morley degree 1 is minimal prealgebraic if its generic type is minimal prealgebraic.

Note that if B/A is minimal prealgebraic and \overline{b} is a multiplicative green basis of *B* over *A*, then $stp(\overline{b}/A)$ is minimal prealgebraic.

Minimal extensions

Die böse Farbe

F. Wagner Lyon 1

Introduction

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

Axiomatization

If $A \leq B$ in C with $\operatorname{lin.dim}_{\mathbb{Q}}(B/A) < \infty$, we can find a decomposition $A = A_0 \leq A_1 \leq \ldots \leq A_{n-1} \leq A_n = B$ such that A_{i+1}/A_i is minimal strong for all i < n.

Let $A \leq B$ be minimal strong. There are four possibilities:

1 algebraic: $\ddot{U}(A) = \ddot{U}(B)$ and $B = \langle Ab \rangle$ for some $b \in acl(A) \setminus A$. Then $\delta(B/A) = 0$.

2 white generic: $\ddot{U}(A) = \ddot{U}(B)$ and $B = \langle Ab \rangle$ for some element *b* transcendental over *A*. Then $\delta(B/A) = 2$.

- 3 green generic: *B* contains a basis consisting of a green singleton *b* over *A*. Moreover, *b* is transcendental over *A* and $\delta(B/A) = 1$.
- 4 minimal prealgebraic: *A* ≤ *B* is minimal prealgebraic, i.e. *B* contains a green basis \bar{b} over *A* such that stp(\bar{b}/A) is minimal prealgebraic. Then $\delta(B/A) = 0$.

Codes

Die böse Farbe

F. Wagner Lyon 1

- Introduction
- Codes
- Counting
- The class ${\cal C}_{\mu}$
- Thrifty amalgamatio
- Axiomatization

A code is an ACF₀-formula $\varphi(\bar{x}, \bar{y})$ with $n_{\varphi} = |\bar{x}|$ such that

- For all *b* either φ(*x*, *b*) is empty, or has Morley degree 1.
 RM(*ā*/*b*) = n_φ/2 and lin.dim_Q(*ā*/*b*) = n_φ for generic *ā* ⊨ φ(*x*, *b*).
- 3 Let T_0, T_1, \ldots be the tori associated to the Zariski closure V of $\varphi(\bar{x}, \bar{b})$. For any $\bar{a} \models \varphi(\bar{x}, \bar{b})$, any $i = 2, \ldots, r$ and any
 - irreducible component *W* of $V \cap \bar{a} \cdot T_i$ of maximal dimension, dim $(T_i) > 2 \cdot \dim(W)$ if $V \cap \bar{a} \cdot T_i$ is infinite.
 - 4 If $RM(\varphi(\bar{x}, \bar{b}) \cap \varphi(\bar{x}, \bar{b}')) = n_{\varphi}/2$, then b = b'.
- 5 For any invertible \bar{m} and \bar{b} there is \bar{b}' with $\varphi(\bar{x} \cdot \bar{m}, \bar{b}) \equiv \varphi(\bar{x}, \bar{b}').$

Properties

Die böse Farbe

F. Wagner Lyon 1

Introductio The CIT

The class ${\mathcal C}$

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

Axiomatization

Let $\varphi(\bar{x}, \bar{y})$ be a code, and suppose $\varphi(\bar{x}, \bar{b})$ is non-empty.

1 If $\bar{a} \models \varphi(\bar{x}, \bar{b})$ is generic over $B \ni \bar{b}$ and green, then the extension $B \subseteq \langle B\bar{a} \rangle$ is minimal prealgebraic.

2 For all green $\bar{a} \models \varphi(\bar{x}, \bar{b})$ and $B \ni \bar{b}$

- $\delta(\bar{a}/B) \leq 0.$
- If $\delta(\bar{a}/B) = 0$, either $\bar{a} \in \langle B \rangle$ or \bar{a} is generic in $\varphi(\bar{x}, \bar{b})$ over *B*.
- $\overline{\mathbf{3}}$ $\overline{\mathbf{b}}$ is the canonical parameter for $\varphi(\overline{\mathbf{x}}, \overline{\mathbf{b}})$.

Every minimal prealgebraic extension gives rise to some code.

Toric correspondences

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class ${\cal C}$

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatior

xiomatization

 $\operatorname{GL}_n(\mathbb{Q})$ acts on the codes. Since this group is infinite, we cannot put invariance under $\operatorname{GL}_n(\mathbb{Q})$ into the axioms, but have to deal with it externally. Using the weak CIT we obtain:

Let φ and ψ be codes. There is a finite set $G(\varphi, \psi)$ of tori such that if $\varphi(\bar{x}, \bar{b}) \neq \emptyset$ and $T \cap (\varphi(\bar{x}, \bar{b}) \times \psi(\bar{x}, \bar{b}'))$ projects generically onto $\varphi(\bar{x}, \bar{b})$ and $\psi(\bar{x}, \bar{b}')$ for some torus T with $\dim(T) = |\bar{x}|$ (a toric correspondence), then $T \in G(\varphi, \psi)$.

There exists a collection S of codes such that for every minimal prealgebraic definable set X there is a unique code $\varphi \in S$ and finitely many tori T such that T induces a toric correspondence between X and some instance of φ .

Proof

Die böse Farbe

F. Wagner Lyon 1

Introductior The CIT The class (

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation Suppose *T* induces a toric correspondence between $\varphi(\bar{x}, \bar{b})$ and $\psi(\bar{x}, \bar{b}')$. Let *T* be the finite family of tori associated to the Zariski closure *V* of $\varphi(\bar{x}, \bar{b}) \times \psi(\bar{x}, \bar{b}')$, and put $B = \operatorname{acl}(\bar{b}\bar{b}')$. Choose some *B*-generic point $(\bar{a}, \bar{a}') \in V \cap T$. Let $W \subseteq V \cap T$ be the locus of (\bar{a}, \bar{a}') over *B*. Then *T* is the minimal torus of *W*, and dim(*W*) = cd(*W*) = $n_{\varphi}/2$.

Suppose $W \subsetneq W' \subseteq V$ and (\bar{g}, \bar{g}') is *B*-generic in *W'*.

$$\begin{aligned} \operatorname{cd}(W') &= \operatorname{lin.dim}_{\mathbb{Q}}(\bar{g}, \bar{g}'/B) - \operatorname{tr.deg}(\bar{g}, \bar{g}'/B) \\ &= [\operatorname{lin.dim}_{\mathbb{Q}}(\bar{g}/B) - \operatorname{tr.deg}(\bar{g}/B)] \\ &+ [\operatorname{lin.dim}_{\mathbb{Q}}(\bar{g}'/B\bar{g}) - \operatorname{tr.deg}(\bar{g}'/B\bar{g})] \\ &= \operatorname{cd}(W) + \operatorname{lin.dim}_{\mathbb{Q}}(\bar{g}'/B\bar{g}) - \operatorname{tr.deg}(\bar{g}'/B\bar{g}) \\ &> \operatorname{cd}(W) - \delta(\bar{g}'/B\bar{g}) \geq \operatorname{cd}(W), \end{aligned}$$

since $W \subsetneq W'$ implies tr.deg $(\bar{g}'/B\bar{g}) > 0$, and \bar{g}' realizes the code $\psi(\bar{x}, \bar{b}')$. So $W \subseteq V$ is cd-maximal, and $G(\varphi, \psi) \subseteq \mathcal{T}$.

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class ${\cal C}$

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation The collection S can now be constructed recursively. List all minimal prealgebraic subsets ($X_i : i < \omega$) up to isomorphism. Suppose that S_i has been already defined encoding all X_j for j < i. If X_i can be encoded by some element in S_i and some torus T, then set $S_{i+1} = S_i$. Otherwise X_i is equivalent to some code instance $\varphi(\bar{x}, \bar{b})$. Put

$$ho(ar{z}):=orallar{y}\left(igwedge_{\psi\in\mathcal{S}_i} \quad igwedge_{T\in oldsymbol{G}(\psi,arphi)}
eg \chi^{T}_{\psi,arphi}(ar{y},ar{z})
ight),$$

where $\chi_{\psi,\varphi}^{T}(\bar{b},\bar{b}')$ expresses that *T* induces a toric correspondence between $\psi(\bar{x},\bar{b})$ and $\varphi(\bar{x},\bar{b}')$. Then $S_{i+1} := S_i \cup \{\varphi(\bar{x},\bar{z}) \land \neg \rho(\bar{z})\}$ will do.

Difference sequences

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatio

Axiomatization

For a code φ and some \overline{b} consider a generic Morley sequence $(\overline{a}_0, \overline{a}_1, \dots, \overline{a}_k, f)$ for $\varphi(\overline{x}, \overline{b})$, and put $\overline{e}_i = \overline{a}_i \cdot \overline{f}^{-1}$. We can then find a formula $\psi_{\varphi}^k \in \text{tp}(\overline{e}_0, \dots, \overline{e}_k)$ such that 1 ψ_{φ}^k implies $\psi_{\varphi}^{k'}$ for all k' < k. 2 ψ_{φ}^k is invariant under the finite group of derivations $(\overline{x}, \overline{x}^{-1})$ if $i \neq i$

generated by
$$\partial_i : \bar{x}_j \mapsto \begin{cases} \bar{x}_j \cdot \bar{x}_j^{-1} & \text{if } j \neq i \\ \bar{x}_i^{-1} & \text{if } j = i \end{cases}$$
.

3 Any realization $(\bar{e}'_0, \dots, \bar{e}'_k)$ of ψ_{φ}^k is disjoint, and $\models \varphi(\bar{e}'_i, \bar{b}')$ for some unique canonical parameter \bar{b}' definable over any m_{φ} elements among the \bar{e}'_i .

4 If \bar{e}'_i is generic and there is some toric correspondence T on φ with $(\bar{e}_j, \bar{e}') \in T$ for some $i \neq j$ and \bar{e}' , then $\bar{e}_i \swarrow_{\bar{b}} \bar{e}' \cdot \bar{e}_i^{-1}$.

A difference sequence for φ of length k is a realization of ψ_{φ}^{k} .

Proof

Die böse Farbe

F. Wagner Lyon 1

Introduction

Codes

Counting

Thrifty amalgamation Axiomatization Consider the following type-definable property $\Sigma(\bar{e}_0, \dots, \bar{e}_{\lambda})$: there exist \bar{b}' and a Morley sequence $\bar{e}'_0, \dots, \bar{e}'_{\lambda}, \bar{f}$ in $\varphi(\bar{x}, \bar{b}')$ with $\bar{e}_i = \bar{e}'_i \cdot \bar{f}^{-1}$.

 Σ satisfies 1.–3. Now $(\bar{e}_i : i \leq \lambda)$ is a Morley sequence over $\bar{b}'\bar{f}$. If $\bar{e}_i, \bar{e}_j, \bar{e}'$ and T are as in 4., then $\bar{e}' \in \operatorname{acl}(\bar{e}_j)$, so $\bar{e}' \perp_{\bar{b}'\bar{f}} \bar{e}_i$. If $\bar{e}_i \perp_{\bar{b}'\bar{f}} \bar{e}' \cdot \bar{e}_i^{-1}$, then \bar{e}_i^{-1}, \bar{e}' and $\bar{e}' \cdot \bar{e}_i^{-1}$ will determine a pairwise $\bar{b}'\bar{f}$ -independent triple.

By a Lemma of Ziegler all three are generic types for cosets of some torus T. A contradiction, since by code property 2.

$$0 \geq \delta(\bar{e}_i/\bar{b}'\bar{f}) = \delta(T) = \dim(T).$$

Let $\psi_0 \in \Sigma$ imply properties 1.,3. and 4., and put

$$\psi_{\varphi}^{k}(\bar{x}_{0},\ldots,\bar{x}_{k}):=\bigwedge_{\partial \text{ derivation}}\psi_{0}(\partial(\bar{x}_{0},\ldots,\bar{x}_{\lambda})).$$

A counting Lemma

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class C

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation Axiomatization Given a code φ and natural number *n*, there is some $\lambda = \lambda_{\varphi}(n)$ such that for every $M \leq N \in C$ and difference sequence $(\bar{e}_0, \ldots, \bar{e}_{\lambda})$ in *N* with canonical parameter \bar{b} , either

- the canonical parameter for some derived sequence lies in *M*, or
- the sequence (ē₀,..., ē_λ) contains a generic subsequence over Mb̄ of length n.

Suppose the first part does not hold. Put

 $\begin{array}{lll} X_1 &=& \{i \in [m_{\varphi}, \lambda] : \bar{e}_i \text{ generic over } M \cup \{\bar{e}_0, \dots, \bar{e}_{i-1}\}\}, \\ X_2 &=& \{i \in [m_{\varphi}, \lambda] : \bar{e}_i \subseteq \langle M \cup \{\bar{e}_0, \dots, \bar{e}_{i-1}\}\rangle\}, \\ X_3 &=& [m_{\varphi}, \lambda] \setminus (X_1 \cup X_2). \end{array}$

We may assume that $X_1 < X_3 < X_2$.

Bounding $|X_3|$

Die böse Farbe

F. Wagner Lyon 1

Introductio

_

Codes

Counting

The class ${\cal C}_\mu$

Thrifty amalgamatior

$$\begin{array}{rcl} \delta(\bar{e}_i/M,\bar{e}_0,\ldots,\bar{e}_{i-1}) &\leq -1 \ \text{for} \ i \in X_3 \ \text{and} \\ \delta(\bar{e}_i/M,\bar{e}_0,\ldots,\bar{e}_{i-1}) &= 0 \ \text{for} \ i \in X_1 \cup X_2. \end{array}$$

Since $M \leq N$

Note that

$$0 \leq \delta(\bar{e}_0, \dots, \bar{e}_{\lambda}/M)$$

$$\leq \delta(\bar{e}_0, \dots, \bar{e}_{m_{\varphi}-1}/M) + \sum_{i=m_{\varphi}}^{\lambda} \delta(\bar{e}_i/M, \bar{e}_0, \dots, \bar{e}_{i-1})$$

$$\leq m_{\varphi} n_{\varphi} + (-1)|X_3| .$$

whence $|X_3| \leq m_{\varphi} n_{\varphi}$.

Bounding $|X_2|$

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C* Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation Axiomatization Put $r = m_{\varphi} + |X_1| + |X_3|$ and $s = r(n_{\varphi} + 1)$.

For simplicity, assume that there are varieties V, W with $\psi_{\varphi} = V \setminus W$, and let \mathcal{T} be the family of tori associated to V. Let $I \subset [r, \lambda]$ of cardinality $rn_{\omega} + 1$; for simplicity assume I = [r, s]. Let W' be the locus of $(\bar{e}_0, \dots, \bar{e}_s)$ over acl(M), and choose $W' \subset W'' \subset V$ maximal with cd(W'') < cd(W'). By construction W'' is cd-maximal, so its minimal torus is some $T \in \mathcal{T}$. Fix some $\overline{m} \in \operatorname{acl}(M)$ with $W'' \subseteq \overline{m}T \cap V$. Choose $(\bar{a}_0, \ldots, \bar{a}_s)$ a generic point of W'' over acl(M) and paint it green. It lies in $V \setminus W$, since $(\bar{e}_0, \ldots, \bar{e}_s)$ is an specialization of $(\bar{a}_0, \ldots, \bar{a}_s)$, so $\models \psi_{\alpha}(\bar{a}_0, \ldots, \bar{a}_s)$.

Bounding $|X_2|$

Die böse Farbe

r

F. Wagner Lyon 1

Introduction The CIT The class of

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation

$$n_{\varphi} \geq \operatorname{lin.dim}_{\mathbb{Q}}(\bar{\boldsymbol{e}}_{< r}/M) = \operatorname{lin.dim}_{\mathbb{Q}}(\bar{\boldsymbol{e}}_{\le s}/M) \geq \operatorname{cd}(W') \geq \operatorname{cd}(W'')$$
$$= \sum_{i \leq s} \operatorname{lin.dim}_{\mathbb{Q}}(\bar{\boldsymbol{a}}_i/\widetilde{M}, \bar{\boldsymbol{a}}_{< i}) - \operatorname{tr.deg}(\bar{\boldsymbol{a}}_i/\widetilde{M}, \bar{\boldsymbol{a}}_{< i})$$
$$\geq \sum_{r \leq i \leq s} \operatorname{lin.dim}_{\mathbb{Q}}(\bar{\boldsymbol{a}}_i/\widetilde{M}, \bar{\boldsymbol{a}}_{< i}) - \operatorname{tr.deg}(\bar{\boldsymbol{a}}_i/\widetilde{M}, \bar{\boldsymbol{a}}_{< i}).$$

By property 2. of codes $\delta(\bar{a}_i/\widetilde{M}, \bar{a}_{< i}) \leq 0$ for $i \geq r \geq m_{\varphi}$, so $2 \operatorname{tr.deg}(\bar{a}_i/\widetilde{M}, \bar{a}_{< i}) \leq \operatorname{lin.dim}_{\mathbb{Q}}(\bar{a}_i/\widetilde{M}, \bar{a}_{< i}).$

Hence, if $\bar{a}_i \notin \langle \widetilde{M}, \bar{a}_{< i} \rangle$ then

 $\operatorname{lin.dim}_{\mathbb{Q}}(\bar{a}_i/\widetilde{M}, \bar{a}_{< i}) - \operatorname{tr.deg}(\bar{a}_i/\widetilde{M}, \bar{a}_{< i}) \geq 1.$

Therefore, there is some $t \in \{r, ..., s\}$ with $\bar{a}_t \in \langle \widetilde{M}, \bar{a}_{< t} \rangle$.

Bounding $|X_2|$

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C* Codes

Counting

The class ${\cal C}_\mu$

Thrifty amalgamation The linear dependence will be determined by the coset $\overline{m}T$. So $\overline{m}T$ also determines that $\overline{e}_t \in \langle \widetilde{M}, \overline{e}_{< t} \rangle$.

Consider now all possible pairs (t, T). This determines a $(rn_{\varphi} + 1)|\mathcal{T}|$ -coloring of all $(rn_{\varphi} + 1)$ -subsets of $\{r, \ldots, \lambda\}$. By the (finite) Ramsey theorem, there is some number λ_0 , such that for $\lambda \geq \lambda_0$ there is a monochromatic subset $I \subseteq \{r, \ldots, \lambda\}$ of cardinality $|I| \geq m_{\alpha} + rn_{\alpha} + 1$.

Thus for some $t \in \{r, \ldots, s\}$ and some $T \in T$

$$\bar{\boldsymbol{e}}_{i_t} \in \langle \widetilde{\boldsymbol{M}}, \bar{\boldsymbol{e}}_{< r}, \bar{\boldsymbol{e}}_{i_r}, \dots, \bar{\boldsymbol{e}}_{i_{t-1}} \rangle,$$

for all $i_r < \cdots < i_s$ in *I*, and the linear dependence comes from some $\overline{m}T_i$ with $\overline{m} \in \widetilde{M}$.

Let γ_i be the $(t + i)^{\text{th}}$ element in *I*. For i > 0 we have that $\bar{e}_{\gamma_i}\bar{e}_{\gamma_0}^{-1} \in \widetilde{M}$, so the canonical parameter of the derived sequence lies in \widetilde{M} , a contradiction.

The class \mathcal{C}_{μ}

Die böse Farbe

F. Wagner Lyon 1

Introductior The CIT The class *C* Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation Axiomatization

Let $\mu^*,\,\mu$ be finite-to-one functions from ${\mathcal S}$ to ω with

$$\mu^*(\varphi) \geq \max\{rac{n_{\varphi}^2}{2} + 1, \lambda_{\varphi}(m_{\varphi} + 1)\} \quad ext{and} \quad \mu(\varphi) \geq \lambda_{\varphi}(\mu^*(\varphi)).$$

Let C_{μ} be the class of $M \in C$ such that no $\varphi \in S$ has a (green) difference sequence in M of length $> \mu(\varphi)$. The class C_{μ} is universally axiomatizable relative to ACF_0 .

Characterizing minimal extensions

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C* Codes Counting The class *C*_µ

Thrifty amalgamation Axiomatization Let $M \leq M'$ be minimal prealgebraic, $M \in C_{\mu}$ but $M' \in C \setminus C_{\mu}$, as witnessed by some difference sequence $(\bar{e}_0, \ldots, \bar{e}_{\mu(\varphi)})$ for some code instance $\varphi(\bar{x}, \bar{b})$. If $\bar{b} \in \operatorname{acl}(M)$, there is an M-generic \bar{e}_i generating M' over M, and $\bar{e}_j \in M$ for $j \neq i$. We may assume that M is algebraically closed. As $M \leq M'$, any $\bar{e}_j \notin M$ is M-generic. Since $M \in C_{\mu}$ there must be some generic \bar{e}_i , and $M' = \langle M \bar{e}_i \rangle$ by minimality.

Suppose \bar{e}_j is also *M*-generic. Since $M' = \langle M\bar{e}_j \rangle = \langle M\bar{e}_j \rangle$ there is $\bar{m} \in M$ and a toric correspondence $T \ni (\bar{e}_i \cdot \bar{m}, \bar{e}_j)$.

Let $\bar{e}'_i := \bar{e}_i \cdot \bar{m}$, so $\bar{e}'_i \cdot \bar{e}_i^{-1} \in M$. Since \bar{e}_i is *M*-generic,

$$\bar{\boldsymbol{e}}_i \bigsqcup_{\bar{\boldsymbol{b}}} \bar{\boldsymbol{e}}'_j \cdot \bar{\boldsymbol{e}}_i^{-1},$$

contradicting property 4. of a difference sequence.

Characterizing minimal extensions

Die böse Farbe

F. Wagner Lyon 1

Introductio The CIT The class

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation Axiomatization Let $M \leq M' \in C$ be minimal, $M \in C_{\mu}$. If $\operatorname{lin.dim}_{\mathbb{Q}}(M'/M) = 1$, then $M' \in C_{\mu}$. Otherwise M'/M is minimal prealgebraic, and $M' \notin C_{\mu}$ iff there is $\varphi \in S$ and a difference sequence $(\bar{e}_0, \ldots, \bar{e}_{\mu(\varphi)})$ for φ in M' with canonical parameter \bar{b} , s.t. **1** φ is unique, $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)-1} \in M$ and $\langle M, \bar{e}_{\mu(\varphi)} \rangle = M'$, or **2** there is a subsequence of length $\mu^*(\varphi)$ which is a Morley sequence for $\varphi(\bar{x}, \bar{b})$ over $M\bar{b}$.

 $M' \notin C_{\mu}$ yields a generic realisation \bar{e} of some code $\varphi(\bar{x}, \bar{b})$ over $M\bar{b}$, and $\operatorname{lin.dim}_{\mathbb{Q}}(M'/M) \geq \operatorname{lin.dim}_{\mathbb{Q}}(\bar{e}/M\bar{b}) \geq 2$.

1. or 2. imply $M' \notin C_{\mu}$. Conversely, if $M' \notin C_{\mu}$ we obtain a long difference sequence for a code $\varphi \in S$; if 1. does not hold, the counting Lemma yields 2. If φ' is a second such code, $\langle M\bar{e} \rangle = M' = \langle M\bar{e}' \rangle$ yields a toric correspondence in $G(\varphi, \varphi')$, whence $\varphi = \varphi'$ by construction of S.

Thrifty amalgamation

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C* Codes Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamation

Axiomatization

Suppose $B \leq A$ and $B \leq C$ are in C_{μ} and minimal, and the free amalgam M' is not in C_{μ} . Then both extensions are prealgebraic, and there is $\varphi \in S$ and a difference sequence $(\bar{e}_0, \ldots, \bar{e}_{\mu(\varphi)}) \subset M'$ for φ in M' with canonical parameter \bar{b} . If (after derivation) $\bar{b} \notin \operatorname{acl}(A) \cup \operatorname{acl}(C)$ we obtain a pairwise independent triple, a contradiction.

So wlog $\bar{b} \in A$, $\bar{e}_i \in A$ for $i < \mu(\varphi)$, $\bar{e}_{\mu(\varphi)}$ is A-generic and $M' = \langle A\bar{e}_{\mu(\varphi)} \rangle$; write $\bar{e}_{\mu(\varphi)} = \bar{a} \cdot \bar{c}$ for some $\bar{a} \in A$ and $\bar{c} \in C$. Suppose (after derivation) $\bar{b} \in C$. As $\bar{e}_{\mu(\varphi)} \notin C$ would imply $\bar{a}, \bar{c}, \bar{e}_{\mu(\varphi)}$ pairwise *B*-independent, we have $C = \langle B\bar{e}_{\mu(\varphi)} \rangle$; $C \in C_{\mu}$ yields $\bar{e}_i \in A \setminus B$, and $\bar{e}_i \mapsto \bar{e}_{\mu(\varphi)}$ induces $A \cong_B C$. Ow there is $\bar{e}_i \bigcup_{B\bar{b}} \bar{a}$. Then $\bar{e}_{\mu(\varphi)}$ and \bar{e}_i have the same type over $B\bar{b}\bar{a}$, as do $\bar{c} = \bar{e}_{\mu(\varphi)} \cdot \bar{a}^{-1}$ and $\bar{e}_i \cdot \bar{a}^{-1}$. So $\bar{c} \mapsto \bar{e}_i \cdot \bar{a}^{-1}$ is the required isomorphism.

Axiomatization

Die böse Farbe

F. Wagner Lyon 1

Introduction The CIT The class *C* Codes Counting The class *C*_μ

Thrifty amalgamatic

Axiomatization

When we want to axiomatize richness for the Fraïssé-Hrushovski limit \mathfrak{M}_{μ} , we have to say that for all $\bar{a} \in A \leq \mathfrak{M}$, a code instance $\varphi(\bar{x}, \bar{a})$ has an *A*-generic realization in \mathfrak{M}_{μ} , unless for a generic realization \bar{b} we would have $\langle A\bar{b} \rangle \notin C_{\mu}$.

The weak CIT allows us to limit the possible Q-linear dependencies we have to consider, with an extra twist: We may first have to extend by finitely many green generic points.

It follows that \aleph_0 -saturated models of $\mathcal{T}_{\mu} = \text{Th}(\mathfrak{M}_{\mu})$ are rich, \mathfrak{M}_{μ} has Morley rank 2, and $\ddot{U}(\mathfrak{M}_{\mu})$ has Morley rank 1.

Model-completeness

Die böse Farbe F. Wagner

Introduction The CIT The class CCodes Counting The class C_{μ} Thrifty amalgamation Axiomatization We show $M \leq N$ for any two models $M \subseteq N$ of T_{μ} ; since then $cl_M = cl_N$, homogeneity for closed sets yields $M \prec N$. **Claim.** If $M \models T_{\mu}$ and $M \subseteq N \in C_{\mu}$, then $M \leq N$. If not, assume $lin.dim_{\mathbb{Q}}(N/M) = d$ is minimal. Then $d \geq 2$, as M = acl(M). Choose $M \subset N' \subset N$ with $lin.dim_{\mathbb{Q}}(N'/M) = d - 1$. By minimality $M \leq N'$. Now

$$-1 \geq \delta(N/M) = \delta(N/N') + \delta(N'/M),$$

and $\delta(N/N') \ge -1$ implies that $\delta(N'/M) \le 0$. So N'/M is prealgebraic.

Hence there is $M < N'' \le N'$ with N''/M minimal prealgebraic. But there are only finitely many extensions of this type, which must all lie already in M, a contradiction.

An alternative axiomatization

Die böse Farbe

- F. Wagner Lyon 1
- Introductio
- _. .
- The class
- Codes
- Counting
- The class ${\cal C}_\mu$
- Thrifty amalgamatio
- Axiomatization

Universal axioms

Finitely generated subfields are in C_{μ} .

Inductive axioms

- ACF₀.
- The extension of the model generated by a green generic realization of some code instance φ(x̄, b̄) is not in C_μ.

Since any complete theory of fields of finite Morley rank is \aleph_1 -categorical, Lindström's theorem implies that $\operatorname{Th}(\mathfrak{M}_{\mu})$ is model-complete.

References

Die böse Farbe

F. Wagner Lyon 1

Introductio The CIT

The class ${\mathcal C}$

Codes

Counting

The class ${\cal C}_{\mu}$

Thrifty amalgamatio

Axiomatization

John Baldwin, Kitty Holland. Constructing ω -stable structures: Fields of rank 2. J. Symb. Logic 65:371–391 (2000).

--. Constructing ω-stable Structures: Computing Rank. Fund. Math. 170:1-20 (2001).

-. Constructing ω -stable Structures: Model Completeness. Ann. Pure Appl. Logic 125:159–172 (2004).

Andreas Baudisch, Martin Hils, Amador Martín Pizarro, Frank O. Wagner. Die böse Farbe. Preprint.

Andreas Baudisch, Amador Martín Pizarro, Martin Ziegler. On fields and colours. Algebra i Logika 45 (2006).

-. Red fields. Preprint.

Assaf Hasson. Collapsing structures and a theory of envelopes. Preprint.

Ehud Hrushovski. Strongly minimal expansions of algebraically closed fields. *Israel J. Math.* 79:129–151 (1992).

-.. A new strongly minimal set. Ann. Pure Appl. Logic 62:147-166 (1993).

Bruno Poizat. Le carré de l'égalité. J. Symb. Logic 64:1338-1355 (1999).

-. L'égalité au cube. J. Symb. Logic 66:1647-1676 (2001).

Frank O. Wagner. Fields of finite Morley Rank. J. Symb. Logic, 66:703-706 (2001).

-... Bad fields in positive characteristic. Bull. London Math. Soc. 35:499-502 (2003).