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Geometric model theory studies geometric notions such as
(combinatorial) geometries, independence, dimension/rank
and measure in general structures, and tries to deduce
structural properties from geometric data.

Definition

A (finitary) pre-geometry is a set X together with a closure
operator cl : P(X ) → P(X ) such that for all Y ⊆ X

1 Y ⊆ cl(Y )

2 cl(cl(Y )) = cl(Y )

3 (Exchange) If x ∈ cl(Y , y) \ cl(Y ), then y ∈ cl(Y , x).
4 (Finitary) cl(Y ) =

⋃
ȳ∈Y cl(ȳ).

5 It is a (combinatorial) geometry if cl(x) = {x} for all
x ∈ X .
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Dimension

We call a subset Y ⊆ X independent if y /∈ cl(Y \ {y}) for all
y ∈ Y . A maximal independent subset of some Y ⊆ X is
called a basis for Y ; it exists because the closure is finitary.
By the exchange property, all bases for Y have the same
cardinality, called the dimension dim(Y ) of Y .

Examples

1 A set X with cl(Y ) = Y for all Y ⊆ X .
2 A vector space V over a division ring D with cl(Y ) the

linear span of Y , for all Y ⊆ V .
3 A field K with cl(Y ) the relative algebraic closure of Y

in K , for all Y ⊆ K .
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Algebraic Closure

In order to generalize these notions, we consider a kind of
universal domain: A big structure U satisfying a
compactness condition:

Every intersection of sets definable with fewer than
card(U) parameters is non-empty, provided its
finite subintersections are.

Definition

The algebraic closure acl(Y ) of a (small) subset Y ⊂ U is
the set of elements of U having finite orbit under the action
of the group of automorphisms of U fixing Y .

Clearly acl is a cosure operator; it is easy to see that
compactness forces it to be finitary. We are thus looking for
structures where acl has the exchange property.
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Minimality

Definition

Let L be a collection of relations and functions on U. Then
U is L-minimal if every definable subset of U is already
definable using only relations and functions in L and
arbitrary parameters in U.

Examples

A set without structure, a vector space over a division ring,
an algebraically closed field are =-minimal.
A dense linear order, an ordered vector space over an
ordered division ring, a real closed field are ≤-minimal.

Trichotomy Conjecture (Zilber)
These are essentially the only ones.
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False, but...

In the ordered case, obvious counterexamples are a group
interval, for instance Q with addition restricted to [0, 1], or a
field interval, for instance R with addition and multiplication
restricted to [0, 1]. We thus have to consider the local
structure.

Theorem (Peterzil-Starchenko)

The trichotomy conjecture holds locally for ≤-minimal
structures. In the field interval case, the field may carry
additionnal structure.

An important example of an ≤-minimal expansion of the
reals is the real field with exponentiation. One of the main
lines of research is to find further ≤-minimal expansions.
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False, but...

Theorem (Hrushovski-Zilber)

The trichotomy conjecture is false for =-minimal structures.
However it holds under an additionnal assumption on the
dimension of the intersection of closed sets. In this case the
resulting field will be pure (i.e. no additionnal structure).

The counterexample is obtained by a modification of
Fraïssé’s construction of a countable homogeneous
structure (dense linear order, random graph) from its finite
substructures.
Models of the additionnal assumption are called Zariski
structures. In particular =-minimal sets in many algebraic
contexts (algebraically, separably or differentially closed
fields as well as existentially closed difference fields). These
are the structures used in the applications.
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Transfinite Dimension

Let us consider an algebraically closed field U with an
algebraically closed subfield K and a transcendence basis
(x0, x1, x2, . . .) of U/K . Then U contains arbitrary sums

n⊕
i=0

xiK

and should thus be considered as infinite dimensional
over K .

A similar phenomenon arises in differentially closed fields,
where the field U is infinite dimensional over the subfield C
of constants. A rough measure for the dimension of a point
P is the transcendence degree (in the sense of C) of the
differential subfield generated by P. A more precise
measure is the Lascar rank which is combinatorially defined.
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Dividing and Independence

Definition

Let XB be a subset of U defined with parameters in B. Then
XB divides over parameters A ⊂ U if there is an indiscernible
sequence B = B0, B1, B2, . . . over A such that

⋂
i XBi = ∅.

A sequence is indiscernible over A if for all n all increasing
n-tuples are in the same orbit under the group of
automorphisms of U fixing A.

Definition

Let ā be a tuple in U, and A, B ⊂ U be sets of parameters.
Then ā is independent of B over A if no (A ∪ B)-definable
set containing ā divides over A.

In this case we write ā |̂
A

B.
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Lascar rank

Definition

Lascar rank is the smallest ordinal-valued function U s.t.:
U(ā/A) ≥ α + 1 if there is B ⊇ A with ā 6 |̂

A
B and

U(ā/B) ≥ α.

In an =-minimal structure a 6 |̂
A

B iff a ∈ acl(A ∪ B) \ acl(A).
Hence dimension is equal to Lascar rank.

Theorem (Lascar Inequalities)

Lascar rank is well-behaved with respect to fibers:

U(ā/A, f (ā))+U(f (ā)/A) ≤ U(ā/A) ≤ U(ā/A, f (ā))⊕U(f (ā)/A)

Here ⊕ is the Cantor symmetric sum of ordinals.
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Simplicity

Definition

U is simple if independence is symmetric.
U is supersimple if it is simple and Lascar rank exists.

Separably closed fields are simple; differentially closed
fields and existentially closed difference fields are
supersimple of Lascar rank ω.
In a supersimple theory, we can define a variety of closure
operators:

Definition

clα(A) = {a ∈ U : U(a/A) < ωα}.

On a set of Lascar rank ωα this α-closure induces a
pre-geometry.
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Structural Consequences

In the =- or ≤-minimal context, the most sophisticated
structural consequences of geometrical properties come
from the use of the trichotomy. However, these have only
been proven for the finite rank context, and even there the
proof is not well-understood.
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The Group Configuration

In general, the most important geometric configuration is
the group configuration:

�
�
�
�
�
��
XXXXXXX

((((((((

�
�

�
�

��

a3

a2

a1 b2

b1

b3

ai ∈ cl(aj , ak ) for {i , j , k} = {1, 2, 3}.
bi ∈ cl(aj , bk ) for {i , j , k} = {1, 2, 3}.
all other triples and all pairs are independent.

In a group take a3 = a1a2, b3 = b2a1 and b1 = b2a1a2.
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The Group Configuration Theorem

Theorem
(Weil, Zilber, Hrushovski, Ben Yaacov, Tomašić, W)

Given a group configuration in a simple theory, we can find
a group G acting transitively on a set X .

If the configuration is non-reducible, the original
configuration is closely related to the configuration given by
the action:

�
�
�
�
�
��
XXXXXXX

((((((((

�
�

�
�

��

gh

h

g ghx

x
hx
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The Field Configuration

Theorem (Hrushovski)

If in addition X is =-minimal, then

1 G is =-minimal and abelian, or
2 X is the affine line and G the group of affine

transformations, or
3 X is the projective line and G the group of projective

transformations,

over some definable algebraically closed field.

Note that =-minimality of X follows from a suitable
minimality condition on the bi .
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...and the order ?

But what about the ordered context ?

There is no higher-dimensional (even no two-dimensional!)
generalisation of ≤-minimality.
And what about other interesting structures, such as
p-adically closed fields or algebraically closed valued
fields ?
If you don’t see a solution, generalize the problem until the
solution becomes obvious.
We shall have to go back to combinatorics.
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þ-independence

We shall modify the definition of dividing and independence.

Definition

Let XB be a subset of U defined with parameters in B. Then
XB þ-divides over parameters A ⊂ U if there is finite n and
A′ ⊇ A such that B lies in an infinite Aut(U/A′)-orbit O and⋂

i XBi = ∅ for all distinct B0, . . . , Bn ∈ O.

Definition

Let ā be a tuple in U, and A, B ⊂ U be sets of parameters.
Then ā is þ-independent of B over A if no (A ∪ B)-definable
set containing ā þ-divides over A.

In this case we write ā |̂ þ
A
B.
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Rosiness

The Lascar þ-rank Uþ is defined as the Lascar rank, but with
þ-independence instead of independence.

Definition

We call U rosy if þ-independence is symmetric.
It is superrosy if it is rosy and Lascar þ-rank exists.

(Super-)rosy theories are a commong generalization of
(super-)simple theories and ≤-minimal theories. In
particular, they allow a higher (even ordinal) generalization
of ≤-minimality for ordered structures. The Lascar
Inequalities are still valid for Lascar þ-rank.
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Rosiness

However, many definability results fail; in particular
type-definability seems much weaker than definability. We
do not know whether there is a group configuration theorem.

Unfortunately, important algebraic examples are not rosy.
We have to do even better.
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Unfortunately, important algebraic examples are not rosy.
We have to do even better.
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The Tree Property of the Second Kind...

Definition

U has the tree property of the second kind if there is finite n
and uniformly definable sets Xi,j such that the families
{Xi,j : i < ω} are n-inconsistent, but for all σ : ω → ω the set⋂

j Xσ(j),j is non-empty.

We are interested in U without the tree property of the
second kind. These include simple and ≤-minimal
structures (but not all rosy ones), as well as algebraically
closed valued fields.
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...and the Independence Property

Moreover, structures without the tree property of the second
kind include those lacking the following

Definition (Independence Property)

A uniformly definable family of sets {Xi : i ∈ I} has the
independence property if there is infinite A ⊂ U such that for
all B ⊆ A there is iB with B = A ∩ XiB .

(The lack of the Independence Property was introduced as
having VC-dimension by Vapnik and Chervonenkis in
statistical learning theory in the 1960’s.)
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Where to go ?

In structures without the tree property of the second kind,
dividing still has some good properties, but the derived
notion of independence is no longer symmetric.
Nevertheless, there is hope to recover some of the
dimension theory at least generically (i.e. relativized to a
single orbit), or via simple domination (i.e. every orbit is in
some sense conrolled by some simple orbit).
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