Le 6 avril 2016

PARTIEL

Durée: 1h30

Documents non admis.

Les résultats d'une question peuvent être utilisés pour les questions suivantes.

Problème 1

Soient K un corps et N une extension galoisienne finie de K.

- 1. Soient L_1 et L_2 deux extensions de K contenues dans L, et $G = \operatorname{Gal}(N/K)$, $G_1 = \operatorname{Gal}(N/L_1)$ et $G_2 = \operatorname{Gal}(N/L_2)$. Montrer que si L_1 et L_2 sont des extensions normales de K telles que $L_1 \cup L_2$ engendre N et $L_1 \cap L_2 = K$, alors G est le produit direct de ses sous-groupes G_1 et G_2 , autrement dit, $G \cong G_1 \times G_2$.
- 2. Réciproquement, montrer que si $G \cong G_1 \times G_2$, alors pour $L_1 = I(G_1)$ et $L_2 = I(L_2)$ on a que $L_1 \cup L_2$ engendre L, et $L_1 \cap L_2 = K$.

On rappele que G et le produit direct de ses sous-groupes G_1 et G_2 si G_1 et G_2 sont distingués, $G_1 \cap G_2 = \{1\}$, et $G = G_1G_2 = \{g_1g_2 : g_1 \in G_2, g_2 \in G_2\}$.

Problème 2

Pour tout entier n, on note μ_n l'ensemble des racines $m^{\text{ièmes}}$ de l'unité. On se fixe deux entiers m et n, et on pose $d = \operatorname{pgcd}(m, n)$ et $q = \operatorname{ppcm}(m, n)$.

- 1. Montrer que $\mathbb{Q}(\mu_m, \mu_n) = \mathbb{Q}(\mu_q)$.
- 2. On pose $K = \mathbb{Q}(\mu_m) \cap \mathbb{Q}(\mu_n)$, et on se propose de montrer que $K = \mathbb{Q}(\mu_d)$.
 - (a) Montrer que $[\mathbb{Q}(\mu_q):K] = [\mathbb{Q}(\mu_m):K] \cdot [\mathbb{Q}(\mu_n):K]$. Indication : Utiliser l'énonce du problème 1.
 - (b) En déduire que $[\mathbb{Q}(\mu_q) : \mathbb{Q}] \cdot [K : \mathbb{Q}] = [\mathbb{Q}(\mu_m) : \mathbb{Q}] \cdot [\mathbb{Q}(\mu_n) : \mathbb{Q}]$, et donc $\varphi(q)[K : \mathbb{Q}] = \varphi(m)\varphi(n)$, où φ dénote l'indicateur d'Euler.
 - (c) Montrer que $\varphi(m)\varphi(n) = \varphi(d)\varphi(q)$. Indication : Décomposer en facteurs premiers.
 - (d) Vérifier que $\mathbb{Q}(\mu_d) \subseteq \mathbb{Q}(\mu_m) \cap \mathbb{Q}(\mu_n)$, et conclure.
- 3. Montrer que $\mathbb{Q}(\cos(2\pi/n) \subseteq \mathbb{Q}(\mu_n))$. Quel est le degré $[\mathbb{Q}(\mu_n) : \mathbb{Q}(\cos(2\pi/n))]$? Indication : Exprimer $\cos(2\pi/n)$ à l'aide d'une racine primitive $n^{i \text{ème}}$ de l'unité.
- 4. Déterminer $\{\sigma \in \operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) : \sigma(\cos(2\pi/n)) = \cos(2\pi/n)\}.$
- 5. Montrer que $\mathbb{Q}(\cos(2\pi/n)) = \mathbb{Q}(\mu_n) \cap \mathbb{R}$.
- 6. Montrer que $\operatorname{Gal}(\mathbb{Q}(\cos(2\pi/77)/\mathbb{Q}))$ est cyclique tandis que $\operatorname{Gal}(\mathbb{Q}(\mu_{77})/\mathbb{Q})$ ne l'est pas.

Problème 4

Soit p un nombre premier, K un corps de caractéristique p, et $a \in K$. On pose $P(X) = X^p - X + a \in K[X]$.

- 1. Montrer que $f: x \mapsto x^p x$ est un endomorphisme additif de K. Déterminer son noyau $\ker f$.
- 2. Soit $b \in \tilde{K}^{alg}$ une racine de K. Déterminer les autres racines de P dans \tilde{K}^{alg} .
- 3. En déduire que P est soit irréductible sur K, soit complètement scindé.
- 4. Si P est irréductible sur K, montrer que son corps de décomposition est une extension galoisienne de degré p. En déduire que son groupe de Galois est cyclique.