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Introduction

Often, structures can be seen as expansions of simpler
structures. For instance, both differentially closed fields and
generic difference fields have a common reduct, the
underlying algebraically closed field. A different example is
given by the fusion of two strongly minimal sets, or more
generally sets of finite Morley rank with the definable
multiplicity property, via Hrushovski’s amalgamation
construction: The resulting structure has two reducts to the
initial sets (and possibly a third one to the common
sublanguage of the two).
In this talk I shall survey joint work with Thomas Blossier
and Amador Martı́n Pizarro about type-definable groups in
simple expansions of stable theories.
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Preliminaries

We consider a simple L-theory T with a stable reduct T0 to
a sub-language L0, or even a family (Ti : i < n) of stable
reducts to sublanguages (Li : i < n). Model-theoretic
notions refer to T , unless indicated otherwise.
(Type-)definable means with parameters and of finite arity; if
we consider imaginary elements or tuples, we talk about
(type-)interpretable. Infinite tuples are indicated by ∗-.
If E is an equivalence relation which is not i-definable, then
classes modulo E make no sense in Ti . Thus we mostly
work with real elements. In particular, algebraic closure acl
and definable closure dcl are taken among real elements.
We assume that all Ti have geometric elimination of
imaginaries, i.e. every imaginary element is interalgebraic
with a real tuple. Note that if we work with a single reduct,
we can simply add 0-imaginary sorts to the language.
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Independence and Reducts

Lemma

If B is algebraically closed and a |̂
B

c, then a |0^B c.

Proof.

Let ϕ(x , y) be an L0(B)-formula satisfied by (a, c), and
consider a Morley sequence (cj : j < ω2) in tp(c/B). Then∧

i ϕ(x , ci) is consistent, and (cj : ω ≤ j < ω2) is 0-Morley
over (B, cj : j < ω). Thus
Cb0(cω/Bcj : j < ω) ⊆ acleq

0 (Bcj : j < ω) ∩ acleq
0 (cj :ω ≤ j < ω2).

But (cj : j < ω) |̂
B

(cj : ω ≤ j < ω2) and weak EI imply
acleq

0 (Bcj : j < ω) ∩ acleq
0 (cj : ω ≤ j < ω2) ⊆ acleq

0 (B).

Hence cω |0^B(cj : j < ω), and (cj : j < ω2) is 0-independent
over B. Thus a |0^B c.
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A general reduction theorem

Theorem

Let G be an emptyset-type-definable group. Then (after
adjunction of parameters) there is a type-definable
subgroup G0 of bounded index in G, a T0-∗-interpretable
group H and a definable homomorphism φ : G0 → H such
that for independent generic elements g, g′ of G0,

acl(g), acl(g′) |0^
φ(gg′)

acl(gg′).

Moreover, ker(φ) is ∅-type-definable.

Note that without further assumptions on the reducts, H may
be trivial (for instance if there are no T0-definable groups).
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Proof

It is easy to see that up to commensurability, there is a
minimal type-definable normal subgroup N such that for
some G0 of bounded index in G, the quotient G0/N embeds
into a T0-∗-interpretable group. Moreover, N can be taken
∅-invariant.
Let g0, g1 and g4 be independent generic elements of G0.
Put g2 = g0g1, g5 = g4g0 and g3 = g4g0g1. Then the 6-tuple
(g0,g1,g2,g3,g4,g5) is an algebraic quadrangle.

�
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�
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We shall modify the points as to render it 0-algebraic.
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Proof

There is a countable set D of independent generic elements
of G0 over g0,g1,g3, such that for every collinear triplet
(gi ,gj ,gk ) with 0 ≤ i , j , k ≤ 5 the intersection

αi = αi(j , k) = acl(gi ,D) ∩ acl0(acl(gj ,D), acl(gk ,D))

does not depend on the choice of j , k . Moreover,

acl(gj ,D), acl(gk ,D) |0^
αi

acl(gi ,D).

In fact, D is chosen inductively such that for every finite tuple
d̄ de D, any aligned couple (gi ,gj) and non-collinear g` :

D contains a Morley sequence in tp(g`/acl(gi ,gj , d̄)).
Both giD and g−1

i D contain one in tp(gi/acl(gj , d̄)).

If T is stable, D is just a generic Morley sequence.
Then (α0, α1, α2, α3, α4, α5) is a 0-algebraic quadrangle over
acl(D), and we finish by the Group Configuration Theorem.�
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Relative One-basedness

In the sequel, we suppose that T is endowed with a finitary
invariant closure operator 〈.〉 satisfying A ⊆ 〈A〉 ⊆ acl(A).

Definition

T is one-based over (Ti : i < n) for 〈.〉 if for all real
algebraically closed A ⊆ B and real tuple c̄, whenever

〈Ac̄〉 |i^
A

B for all i < n,

then Cb(c̄/B) is bounded over A.

Every theory is one-based over itself for acl. If T is
one-based over its reduct to equality for acl, then T is
one-based; the converse holds if T has geometric
elimination of (hyper-)imaginaries.
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Properties of relative one-basedness

We shall need two conditions on the relation between the
closure operator 〈.〉 and algebraic closure in the reducts:

(†) If A is algebraically closed and b |̂
A

c, then
〈Abc〉 ⊆

⋂
i<n acli(〈Ab〉, 〈Ac〉).

(‡) If ā ∈
⋃

i<n acli(A), then
〈acl(ā),A〉 ⊆

⋂
i<n acli(acl(ā), 〈A〉).

Note that as soon as a group is definable, algebraic closure
does not satisfy (†) over the reduct to equality.

Lemma

If 〈.〉 satisfies (†), then relative one-basedness is preserved
under adjunction or suppression of parameters.
Moreover, it is sufficient to verify relative one-basedness for
models A ⊆ B.
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Examples

Examples

The theory DCF0 of a differentially closed field of
characteristic 0 is superstable, and one-based over the
reduct to the theory ACF0 of an algebraically closed
field, for the model-theoretic algebraic closure aclδ
which satisfies (†) and (‡).
The theory ACFA of an existentially closed difference
field is supersimple, and one-based over the reduct to
the theory ACF of an algebraically closed field, for the
model-theoretic algebraic closure aclσ which satisfies
(†) and (‡).



Reducts and
Reducibility

F. Wagner,
Lyon-1

Introduction

Preliminaries

Relative One-
basedness

Relative
CM-triviality

Amalgams

Subgroups of
algebraic
groups

Groups
definable in
the green field

Groups in relatively one-based expansions

Relative one-basedness allows us to show that the kernel of
the homomorphism φ : G→ H is finite.

Theorem

Let T be relatively one-based over (Ti : i < n) with respect
to a closure operator 〈.〉 satisfying (†) and (‡).
Then a type-definable group G has a subgroup G0 of
bounded index which embeds modulo a finite kernel into a
finite product H =

∏
i<n Hi of Ti -interpretable groups Hi .

If G0 is an intersection of definable groups (e.g. if T is stable
or supersimple), we may assume G0 has finite index in G.
Applied to DCF0 and ACFA, this yields an alternative proof
of the characterization of definable groups due to Kowalski
and Pillay.
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Proof

Consider φ =
∏

i φi : G0 → H =
∏

i Hi , and g |̂ g′ generic.

Then acl(g), acl(g′) |i^
φi (gg′)

acl(gg′).

(†) implies 〈acl(g), acl(g′)〉 ⊆
⋂
i<n

acli(acl(g), acl(g′)).

(‡) yields, as φ(gg′) ∈
⋃
i<n

acli(acl(g), acl(g′)),

〈acl(g), acl(g′), acl(φ(gg′))〉 ⊆
⋂
i<n

acli(acl(g), acl(g′), acl(φ(gg′))).

Since acl(φ(gg′)) ⊆ acl(gg′), we get for all i < n

〈acl(g), acl(g′), acl(φ(gg′))〉 |i^
acl(φ(gg′))

acl(gg′).

By relative one-basedness, acl(g), acl(g′) |̂
acl(φ(gg′))

acl(gg′).
Hence gg′ ∈ acl(φ(gg′)). �
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Relative CM-triviality

Definition

T is CM-trivial over (Ti : i < n) for 〈.〉 if for all real
algebraically closed A ⊆ B and real tuples c̄, whenever

〈Ac̄〉 |i^
A

B for all i < n,

then Cb(c̄/A) is bounded over Cb(c̄/B).

Every theory is CM-trivial over itself for acl. If T is CM-trivial
over its reduct to equality for acl, then T is CM-trivial; the
converse holds if T has geometric elimination.
Every relatively one-based theory is relatively CM-trivial.
If 〈.〉 satisfies (†), then relative CM-triviality is preserved
under adjunction or suppression of parameters. Moreover, it
is sufficient to verify relative CM-triviality for models A ⊆ B.
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Groups in relatively CM-trivial expansions

Theorem

Let T be relatively CM-trivial over (Ti : i < n) with respect to
a closure operator 〈.〉 satisfying (†) and (‡). Then a
type-definable group G has a subgroup G0 of bounded index
which embeds modulo an approximately central kernel into
a finite product H =

∏
i<n Hi of Ti -interpretable groups Hi .

Recall that g is approximately central in G if its centralizer
CG(g) has bounded index in G.
If G0 is an intersection of definable groups, we can assume
it has finite index in G.

Corollary

A simple group in a relatively CM-trivial theory embeds into
one definable in one of the reducts.
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Proof

Consider φ =
∏

i φi : G0 → H =
∏

i Hi , and g |̂ g′ generic.
Put Ni = ker(φi) and N =

⋂
i<n Ni = ker(φ). As before,

〈acl(D,g), acl(D,g′), acl(D, φ(gg′))〉 |i^
acl(D,φ(gg′))

acl(D,gg′).

Let a,b,e ∈ D be distinct, and D′ = D \ {e}. We put

A = acl(D′, φ(gg′)), B = acl(D′,gg′) and c̄ = (g,g′,age,e−1g′b).

〈g,g′,age,e−1g′b, acl(D′, φ(gg′))〉 |i^
acl(D′,φ(gg′),e)

acl(D′,gg′).

e |̂
acl(D′,φ(gg′))

gg′ ⇒ acl(D′, φ(gg′),e) |i^
acl(D′,φ(gg′))

acl(D′,gg′).

〈g,g′,age,e−1g′b, acl(D′, φ(gg′))〉 |i^
acl(D′,φ(gg′))

acl(D′,gg′).

That is, 〈c̄,A〉 |i^A B for all i < n.
By relative CM-triviality, Cb(c̄/A) ∈ bdd(Cb(c̄/B).
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A = acl(D′, φ(gg′)), B = acl(D′,gg′), c̄ = (g,g′,age,e−1g′b).

Let Z be the approximate centralizer of N in G. It is
relatively definable, so aZ is imaginary. It suffices to show:

Lemma

If |G : Z | =∞, then aZ ∈ acleq(Cb(c̄/A))\acleq(Cb(c̄/B)).

Proof.

Suppose |G : Z | =∞. Then aZ /∈ bdd(∅). Now
c̄ |̂

gg′,agg′b
D′ ⇒ B ∩ acl(c̄) = acl(gg′,agg′b).

In particular, Cb(c̄/B) is interalgebraic with gg′,agg′b.
a |̂ gg′,agg′b ⇒ aZ |̂ Cb(c̄/B) ⇒ aZ /∈ bdd(Cb(c̄/B)).
Let J be a Morley sequence in lstp(c̄/A), and a′ |= lstp(a/J).
Then a′−1a ∈ Z , whence aZ ∈ acleq(J).
Finally, J |̂

Cb(c̄/A)
A implies aZ ∈ acleq(Cb(c̄/A)).
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Fields in relatively CM-trivial expansions

Corollary

Let T be relatively CM-trivial over (Ti : i < n) with respect to
a closure operator 〈.〉 satisfying (†) and (‡). Then a type-
definable field K is definably isomorphic to a subfield of a
field L interpretable in one of the reducts. If T has finite
SU-rank, then K = L is algebraically closed.

Proof.

The simple group PSL2(K ) embeds into a Ti -interpretable
group. Its Borel subgroup K + o K× embeds naturally into a
group of the form L+ oL×, where L is a Ti -interpretable field.
If T has finite SU-rank, then [L : K ] is of finite degree. Since
Ti is stable of finite SU-rank, L is algebraically closed. But K
cannot be real closed by simplicity, so K = L.
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Condition (‡)

Without the condition (‡), one can show that unless G is
isogenous to an abelian group, the homomorphism
φ : G→ H is non-trivial. In particular, the two Corollaries
remain true without the hypothesis (‡).

Proof.

If φ were trivial, then φi(gg′) ∈ bdd(∅). Then

acl(D,g), acl(D,g′) |i^
D,φi (gg′)

acl(D,gg′)

and (†) would imply trivially

〈acl(D,g), acl(D,g′), acl(D, φ(gg′))〉 |i^
acl(D,φ(gg′))

acl(D,gg′).

The remainder of the proof of the Main Theorem does not
need (‡) and shows that N is approximately central in G.
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A quick overview of Hrushovski amalgamation

Coloured We expand T0 by a colour predicate P, and
consider the class K of coloured models of T ∀0 .
Fusion We consider two theories T1 and T2 with a common
reduct Tcom, and K denotes the class of models of T ∀1 ∪ T ∀2 .
For finitely generated B over A we define a predimension

δ(B/A) = 2 tr.deg(B/A)− dimP(P(B)/P(A)), where
dimP(A) = |A| for the black field,
dimP(A) = lin.dimFp (A) for the red field, and
dimP(A) = lin.dimQ(A) for the green field.
δ(B/A) = n1RM1(B/A) + n2RM2(B/A)−n|B \A|, where
n = n1RM(T1) = n2RM(T2), for the fusion over equality
of two theories of finite and definable Morley rank, and
δ(B/A) = RM1(B/A) + RM2(B/A)− lin.dimFp (B/A) for
the fusion of two strongly minimal sets over a common
Fp-vector space.
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A quick overview of Hrushovski amalgamation

Note that the predimension is submodular:

δ(A ∪ B) ≤ δ(A) + δ(B)− δ(A ∩ B).

We shall suppose that all Ti and Tcom eliminate quantifiers
and that the languages are relational except possibly for a
group law used for the negative part of the predimension. If
this group is divisible with bounded torsion, we shall also
suppose that structures in K are divisible groups.
The i-diagram of a structure A determines its i-type, and⋃

i diagi(A), together with the colouring, determines δ(A).
We consider the subclass K0 of structures whose finitely
generated substructures have non-negative predimension.
For M ∈ K0 a substructure A is self-sufficient in M, denoted
A ≤ M, if δ(ā/A) ≥ 0 for all finite ā ∈ M.
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A quick overview of Hrushovski amalgamation

By submodularity, the intersection of two self-sufficient
subsets is again self-sufficient. Hence every subset A ⊆ M
is contained in a unique smallest self-sufficient superset, its
self-sufficient closure 〈A〉M . Then 〈.〉 satisfies (†) and (‡).
Given a class K′ ⊆ K0 of finitely generated structures with
the amalgamation property for self-sufficient embeddings,
one constructs by the Fraı̈ssé method a countable structure
universal and homogeneous for self-sufficient substructures.
For self-sufficient A ∩ B = C, independence is characterized
as follows:

A |̂
C

B ⇔
{

A |i^C B for all i , and AB is self-sufficient (and
P(AB) = P(A)P(B) in the coloured case).

Note that the last condition is obvious unless we are in the
group case.
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Relative CM-triviality of Hrushovski amalgams

Theorem

The coloured fields are CM-trivial for 〈.〉 over their reduct to
the pure algebraically closed field.
The fusions of T1 and T2 (over equality or over a common
vector space) are CM-trivial for 〈.〉 over (T1,T2).

In Ziegler’s fusion of two theories of finite and definable
Morley rank, the base theories do not necessarily
geometrically eliminate imaginaries. However, the
characterization of independence in Hrushovski amalgams
implies that nevertheless independence implies
i-independence.
The theorem applies to the collapsed and non-collapsed
constructions.
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Proof

Take a model ā, algebraically closed b̄ and a tuple c̄ with

1 bdd(ā) ∩ bdd(b̄) = dcl(∅) is a model,
2 acl(ā, b̄) |i^ā〈c̄, ā〉 for all i , and
3 c̄ |̂

b̄
āb̄.

Put D = 〈c̄, ā〉 ∩ acl(c̄, b̄). We have to show that D |̂ ā.
Conditions 2 and 3 imply that

Cbi(D/acl(ā, b̄)) ⊆ ā ∩ b̄ = acl(∅) for all i ,

whence D |i^ ā.
We must show that Dā is self-sufficient, and
P(Dā) = P(D)P(ā).
Condition 2 implies that 〈c̄, ā〉 ∩ acl(ā, b̄) = ā. Hence

〈c̄, ā〉 ∩ b̄ ⊆ ā ∩ b̄ = acl(∅).
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The non-group case

As the language is relational, Dā is a substructure.
Condition 3 and the characterization of independence yield

〈acl(c̄, b̄), acl(ā, b̄)〉 = acl(c̄, b̄) ∪ acl(ā, b̄).

Therefore

〈c̄, ā〉∩〈acl(c̄, b̄), acl(ā, b̄)〉
= 〈c̄, ā〉 ∩ (acl(c̄, b̄) ∪ acl(ā, b̄))

= (〈c̄, ā〉 ∩ acl(c̄, b̄)) ∪ (〈c̄, ā〉 ∩ acl(ā, b̄))

= D ∪ ā.

Since the intersection of two self-sufficient sets is again
self-sufficient, we are done.
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The group case

Consider, for a contradiction, a finite (coloured) tuple
γ̄ ∈ 〈D, ā〉 of minimal length such that

1 δ(γ̄/D · ā) < 0, or
2 γ̄ is a coloured point of (D · ā) \ (P(D) · P(ā)).

As ā |̂
b̄

c̄, the group acl(ā, b̄) · acl(c̄, b̄) is self-sufficient and

P(acl(ā, b̄) · acl(c̄, b̄)) = P(acl(ā, b̄)) · P(acl(c̄, b̄)).

Hence 〈D, ā〉 ⊆ acl(ā, b̄) · acl(c̄, b̄) and

γ̄ = γ̄1γ̄2 with (coloured) γ̄1 ∈ acl(ā, b̄) and γ̄2 ∈ acl(c̄, b̄).

We shall show that we can choose γ̄1 ∈ ā and γ̄2 ∈ D, thus
contradicting our assumption and finishing the proof.
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The group case

D ∪ γ̄ ⊆ 〈D, ā〉 ⊆ 〈c̄, ā〉 implies D, γ̄ |i^ā acl(ā, b̄) for all i .

D ∪ γ̄2 ⊆ acl(c̄, b̄) implies D, γ̄2 |i^b̄ acl(ā, b̄) for all i .

Hence tpi(D, γ̄2/b̄) ‖ γ̄−1
1 tpi(D, γ̄/ā). Define

ā′Eā′′ ⇔ ∃ γ̄′
∧

i

γ̄′ · pi(X , x̄ , ā′) ‖ pi(X , x̄ , ā′′)

where pi(X , x̄ , ā) = tpi(D, γ̄/ā), and γ′ (coloured) acts on x̄ .
Then E is a type-definable equivalence relation, and āE is
bounded over b̄. Thus āE ∈ bdd(ā) ∩ bdd(b̄) = dcl(∅).
Let tp(ā0/āb̄c̄) be finitely satisfiable in dcl(∅), with ā0Eā, as
witnessed by γ̄0. Predimension calculations yield

γ̄0 ∈ acl(ā, ā0) and γ̄−1
0 γ̄1 ∈ acl(b̄, ā0).

There is (coloured) γ̄′0 ∈ acl(ā) = ā with γ̄′−1
0 γ̄1 ∈ acl(b̄) = b̄,

γ̄′−1
0 γ̄ = γ̄′−1

0 γ̄1γ̄2 ∈ 〈D, ā〉∩acl(b̄, c̄) ⊆ 〈c̄, ā〉∩acl(b̄, c̄) = D.�
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Subgroups of algebraic groups

We are thus led to consider subgroups of algebraic groups.

Theorem

In a coloured field a type-definable subgroup of an algebraic
group is an extension of the coloured points of an algebraic
additive or multiplicative group by an algebraic group. In
particular, every type-definable simple group is algebraic.

An algebraic multiplicative group is a torus; an algebraic
additive group is given by p-polynomials.
For the last sentence, a type-definable simple group
embeds into an algebraic group by relative CM-triviality. But
then it must be itself algebraic.
A field of finite Morley rank eliminates imaginaries.
Thus an interpretable simple group in a collapsed red field
is algebraic.
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Proof

Let G be a connected subgroup of an algebraic group, and
g,g′ two independent generics. Then 〈a〉 and 〈b〉 are
freeely amalgamated. Hence

〈gg′〉 ⊆ 〈acl0(g,g′)〉 ⊆ acl0(〈g,g′〉) = acl0(〈g〉〈g′〉) and
P(〈gg′〉) ≤ P(acl0(〈g,g′〉)) = P(〈g,g′〉) = P(〈g〉)P(〈g′〉)).

If r̄ is a basis for P(〈g〉) and s̄ a basis for P(〈g′〉), then a
basis t̄ for P(〈gg′〉) is a linear combination of r̄ and s̄. Since
r̄ , s̄, t̄ are pairwise independent, we may assume r̄ + s̄ = t̄
(red) or r̄ · s̄ = t̄ (green). In the black case, necessarily
r̄ = s̄ = t̄ = ∅.
It follows that the stabilizer Stab(a, r) defines an endogeny
φ : G→ P |r |; composing by an algebraic map, we may
assume it is a homomorphism. The image is a relatively
algebraic subgroup, and the kernel is algebraic. �
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Groups definable in the green field

Our general results say nothing about abelian groups
interpretable in Hrushovski amalgams. In order to
characterize all groups interpretable in the bad field, i.e. the
collapsed green field, a more detailed analysis is necessary.

Theorem

A group interpretable in the collapsed green field is
isogenous to the quotient of a subgroup of an algebraic
group by the green points of a central torus.

This in particular deals with groups such as K×/P(K×).
Our method does not apply to the red case, as repeatedly
we use the fact that connected algebraic multiplicative
groups are tori, and hence parameter-free definable.
In the red field, one would have to deal with additive
subgroups defined by p-polynomials.
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Proof

Let g0, g1 and g4 be independent generic elements of our
group, and put g2 = g0g1, g5 = g4g0 and g3 = g4g0g1.

�
�
�
�
�

@
@
@

@
@

!!
!!

!!
!!

aa
aa

aa
aa

g2 g5

g0

g1 g4

g3
• •

•

•
• •`1

`2

`4 `3

If φ : G→ H is the maximal homomorphism to an algebraic
group, we may replace each gi by some self-sufficient ḡi of
finite transcendence degree over φ(gi), such that:
gi ,g−1

i ∈ acl0(ḡi) and ḡi ∈ acl(gi).
`1 |0^ḡ0

`2 and `1 |0^ḡ0,ḡ1
`2, `3, where `1 = acl0(〈ḡ0, ḡ1, ḡ2〉).

`1·`2·`3 is self-sufficient, P(`1·`2·`3) = P(`1)·P(`2)·P(`3),
and this product is direct modulo P(ḡ0)·P(ḡ1)·P(ḡ5).
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g2 g5

g0g1 g4
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`1 `2

`3`4

There is a green basis t̄1 of P(`1) over P(ḡ0)·P(ḡ1)·P(ḡ2)
such that

t̄1 · t̄4 = t̄2 · t̄3,
t̄1 ∈ acl0(ḡ0, ḡ1, ḡ2),
t̄1 is 0-transcendent over ḡ0, ḡ1 and over ḡ0, ḡ2,
t̄1 is green generic over ḡ0,

and similarly for the other lines. Put

α0 = acl0(ḡ4, ḡ5) ∩ acl0(ḡ0, t̄2)

α1 = acl0(ḡ3, ḡ5) ∩ acl0(ḡ1, t̄3)

α2 = acl0(ḡ3, ḡ4) ∩ acl0(ḡ2, t̄4).
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Then
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is a 0-algebraic quadrangle.
By the Group Configuration Theorem there is a 0-algebraic
group K and generic k ∈ K which is 0-interalgebraic with α0.
Put S′ = Stab0(k , t̄2/ḡ0). Then S′ is a torus and does not
depend on ḡ0. Moreover, k and t̄2 are 0-interalgebraic over
ḡ0, and (ḡ0, t̄2) is algebraic over k .
Hence S′ is an isogeny between π1(S′) ≤ K and (K×)|̄t2|.
Put Γ = S′−1(P(K )|t2|) and H = NK (S′−1((K×)|̄t2|)).
Then G is isogenous to a subgroup of H/Γ. �
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