Exercice 1

Déterminer si les applications suivantes sont linéaires :

- 1. $f_0: \mathbb{R}^2 \to \mathbb{R}, f_0(x, y) = 3xy$
- 2. $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ $f_1(x,y) = (2x+y, x-y)$
- 3. $f_2: \mathbb{R}^3 \to \mathbb{R}^3$ $f_2(x, y, z) = (xy, x, y)$
- 4. $f_3: \mathbb{R}^2 \to \mathbb{R}^4$ $f_3(x,y) = (y,0,x-7y,x+y)$
- 5. $f_4: \mathbb{C}^4 \to \mathbb{C}$ (\mathbb{C} pris comme \mathbb{R} -ev) $f_4(x, y, z, t) = y$
- 6. $f_5: \mathbb{C}^2 \to \mathbb{C}^2$ (\mathbb{C} pris comme \mathbb{C} -ev) $f_5(x,y) = (2ix, (1+i)y + 3x)$.
- 7. $\varphi_1: \mathbb{R}[X] \to \mathbb{R}[X] \quad \varphi_1(P) = P' 5P$
- 8. $\varphi_2: \mathcal{C}([a,b],\mathbb{R}) \to \mathbb{R} \quad \varphi_2(g) = \int_a^b (t^2 + 7)g(t)dt$
- 9. $\varphi_3: \mathbb{R}_3[X] \to \mathbb{R}^3 \quad \varphi_3(P) = (P(-1), P(0), P(1)).$

Exercice 2

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+y, x-y).

Montrer que f est un automorphisme de \mathbb{R}^2 . Déterminer son automorphisme réciproque.

Exercice 3

Soit f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que $g \circ f = 0$ si et seulement si $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$.
- 2. Montrer que $\operatorname{Ker} f \subset \operatorname{Ker} (f \circ f)$ et que $\operatorname{Im} (f \circ f) \subset \operatorname{Im} f$.
- 3. Montrer que si Ker $f = \text{Ker}(f \circ f)$, alors Ker $f \cap \text{Im } f = \{0_E\}$. Qu'en déduit-on pour Ker f et Im f lorsque E est de dimension finie?

Exercice 4

Déterminer les noyaux et les images des applications linéaires $f_1, f_3, f_4, \varphi_1, \varphi_3$ de l'exercice 1. En déduire si elles sont injectives, surjectives, bijectives.

Exercice 5

On considère l'application $u: \mathbb{R}[X] \longrightarrow \mathbb{R}$ définie par u(P) = P(1).

- 1. Montrer que u est une forme linéaire non nulle.
- 2. Décrire $\operatorname{Ker} u$. En déterminer un supplémentaire.

Exercice 6

Soit E un \mathbb{R} espace vectoriel muni d'une base $\{u,v\}$ et m un réel. On définit f_m endo- $\int f_m(u) = mu + (m+1)v$

morphisme de E par : $\begin{cases} f_m(u) = mu + (m+1)v \\ f_m(v) = (m-1)u + (m-2)v \end{cases}$

- 1. Pour quelles valeurs de m f_m est-il un isomorphisme?
- 2. Déterminer $Ker(f_m)$ et $Im(f_m)$ en fonction des valeurs de m.

Exercice 7

- 1. Justifier qu'il existe une unique application linéaire f de \mathbb{R}^3 dans \mathbb{R}^2 telle que : f(1,0,0)=(0,1), f(1,1,0)=(2,0) et f(1,1,1)=(1,1).
- 2. Déterminer f(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$.
- 3. Déterminer l'image et le noyau de f.

Exercice 8

Soit φ la fonction définie sur $E = \mathbb{R}_n[X]$ par $\varphi(P) = P - XP'$ $(n \ge 1)$.

- 1. Montrer que φ est un endomorphisme de E.
- 2. Déterminer une base de Ker φ et une base de Im φ . En déduire si φ est bijectif.

Exercice 9 (d'après IE 12/2011, Asinsa)

Soit $E = \mathbb{R}_3[X]$, et soit $\mathcal{B} = (1, (X-1), (X-1)^2, (X-1)^3)$ une base de E.

- 1. Soit P un polynôme appartenant à E. Exprimer les coordonnées de P dans la base \mathcal{B} à l'aide de P(1), P'(1), P''(1), P''(1).
- 2. Étant donné un réel fixé a, on considère l'application f_a définie sur E par : $f_a(P) = P'' + (X-1)P' aP$.
 - (a) Montrer que f_a est un endomorphisme de E.
 - (b) Déterminer les coordonnées de chacun des vecteurs de $f_a(\mathcal{B})$ dans la base \mathcal{B} .
 - (c) Déterminer le rang de f_a selon la valeur de a.
 - (d) En déduire la dimension de ker f_a selon la valeur de a, puis expliciter ker f_a .
 - (e) Pour quelle(s) valeur(s) de a l'endomorphisme f_a est-il bijectif?

Exercice 10

Soit E un \mathbb{K} -espace vectoriel, et $f \in \mathcal{L}(E)$ tel que pour tout $v \in E$, les vecteurs v et f(v) soient colinéaires.

- 1. Justifier que pour tout $v \in E$, il existe $\lambda_v \in \mathbb{K}$ tel que $f(v) = \lambda_v v$.
- 2. Soit $u, v \in E$, tous deux non nuls.
 - (a) Montrer que si $\{u, v\}$ est une famille liée alors $\lambda_u = \lambda_v$.
 - (b) Montrer que si $\{u, v\}$ est une famille libre alors $\lambda_u = \lambda_v$ (on pourra écrire f(u+v) de deux manières différentes).
- 3. En déduire que f est une homothétie vectorielle, c'est-à-dire que le coefficient λ est indépendant du vecteur de E considéré.

Exercice 11 (d'après IE 06/2008)

Soit E un \mathbb{R} -espace vectoriel de dimension 3 et f un endomorphisme non nul de E tel que $f\circ f=0.$

- 1. Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.
- 2. Quelles valeurs peut prendre rg(f)? Déterminer les dimensions de Ker(f) et Im(f).

Exercice 12 On considère l'application $u: \mathbb{R}_n[X] \longrightarrow \mathbb{R}$ définie par $u(P) = \int_0^1 P(t) \ dt$.

Montrer que u est une forme linéaire non nulle.

En déduire la dimension de Ker u. Déterminer une base de Ker u.

Exercice 13

On se place dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}^3$. On définit le sous-espace vectoriel $P = \{(x, y, z) | x - 2y + 3z = 0\}$ et D est la droite vectorielle engendrée par le vecteur u = (1, 1, 1).

- 1. Montrer que P et D sont supplémentaires.
- 2. Donner l'expression analytique de la projection p sur P parallèlement à D.
- 3. En déduire celle de la symétrie s par rapport à P parallèlement à D.

Exercice 14

Exercice 14
1. On considère l'application $p: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (4x - 6y, 2x - 3y) \end{cases}$.

Montrer que p est un projecteur. Déterminer une base de Ker p et une base de Im p.

2. Soit $E = \mathbb{R}^{\mathbb{R}}$. On considère l'application $s : \begin{cases} E \to E \\ f \mapsto g \text{ tel que } g(x) = f(-x) \end{cases}$. Montrer que s est une symétrie. Déterminer $\ker(s-id)$ et $\ker(s-id)$

Exercice 15 (un projecteur, une symétrie)

On considère l'ev \mathbb{R}^2 muni de sa base canonique (i, j).

- 1. Soit $p \in \mathcal{L}(\mathbb{R}^2)$ défini par : $\begin{cases} p(i) = \frac{1}{3}i + \frac{1}{3}j \\ p(j) = \frac{2}{3}i + \frac{2}{3}j \end{cases}$
 - (a) Donner l'expression analytique de p.
 - (b) Montrer que p est une projection de E, déterminer ses éléments caractéristiques.
- 2. Soit $s \in \mathcal{L}(\mathbb{R}^2)$ défini pour tout $(x,y) \in \mathbb{R}^2$ par $s((x,y)) = (\frac{1}{3}x + \frac{4}{3}y, \frac{2}{3}x \frac{1}{3}y)$. Montrer que s est une symétrie et déterminer ses éléments caractéristiques.

Exercice 16

On considère le \mathbb{R} -espace vectoriel $E = \mathbb{R}_3[X]$ muni de sa base canonique. Soit F et G les sous-ensembles de définis par $F = \{P \in E, P(0) = 0\}$ et $G = \{P \in E, P(1) = 0\}$.

- 1. Soit a un réel et ϕ_a l'application définie sur E par pour tout $P \in E$, $\phi_a(P) = P(a)$.
 - (a) Montrer que ϕ_a est une forme linéaire de E.
 - (b) En déduire que F, G et $F \cap G$ sont des sous-espaces vectoriels de E.
- 2. Déterminer la dimension de F et de G.

- 3. On considère l'application $f: \begin{cases} E \to \mathbb{R}[X] \\ P \mapsto P(0)X + P(1) \end{cases}$.
 - (a) Montrer que f est linéaire et déterminer son rang. Est-elle injective, surjective, bijective?
 - (b) Montrer que Ker $f = F \cap G$ et déterminer une base de $F \cap G$.
 - (c) Montrer que E = F + G. F et G sont-ils supplémentaires dans E?

Exercice 17

Soit $n \in \mathbb{N}^*$ et $\alpha_1, \alpha_2, \ldots, \alpha_n$ des réels distincts deux à deux.

On considère l'application $f: \begin{cases} \mathbb{R}_{n-1}[X] \to \mathbb{R}^n \\ P \mapsto (P(\alpha_1), P(\alpha_2), \dots, P(\alpha_n)) \end{cases}$.

- 1. Montrer que f est linéaire et injective. En déduire que f est bijective. Que fait l'application f^{-1} ?
- 2. Soit (e_1, e_2, \ldots, e_n) la base canonique de \mathbb{R}^n . Pour tout $i \in \{1, \ldots, n\}$, on pose $\ell_i = f^{-1}(e_i)$.
 - (a) Que dire de la famille (ℓ_1, \ldots, ℓ_n) dans $\mathbb{R}_{n-1}[X]$?
 - (b) Montrer que, pour tout $i \in \{1, ..., n\}$, on $a : \ell_i = \prod_{\substack{k=1 \ i=1}}^n \frac{X \alpha_k}{\alpha_i \alpha_k}$.

Exercice 18

Soit f l'endomorphisme de \mathbb{R}^3 défini par f(x,y,z) = (x+3y+z,x-y-z,2x+2y).

- 1. Donner des bases de Ker f et Im f.
- 2. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- 3. Pour tout $\lambda \in \mathbb{R}$, on pose $E_{\lambda} = \text{Ker}(f \lambda \text{Id}_{\mathbb{R}^3})$.
 - (a) Montrer que $E_{\lambda} \neq \{0\}$ si et seulement si $\lambda \in \{-2,0,2\}$.
 - (b) Construire une base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de \mathbb{R}^3 telle que $\varepsilon_1 \in E_0, \varepsilon_2 \in E_{-2}$ et $\varepsilon_3 \in E_2$.
 - (c) Montrer que $(\varepsilon_2, \varepsilon_3)$ est une base de Im f.
- 4. On pose $q = f^3 4f$.
 - (a) Calculer $q(\varepsilon_1)$, $q(\varepsilon_2)$ et $q(\varepsilon_3)$ en complétant le tableau suivant :

x	f(x)	$f^2(x)$	$f^3(x)$	g(x)
ε_1				
ε_2				
ε_3				

Que peut-on en déduire?

(b) Utiliser le résultat précedent pour déterminer l'application f^n suivant les valeurs de l'entier naturel n.