TD 7

ESPÉRANCE CONDITIONNELLE

Cours

Soit X une variable alétoire réelle définie sur un espace de probabilités discret et Y une variable aléatoire définie sur le même espace de probabilités. Si X admet une espérance, on définit alors l'espérance conditionnelle de X sachant Y comme la variable aléatoire :

$$\mathbb{E}[X|Y] = \sum_{y} \frac{\mathbb{E}[X\mathbb{1}_{\{Y=y\}}]}{\mathbb{P}(Y=y)} \mathbb{1}_{\{Y=y\}}.$$

Autrement dit pour tout ω dans l'univers de X et Y, on a

$$\mathbb{E}[X|Y](\omega) = \frac{\mathbb{E}[X\mathbb{1}_{\{Y=Y(\omega)\}}]}{\mathbb{P}(Y=Y(\omega))}.$$

Si on note $\mathbb{E}_{Y=y}$ l'espérance sous la mesure de probabilité $\mathbb{P}(\cdot|Y=y)$, on a

$$\mathbb{E}[X|Y] = \sum_{y} \mathbb{E}_{Y=y}[X] \, \mathbb{1}_{\{Y=y\}}.$$

Exercices

Exercice 1. Martingale de Doob

On se place sur l'espace de probabilités discret (Ω, \mathbb{P}) , avec $\Omega = \in [1; 8]$ et \mathbb{P} la mesure uniforme sur Ω . On pose : $X_0 = \mathbb{1}_{\Omega}$, $X_1 = \mathbb{1}_{\{1,2,3,4\}}$, $X_2 = \mathbb{1}_{\{1,2\}} + 2\mathbb{1}_{\{3,4\}} + 3\mathbb{1}_{\{5,6\}}$, $X_3 = \sum_{\omega \in \Omega} \omega \mathbb{1}_{\{\omega\}}$.

- 1. Pour tout $i \in [0, 3]$, déterminer $Y_i := \mathbb{E}[X_3 | X_i]$.
- 2. Montrer que pour tout $i \in [0; 2]$, on a $\mathbb{E}[Y_{i+1}|Y_i] = Y_i$. On appelle (Y_i) la martingale de Doob de X.
- 3. On suppose maintenant que la probabilité \mathbb{P} est définie par $\mathbb{P}(\omega_i) = 1/9$ pour i = 1, 2, 3, 6, 7, 8 et $\mathbb{P}(\omega_i) = 1/6$ pour i = 4, 5. Construire à nouveau Y avec ces nouvelles probabilités.

Exercice 2. Soit X et Y deux variables aléatoires réelles définies sur le même espace de probabilités discret.

- 1. Montrer que $\mathbb{E}[X|X] = X$.
- 2. Montrer que $\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right] = \mathbb{E}\left[X\right]$.
- 3. Soit f une fonction.
 - (a) Montrer que $\mathbb{E}\left[\mathbb{E}\left[X|f(Y)\right]|Y\right] = \mathbb{E}\left[X|f(Y)\right]$.
 - (b) Montrer que $\mathbb{E}\left[\mathbb{E}\left[X|Y\right]|f(Y)\right] = \mathbb{E}\left[X|f(Y)\right]$.

Exercice 3. On considère une variable aléatoire N à valeurs dans \mathbb{N} , et une suite de variables aléatoires indépendantes et de même loi $(C_i)_{i\geq 1}$, indépendantes de N. On pose $Y=\sum_{i=1}^N C_i$. Déterminer $\mathbb{E}[Y|N]$, puis $\mathbb{E}[Y]$.