Feuille d'exercices nº 7

CALCUL DIFFÉRENTIEL

Exercice 1. On considère l'application $f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ définie par $f(M) = M^2$. Montrer que f est différentiable sur $\mathcal{M}_n(\mathbb{R})$ et déterminer sa différentielle en tout $M \in \mathcal{M}_n(\mathbb{R})$.

Exercice 2. Pour les fonctions suivantes, déterminer les points a en lesquels la fonction est différentiable et déterminer sa différentielle en un tel point :

- 1. $f_1: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f_1(x) = \frac{1}{x}$,
- 2. $f_2: \mathbb{C}^* \longrightarrow \mathbb{C}$ définie par $f_2(z) = \frac{1}{z}$,
- 3. $f_3: \mathbb{C} \longrightarrow \mathbb{C}$ définie par $f_3(z) = \text{Re}(z)$.

(avec \mathbb{C} considéré comme \mathbb{R} -espace vectoriel)

Exercice 3. Soient E, F, G trois espaces vectoriels réels de dimensions finies. On considère une application $\varphi: E \times F \longrightarrow G$ bilinéaire. Soit $\mathcal{B} = (e_1, \dots, e_n)$ (resp. $\mathcal{B}' = (f_1, \dots, f_p)$) une base de E (resp. F). On sait que l'on peut munir respectivement E et F des normes $\| \cdot \|_E$ et $\| \cdot \|_F$ définies par

$$\forall x = \sum_{i=1}^{n} x_i e_i \in E, y = \sum_{j=1}^{p} y_j f_j \in F, \quad \|x\|_E = \max_{i \in [[1;n]]} |x_i| \text{ et } \|y\|_F = \max_{j \in [[1:p]]} |y_j|.$$

1. Munissons $E \times F$ de la norme produit associée aux deux normes précédentes, notée $\| \|$. Montrer qu'il existe $C \in \mathbb{R}^+$ tel que :

$$\forall (x,y) \in E \times F, \quad \|\varphi(x,y)\|_G \le C\|(x,y)\|^2.$$

2. Montrer que φ est différentiable en tout point $(x,y) \in E \times F$ et que

$$\begin{array}{cccc} \mathrm{d} \varphi(x,y): & E \times F & \longrightarrow & G \\ & (h,k) & \longmapsto & \varphi(x,k) + \varphi(h,y). \end{array}$$

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$
 pour $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Montrer que f admet des dérivées directionnelles selon tout vecteur en (0,0) mais n'y est pas différentiable.

Exercice 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{x^2y - y^3}{x^2 + y^2}$$
 pour $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

- 1. Justifier l'existence et calculer les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial u}$ en (0,0).
- 2. L'application est-elle différentiable en (0,0)?

Exercice 6. Soient E, F deux \mathbb{R} -espaces vectoriels normés et $f: E \longrightarrow F$ une fonction différentiable. Dans les cas suivants trouver le nombre de lignes et de colonnes de la matrice jacobienne de f en un point, puis à l'aide des entrées de la matrice jacobienne décrire la différentielle de f en un point donné :

- 1. f est une fonction réelle d'une variable réelle $(E = F = \mathbb{R})$,
- 2. f est une fonction vectorielle d'une variable réelle $(E = \mathbb{R}, F = \mathbb{R}^p)$,
- 3. f est une fonction numerique (réelle) d'une variable vectorielle $(E = \mathbb{R}^n, F = \mathbb{R})$, Quel est le lien avec le gradient de f dans ce cas là?
- 4. f est une fonction vectorielle d'une variable vectorielle $(E = \mathbb{R}^n, F = \mathbb{R}^p)$

Exercice 7. On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f est différentiable en (0,0).
- 2. Montrer que f n'est pas de classe C^1 en (0,0).

Exercice 8. Notons $\mathcal{B}_c = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ la base canonique de $\mathcal{M}_2(\mathbb{R})$, où $E_{i,j}$ désignent les matrices élémentaires. On considère l'application

$$\det: \ \mathcal{M}_2(\mathbb{R}) \ \longrightarrow \ \mathbb{R}$$

$$A \ \longmapsto \ \det(A)$$

- 1. Montrer que f admet des dérivées partielles premières dans la base \mathcal{B}_c et les calculer.
- 2. Justifier que det est de classe \mathcal{C}^1 sur $\mathcal{M}_2(\mathbb{R})$ et déterminer sa différentielle en toute matrice $A \in \mathcal{M}_2(\mathbb{R})$.

Exercice 9. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par :

$$f(x,y) = \begin{cases} x^2 \sin\left(\frac{y}{x}\right) & \text{si} \quad x \neq 0\\ 0 & \text{si} \quad x = 0 \end{cases}$$

- 1. Montrer que l'application f est continue sur \mathbb{R}^2 .
- 2. Montrer que f possède des dérivées partielles premières en tout point de \mathbb{R}^2 .
- 3. Déterminer les points de \mathbb{R}^2 où les dérivées partielles premières de f sont continues.
- 4. Justifier que f est différentiable sur \mathbb{R}^2 et écrire la différentielle de f en tout point de \mathbb{R}^2 .

Exercice 10.

- 1. Si $(x,y) \mapsto f(x,y)$ est différentiable de \mathbb{R}^2 dans \mathbb{R} , déterminer la dérivée de $u: x \longmapsto f(x,-x)$ et la différentielle en tout point de $g: (x,y) \longmapsto f(y,x)$.
- 2. Soient E et F deux \mathbb{R} -espaces normés, U un ouvert de E, et $f: E \to F$ différentiable. Pour $a \in U$ et $v \in E$ dériver la fonction composée $t \mapsto f(a+tv)$ en t=0.

Exercice 11. Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ deux fonctions différentiables. Montrer que l'application

$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto f(x+g(x,y))$$

est différentiable et calculer sa différentielle en chaque point de \mathbb{R}^2 .

Exercice 12. On considère la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = \int_0^{e^{xy}} \sin\left(t^2\right) dt.$$

En considérant f comme la composée de deux applications, montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 , puis écrire sa matrice jacobienne en tout point de \mathbb{R}^2 .

Exercice 13. Soient E, F deux \mathbb{R} -espaces vectoriels normés de dimensions finies , $f: E \longrightarrow F$ et $\lambda: E \longrightarrow \mathbb{R}$ différentiables. En la considérant comme la composée de deux applications, montrer que l'application produit λf est aussi différentiable et déterminer sa différentielle en tout point de E.

Exercice 14. Soit U un ouvert de \mathbb{R}^n et $f:U\longrightarrow\mathbb{R}$ de classe \mathcal{C}^1 sur U à valeurs non nulles. Montrer que l'application inverse $\frac{1}{f}$ est aussi de classe \mathcal{C}^1 et donner sa différentielle en tout point de u.