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Introduction en Français

Cette introduction en Français est délibérément courte, elle ne joue pas le même rôle que l’in-
troduction en Anglais, plus détaillée. Je souhaite ici simplement contextualiser mon travail de
recherche et quelques résultats. Pour une approche plus progressive, ne requiérant qu’un bagage
mathématique modéré, le lecteur est invité à consulter les sections 1.3 à 1.6. Un index des no-
tations (p. 95) est disponible à la fin du manuscrit. J’insiste sur le fait que les diverses notions
(comme les espaces de Lebesgue ou la mesure de Hausdorff, par exemple) sont utilisées sans être
nommées dans cette courte introduction.

Les inégalités de Sobolev portent le nom du mathématicien russe qui les a formalisées et
prouvées en 1938, Sergueï Sobolev. Depuis cette date, elles ont été un sujet de recherche très
actif, et ont permis de nombreuses applications dans des domaines variés de l’analyse et des
probabilités. Elles sont notamment au cœur de l’étude des équations aux dérivées partielles, car
elles traduisent des propriétés fondamentales des dérivées au sens faible : l’intégrabilité d’une
dérivée au sens faible implique la régularité au sens fort. Les dérivées au sens faible, ou au sens
des distributions, on le rappelle, constituent un cadre particulièrement efficace dans la résolution
d’équations aux dérivées partielles, en permettant par exemple de donner du sens à la dérivée
d’une onde de choc, phénomène se manifestant même dans des modèles physiques très simples.

De manière générale, pour une inégalité fonctionnelle, s’il existe des fonctions qui réalise l’éga-
lité, on dit que l’inégalité est optimale (ces fonctions sont alors appelées optimales). Cependant,
la plupart du temps, de telles fonctions n’existent pas : dans ce cas, on parle d’inégalité optimale
lorsque l’égalité peut être approchée par une suite de fonctions.

Pour la majorité des applications, connaître la forme optimale d’une inégalité ne présente
pas vraiment plus d’intérêt que d’avoir une estimation des constantes impliquées dans l’inégalité.
Toutefois, la recherche d’inégalités optimales est une entreprise riche pour deux raisons. La
première, c’est que les inégalités fonctionnelles sont naturellement liées aux équations aux dérivées
partielles, et donc aux modèles physiques. Les fonctions optimales sont alors exactement les
solutions d’énergie minimale du problème physique sous-jacent. Même s’il n’existe pas de fonction
optimale, la connaissance des constantes optimales renseigne sur l’énergie du système physique.
L’autre raison est le lien très fort entre les inégalités de Sobolev d’une part, et la géométrie de
l’espace ambiant d’autre part. Par exemple, l’inégalité isopérimétrique dans l’espace euclidien est
équivalente à un cas de l’inégalité de Sobolev classique (sous forme optimale). De manière plus
générale, la théorie géométrique de Brunn-Minkowski offre des outils suprenamment efficaces
dans l’étude des inégalités de Sobolev.

Le manuscrit de thèse est divisé en quatre chapitres, dont les trois derniers sont des repro-
ductions, plus ou moins verbatim, d’articles écrits au cours de la thèse. Le premier chapitre,
introductif, présente et définit tous les outils utilisés dans les chapitres suivants.

Pour un entier d > 1, il est bien connu des experts que l’inégalité isopérimétrique

Hd−1(∂A) ≥ dω1/d
d |A|

(d−1)/d pour tout compact A ⊂ Rd de classe C1

v
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est équivalente à l’inégalité de Sobolev pour p = 1,

‖∇u‖1 ≥ dω
1/d
d ‖u‖1∗ pour toute fonction positive u ⊂ C∞c (Rd),

où 1∗ = d/(d−1) et ωd = |B(0, 1)| est le volume de la boule unité de dimension d. Bien sûr, d’un
point de vue logique, deux propositions vraies sont toujours équivalentes, mais il faut comprendre
ici que ces deux inégalités sont équivalentes dans le sens où l’une se déduit de l’autre, et vice
versa. Ce résultat est une manifestation du lien qui existe entre l’inégalité de Sobolev et la
géométrie, comme mentionné plus haut. C’est ce lien qui motive l’approche du chapitre 2 : on
entend extraire de nouvelles inégalités de nature analytique à partir d’inégalités géométriques.
Plus riche que l’inégalité isopérimétrique puisque cette dernière en est une conséquence, l’inégalité
de Brunn-Minkowski

|A+B|1/d ≥ |A|1/d + |B|1/d pour tout compacts A,B ⊂ Rd

et ses généralisations offrent un cadre efficace pour démontrer des inégalités de la famille de
l’inégalité de Sobolev [BL08]. Plus exactement, Sergueï Bobkov et Michel Ledoux font appel
à l’inégalité de Borell-Brascamp-Lieb, que l’on peut reformuler de la manière suivante : soit
t ∈ [0, 1]. Si g, W , et H sont trois fonctions définies sur Rd et à valeurs dans (0,+∞], telles que∫
g−d =

∫
W−d = 1 et

∀x, y ∈ Rd, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y),

alors ∫
H−d ≥ 1.

Grâce à la théorie du transport optimal, on peut prouver la version suivante de l’inégalité de
Borell-Brascamp-Lieb [BCEF+17] : avec les mêmes hypothèses sur g, W et H,∫

H1−d ≥ (1− t)
∫
g1−d + t

∫
W 1−d.

C’est cette inégalité qui est réellement le point de départ du chapitre 2. En utilisant à notre
avantage les propriétés d’une l’inf-convolution, on peut non seulement retrouver l’inégalité de
Sobolev sur Rd tout entier [BCEF+17], mais on peut aussi prouver une famille d’inégalités de
Gagliardo-Nirenberg-Sobolev à trace sur les cônes convexes, notamment.

Les deux chapitres suivants, 3 et 4, reposent sur la méthode de Dominique Bakry et Michel
Émery [BE85]. L’idée derrière cette méthode est séduisante de simplicité.

On dit qu’une variété riemannienne compacte M vérifie une inégalité de Sobolev logarith-
mique avec la constante C > 0 et pour la mesure riemannienne µ si pour toute fonction stricte-
ment positive u ∈ C∞(M),

Entµ(u) :=

∫
M

u log

(
u

‖u‖1

)
dµ ≤ C

2

∫
M

‖∇u‖2

u
dµ.

Dans ce cas, si u0 ∈ C∞(M) et u désigne la solution de l’équation de la chaleur{
∂tu = ∆u sur R∗+ ×M,

u(0, .) = u0 sur M,
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où ∆ désigne l’opérateur de Laplace-Beltrami sur M , alors l’inégalité de Sobolev logarithmique
relie exactement l’entropie Entµ(u) =

∫
M
u log udµ et sa dérivée temporelle,

d

dt
Entµ(u) =

∫
M

∆u(1 + log u)dµ = −
∫
M

‖∇u‖2

u
dµ,

ce qui implique une décroissance exponentielle de l’entropie vers 0, Entµ(u) ≤ e−Ct/2 Entµ(u0).
Remarquablement, dériver l’entropie une seconde fois permet de faire apparaître l’opérateur de
carré du champ itéré, aussi plus sobrement appelé Γ2 ([BGL14], voir aussi la section 1.6.2) :

d2

dt2
Entµ(u) = 2

∫
M

uΓ2(log u)dµ.

Dès lors, une inégalité du type Γ2(log u) ≥ ρ‖∇ log u‖2 pour un ρ > 0 conduit à

d2

dt2
Entµ(u) ≥ −2ρ

d

dt
Entµ(u),

ce qui, après intégration, et en utilisant le fait que l’entropie comme sa dérivée convergent vers
0 en +∞, on retrouve Entµ(u0) ≤ − 1

2ρ
d
dt Entµ(u)

∣∣
t=0

, c’est-à-dire l’inégalité de Sobolev loga-
rithmique avec la constante 1/ρ. La méthode de Bakry et Émery, c’est, en somme, « dériver
l’entropie deux fois ».

L’inégalité utilisée pour comparer la dérivée seconde de l’entropie à la dérivée première est un
cas particulier de condition de courbure dimension, notée CD(ρ, n), qui relie Γ2, Γ et l’opérateur
différentiel L, dans qui dans notre exemple était ∆. On dit que L vérifie une condition CD(ρ, n)
si

∀φ ∈ C∞(M), Γ2(φ) ≥ ρΓ(φ) +
1

n
(Lφ)2

Par exemple, l’opérateur de Laplace-Beltrami, défini sur une variété d-dimensionnelle (M, g)
dont la courbure de Ricci est minorée par ρg, vérifie CD(ρ, d). Lorsque ρ et n sont strictement
positifs, la condition CD(ρ, n) conduit facilement aux inégalités de Sobolev logarithmique, mais
aussi de Poincaré, avec la constante 1/ρ. Dans le chapitre 3, on démontre différentes familles
d’inégalités de Beckner, qui interpolent entre l’inégalité de Poincaré et de Sobolev logarithmique,
dans deux cas.

• Sous l’hypothèse CD(0, n), avec n > 0, on démontre des inégalités de Poincaré à poids.
L’idée est que le poids permet de compenser le manque de courbure de la variété.

• Sous l’hypothèse CD(ρ, n), avec ρ > 0 et n < −2, on démontre des inégalités de Beckner,
avec constante optimale (n− 1)/(ρn).

Le dernier chapitre sort du cadre linéaire du chapitre 3, et ne permet donc pas le recours à
la théorie des semigroupes de Markov. En voyant l’équation de diffusion rapide

∂tu = ∆um sur Rd,

avec m ∈ [1 − 1/d, 1), comme le flot-gradient d’une entropie généralisée dans l’espace de Was-
serstein W2(Rd), la méthode de Bakry-Émery permet de retrouver non seulement l’inégalité de
Sobolev classique, mais aussi de démontrer de nouvelles formes d’inégalités, comme une inégalité
de Sobolev logarithmique à trace sur le demi-espace Rd+. Malgré la différence des techniques
impliquées dans les chapitre 3 et 4, les expressions de la dérivée seconde de l’entropie s’avèrent
très similaires.





ix

La vie humaine ne dure qu’un instant. Passons-la donc à faire ce qui nous plaît. En
ce monde fugace comme un songe, c’est folie que de vivre misérablement, adonné aux
seules choses qui nous rebutent. [...] J’aime à dormir. Face à la situation actuelle du
monde, je pense que je vais rester chez moi et dormir.

Jōchō Yamamoto, Hagakure
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1.1 Preamble and outline

This thesis focuses on sharp Sobolev-type inequalities, both in the Euclidean space and in Rie-
mannian manifolds. Ever since its initial proof by Sergei Sobolev in 1938 [Sob38], the eponymous
inequality and its relatives have been at the center of very many applications, notably in the
study of partial differential equations. Indeed, they allow to relate integrability and regularity of
functions in a weak sense, which makes not only for a powerful framework, since weak derivatives
behave much better than regular derivatives, but also perhaps for a more natural one, since many
physical phenomena, like shock waves, are inherently discontinuous.

While it is true that for many, if not most applications, the inequality need not be sharp (that
is, with the smallest constant possible), the study of their sharp versions is of particular interest
for at least two reasons. A first one is that these inequalities, while pertaining to functions, are
intricately geometrical in nature. For instance, the Euclidean isoperimetric inequality can be
seen as a reformulation to the classical Sobolev inequality for functions with integrable gradient.
This relationship between geometry and functional analysis will, hopefully, be made somewhat

1



2 CHAPTER 1. INTRODUCTION

clearer throughout this manuscript, notably through the study of the implications of the so-
called curvature-dimension conditions. Another reason to investigate sharp inequalities is that
they may be used to compute the ground state energy in some physical models.

While the proof of the original Sobolev inequality goes back to 1938, its sharp version was
only proved some forty years later by Thierry Aubin and Giorgio Talenti [Aub76, Tal76], inde-
pendently. Since then, variants of the Sobolev inequality have been studied intensely, using tools
borrowed from many different fields, including calculus of variations, operator theory, geometrical
measure theory, probabilities, and, more recently, optimal transport.

The manuscript is divided in five chapters: the last three are reproductions of the articles
written during the period of the PhD. Each of these may be read independently from the rest,
they aim to be as self-contained as possible. As a result, a few definitions and basic results will
be repeated multiple times; we believe that it provides further coherence to the text. The first
two chapters make up the introduction, in French and then in English, in which we present many
of the notions and the tools that will be used in the subsequent chapters. We chose to include
some proofs in the introduction, some because we think they are beautiful, some others because
they provide solid examples as well as motivation for the developments in the other chapters.
Among those proofs, some are easy and of well-known facts, it is our hope that they will interest
readers who are less familiar with the topics addressed in this work.

The introduction is organised as follows: in the next section, the main inequalities in the
limelight of this manuscript will be defined, so that we can use names a bit more explicit than
“Sobolev-type inequalities”, and also because for each one of them, there exists a great number of
variants bearing the same name. After this perhaps sligtly less interesting yet necessary part, we
will succinctly present the Brunn-Minkowski theory and its relationship with Sobolev inequali-
ties, working our way to the Borell-Brascamp-Lieb inequality, which is some kind of functional
counterpart of the Brunn-Minkowski inequality. We will propose a proof of an improvement of
that inequality, and to do so we will have to take a detour into the very relevant theory of opti-
mal transport, which allow us to very briefly introduce the formalism named as Otto’s calculus,
a very useful tool for calculations when dealing with paths in the family of probabilities, or,
equivalently, with nonnegative, unit-mass solutions to conservative partial differential equations.

In the remaining sections of the introduction, we will see that Sobolev inequalities may be
used to study solutions to certain partial differential equations. Namely, the logarithmic Sobolev
inequality may be used to deduce exponential decay of the entropy of the solution to the heat
equation on compact manifolds. The method proposed by Bakry and Émery [BE85] consists of a
spectacular reversal: studying the entropy allows to recover the logarithmic Sobolev inequality!
In order to apply their method to various problems, we will have to use some classical results of
the theory of parabolic partial differential equations. The linear case is rather well understood
through the prism of operator theory, and we will, without proof this time, recall some important
facts. In the nonlinear case however, a little bit more work is usually required.

Even though much of the mathematical vocabulary stems from the field of probability (Markov
semigroups, carré du champ operator, diffusions, etc.), we will sadly never actually adopt a prob-
abilistic viewpoint.

Among all the other chapters, chapter 2 stands out a little bit, as it is the only one which
does not rely on the method proposed by Bakry and Émery. Instead, we work within the Brunn-
Minkowski theory to prove some new sharp trace Sobolev inequalities in convex subsets of the
Euclidean space. The keystone of that approach is a generalization of the Borell-Brascamp-Lieb
inequality, a proof of which we reproduce in the introduction using optimal transport.

Chapter 3, which is a joint work with Ivan Gentil, deals with Riemannian manifolds equipped
with differential operators satisfying so-called curvature-dimension conditions. Inequalities like
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the Poincaré inequality classically hold in positively curved spaces, in the sense of the Ricci
curvature. The novelty of this chapter consists of proving Poincaré-like inequalities (or more
specifically, Beckner inequalities) in the case where the curvature is positive and the effective
dimension is negative, and also when the space is only assumed flat, and the effective dimension
positive. All the results from the Markov semigroup theory needed in the chapter is recalled in
the introduction.

Finally, we go back to the Euclidean space again in chapter 4, in which we study nonlinear
diffusion equations. Since the Markov semigroup theory developped earlier is of no use in that
case, we have to rely on standard partial differential equations techniques. In this chapter, we
focus entirely on proving functional inequalities, and not on the exact resolution of the nonlinear
parabolic equations considered, with the explicit goal of ultimately applying those same methods
to manifolds.

All three chapters have this in common: to prove the proposed functional inequalities, the
proofs all use a family of functions indexed on the real half-line. In chapter 2, the starting point
is a family of infimal convolutions, whereas chapters 3 and 4 use solutions of parabolic equations,
which we also call flows. In that sense, all of these approaches are dynamical, hence the title of
this thesis.

1.2 The classical Sobolev inequality and its variants

1.2.1 Definitions of classical inequalities

It seems only right that this cornerstone of an inequality should be cited at the very beginning
of the manuscript.

Theorem 1.1 (Sobolev inequality). Let 1 ≤ p < d. For any u ∈ C∞c (Rd),

‖u‖Lp∗ ≤ S(d, p)‖∇u‖p, (1.1)

where S(d, p) is an explicit constant, and

p∗ =
dp

d− p
.

Inequality (1.1) extends naturally to the Sobolev space W 1,p(Rd) = {u ∈ Lp(Rd),∇u ∈ Lp(Rd)}
for p > 1, and to the functions with bounded variation, BV (Rd) = {u ∈ L1(Rd), ‖u‖BV < +∞}
for p = 1. Then, there is equality in (1.1) if, and only if,

p > 1 and u(x) =

(
1

a+ b‖x− x0‖p/(p−1)

)(d−p)/p

for some a, b > 0 and x0 ∈ Rd

or
p = 1 and u is the characteristic function of a ball.

The original proof of this inequality for p > 1 is due to Sergei Sobolev in 1938 [Sob38], hence
its name, but its sharp form and the equality case were only found some forty years later, in 1976,
by Thierry Aubin [Aub76] and Giorgi Talenti [Tal76], independently. Even though one think of
those results as purely analytical, the proofs by Sobolev, as well as those by Aubin and Talenti, all
rely on a symmetrization technique, the so-called symmetric decreasing rearrangement (a simple
yet thorough presentation of which can be foud in [LL01]). The fact that minimizers in the case
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p = 1 are characteristic functions of balls further hints at a geometric nature of the Sobolev
inequality. As it turns out, the Sobolev inequality for p = 1 is equivalent to the isoperimetric
inequality theorem 1.14 below, which is a fact that we will prove in section 1.3.

So fix some ideas and to provide a bit of context to what we mean by Sobolev inequalities,
we define here some classical inequalities in a very generic way. Let M be a smooth, connected
Riemannian manifold.

Definition 1.2 (Log-Sobolev). We say that the manifold M satisfies a logarithmic Sobolev
inequality with constant C > 0 with respect to the measure µ if, for all nonnegative functions
u ∈ C∞c (M), ∫

M

u2 log

(
u2

‖u‖22

)
dµ ≤ 2C

∫
M

‖∇u‖2dµ. (1.2)

Definition 1.3 (Poincaré). We say that the manifold M satisfies a Poincaré inequality with
constant C > 0 with respect to the measure µ if, for all nonnegative functions u ∈ C∞c (M),∫

M

u2dµ−
(∫

M

udµ

)2
≤ C

∫
M

‖∇u‖2dµ (1.3)

Definition 1.4 (Beckner). We say that the manifold M satisfies a Beckner inequality with
constant C > 0 and parameter p ∈ (1, 2] with respect to the measure µ if, for all nonnegative
functions u ∈ C∞c (M),

p

p− 1

(∫
M

u2dµ−
(∫

M

u2/pdµ

)p)
≤ 2C

∫
M

‖∇u‖2dµ (1.4)

Definition 1.5 (Gagliardo-Nirenberg-Sobolev). We say that the manifoldM satisfies aGagliardo-
Nirenberg-Sobolev inequality with constant C > 0 and parameters p ∈ [1, d] and q, r ∈ [1,+∞]
with respect to the measure µ if, for all nonnegative functions u ∈ C∞c (M),(∫

M

urdµ

)1/r
≤ C

(∫
M

uqdµ

)(1−θ)/q(∫
M

‖∇u‖pdµ
)θ/p

(1.5)

where θ is given by
1

r
=

(
1

p
− 1

d

)
θ +

1− θ
q

. (1.6)

For example, consider the Euclidean space M = Rd. For the standard Gaussian measure µ
defined by

dµ(x) =
e−‖x‖

2/2

(2π)d/2
dx,

Rd satisfies a logarithmic Sobolev inequality as was proved by Leonard Gross [Gro75], a Poincaré
inequality, and a Beckner inequality for all p ∈ (1, 2) [Bec89], all of them with constant C = 1.
More generally, if V : Rd → R is a twice differentiable function such that ∇2V ≥ ρId for some
constant ρ > 0, then all three inequalities (Poincaré, logarithmic Sobolev, Beckner) are satisfied
with constant 1/ρ for the measure dµ = e−V dx. This is a classical result for so-called log-concave
measures, see for example [BGL14].

On the other hand, for the Lebesgue measure, the Gagliardo-Nirenberg-Sobolev inequality is
satisfied for all p ∈ [1, d) and q, r ∈ [1,+∞] with constant S(d, p)θ, where S(d, p) is the constant
from the Sobolev inequality (1.1), and θ is given by equation (1.6),

1

r
=

θ

p∗
+

1− θ
q

. (1.7)
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Indeed, it is a simple consequence of the Sobolev inequality and interpolation: if θ is as in
equation (1.7) and u is a smooth function with compact support, then

‖u‖r ≤ ‖u‖
θ
p∗‖u‖

1−θ
q ≤ S(d, p)θ‖∇u‖θp‖u‖

1−θ
q .

This constant, however, is not sharp. A sharp one-parameter sub-family of Gagliardo-Nirenberg-
Sobolev inequalities has been famously exhibited by Manuel del Pino and Jean Dolbeault [dPD02].
For p = 2 and q = r/2 + 1, not only is the sharp constant known, but the optimal functions are
completely characterized, and are of the form

u(x) =
(
a+ b‖x− x0‖2

) 2
2−r

,

for some a, b > 0 and x0 ∈ Rd.
Remark 1.6. The Beckner inequality with p = 2 is exactly the Poincaré inequality. Interestingly,
if the Beckner inequality is valid for all p ∈ (1, p0) for some p0 ∈ (1, 2) with a constant C that is
independent from p, then taking the limit p→ 1 in the Beckner inequality yields the logarithmic
Sobolev inequality with constant C. In that sense, the Beckner inequality interpolates between
the Poincaré inequality and the logarithmic Sobolev inequality.

Likewise, the Gagliardo-Nirenberg-Sobolev inequality with r = p∗ is exactly the Sobolev
inequality. Furthermore, taking the limit q, r → 2 in the del Pino-Dolbeault sub-family yields
the Euclidean logarithmic Sobolev inequality [dPD03]: for all smooth function u : Rd → R+ such
that ‖u‖2 = 1, ∫

Rd
u2 log(u2)dx ≤ d

2
log

(
2

πde
‖∇u‖22

)
.

This inequality is, in fact, equivalent to Gross’ logarithmic inequality for the Gaussian measure.
In that sense, again, the Gagliardo-Nirenberg-Sobolev inequalities can be seen as interpolating
between the Sobolev inequality and the logarithmic Sobolev inequality.

1.2.2 Selected results from the manuscript

Let us gather, in this section, some new results proved in the subsequent chapters of this
manuscript. Some of the inequalities at hand are called trace inequalities, because they involve
the trace operator T , which maps functions u defined on a domain Ω ⊂ Rd to their restriction
to the boundary, u|∂Ω. This restriction is obviously well-defined on the space of continuous
functions C(Ω), and admits extensions to certain Sobolev spaces, as the trace inequalities imply.

Theorem 1.7 (Sharp trace GNS inequality, theorem 2.2). Let a ≥ d > p > 1, and Ω =
{(x1, x2) ∈ Rd−1 × R, x2 ≥ ϕ(x1)} be a convex cone, that is when ϕ is convex and satisfies: for
all t > 0 and x1 ∈ Rd−1, ϕ(tx1) = tϕ(x1). Then, there exists a positive constant Dd,p,a(Ω) such
that for any non-negative function f ∈ C∞c (Ω),(∫

Rd−1

fq(x, ϕ(x))dx

)1/q

≤ Dd,p,a(Ω)‖∇f‖θLp(Ω)‖f‖
1−θ
Lq(Ω), (1.8)

where
θ =

a− p
p(a− d− 1) + d

, q = p
a− 1

a− p
.

Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
a−p
p−1 , then (1.8) is an equality.
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The next two theorems involve CD(ρ, n) conditions, which we introduce in section 1.6.2,
along with Γ, the carré du champ operator.

Theorem 1.8 (Weighted Poincaré inequality, theorem 3.6). Let (M, g) be a smooth connected
d-dimensional Riemannian manifold equipped with a diffusion operator L, and let ϕ be a positive
function function such that ∇2ϕ ≥ cg for some constant c > 0. Assume that the operator L
satisfies a CD(0, n) condition, with n ≥ d.

Fix a real number β ≥ n + 1 and assume that ϕ−β ∈ L1(dx), where dx is the Riemannian
measure, and then define dµϕ,β = cβϕ

−βdx, where cβ is a normalizing constant chosen so that
µϕ,β is a probability measure. Then for all smooth bounded functions u,

Varµϕ,β (f) =

∫
u2dµϕ,β −

(∫
udµϕ,β

)2
≤ 1

c(β − 1)

∫
Γ(u)ϕdµϕ,β . (1.9)

Theorem 1.9 (Beckner inequalities, theorem 3.16). Let (M, g) be a smooth, connected, d-
dimensional Riemannian manifold, equipped with a diffusion operator L that is symmetric with
respect to a measure µ. Assume that the diffusion operator L satisfies a CD(ρ, n) condition, with
ρ > 0 and n ∈ R\[−2, d). Then, M satisfies a Beckner inequality (1.4)

p

p− 1

(∫
u2dµ−

(∫
u2/pdµ

)p)
≤ 2

n− 1

ρn

∫
Γ(u)dµ.

in the following range of parameters:

• for all p ∈ (1, 2] if n ≥ d,

• for all p ∈ [p∗, 2] if n < −2, where p∗ = 1 +
1− 4n

2n2 + 1
.

Finally, we prove a trace version of the logarithmic Sobolev inequality, as well as a version of
the (concave) Gagliardo-Nirenberg-Sobolev inequality on the half-space.

Theorem 1.10 (Trace logarithmic Sobolev inequality, corollary 4.7). For all h ∈ R, and for all
u ∈ C∞(Rd+) such that

∫
Rd+
u = 1, the following inequality stands∫

Rd+
u log u ≤ d

2
log

(
1

2πde

∫
Rd+

‖∇u‖
u

2
)
− log γ(Rd+he)− h

(∫
∂Rd+

u

)(
1

d

∫
Rd+

‖∇u‖
u

2
)
, (1.10)

where γ stands for the standard Gaussian probability measure. Furthermore, there is equality
when u = Ch exp

(
− ‖x+ he‖2

)
, where Ch is a normalizing constant.

Note that for h = 0, this is the standard optimal logarithmic Sobolev inequality on the half
space. Interestingly, the parameter h can be chosen either positive or negative, allowing the trace
term to be used as an upper or a lower bound.

Theorem 1.11 (Concave GNS inequality, corollary 4.8). Let α > 1. For all functions f ∈
C∞(Rd+), the following inequality stands

‖f‖2α/(2α−1) ≤ Cα‖∇f‖
θ
2‖f‖

1−θ
2/(2α−1), (1.11)

where
θ =

(
1− 1

d(α− 1) + 1

)(
1− 1

2α

)
.

Furthermore, there is equality when f =
(
1 − ‖x‖2

)1/(α−1)

+
, up to multiplication by a constant,

rescaling, and translation by a vector in Rd−1 × {0}.
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1.3 The Brunn-Minkowski theory

As alluded to in the previous sections, Sobolev inequalities are eminently geometric and measure
theoretic. In this section, we want to put flesh on the bones of that allegation, as well as to
introduce the Borell-Brascamp-Lieb inequality and an extended version of it, which will be used
in chapter 2. Both of them are part of the so-called Brunn-Minkowski theory, which really
is a wealth of inequalities, both functionnal and geometric, all related to the classical Brunn-
Minkowski inequality, theorem 1.12.

1.3.1 The Brunn-Minkowski inequality and its relatives

First proved for convex sets by Hermann Brunn and Hermann Minkowski by the end of the
19th century, the Brunn-Minkowski inequality was extended to compact nonconvex sets by Lazar
Lyusternik in 1935, and for that reason is also called the Brunn-Minkowski-Lyusternik inequality.
It states that the d-dimensional volume, to the power 1/d, is a concave function for the Minkowski
sum of sets, defined in the following way: if A and B are subsets of Rd,

A+B = {x+ y, (x, y) ∈ A×B}.

Theorem 1.12 (Brunn-Minkowski inequality). Let A, B ⊂ Rd be nonempty compact sets. Then

|A+B|1/d ≥ |A|1/d + |B|1/d. (1.12)

Remark 1.13. Inequality (1.12) is exactly a convacity inequality. Indeed, the Lebesgue measure
is homogeneous of degree d: if t ∈ [0, 1], |tA| = td|A|, so that using tA and (1 − t)B instead of
A and B in inequality (1.12) yields

|tA+ (1− t)B|1/d ≥ t|A|1/d + (1− t)|B|1/d. (1.13)

Proof. Assume that A and B are boxes in Rd, that is A =
∏d
i=1[0, ai] and B =

∏d
i=1[0, bi]. Note

that the problem is invariant under translation of both sets, so we have assumed that A and B
have a vertex at the origin. In that case, A+B =

∏d
i=1[0, ai + bi], so that

|A|1/d + |B|1/d

|A+B|1/d
=

(
d∏
i=1

ai
ai + bi

)1/d

+

(
d∏
i=1

bi
ai + bi

)1/d

≤ 1

d

d∑
i=1

ai
ai + bi

+
1

d

d∑
i=1

bi
ai + bi

= 1,

by the inequality of arithmetic and geometric means, and the theorem is proved for boxes.
Let us now extend this result to finite unions of disjoint boxes (they are allowed to overlap

on their boundary, the measure of which is always zero). If A is such a set, let #A be the
number of boxes constituting A. We proceed by induction: assume inequality (1.12) holds for
unions of boxes of total cardinality ≤ N , and consider A and B two unions of boxes such that
#A + #B = N + 1. Without loss of generality, we may assume that the hyperplane {xd = 0}
separates at least two boxes of A. We may then define A+ = A∩{xd ≥ 0} and A− = A∩{xd ≤ 0},
both of which are unions of boxes such that max(#A−,#A+) < #A. Defining B+ and B− in
the same manner as for A, we invoke once again the invariance by translation: shifting B if
necessary, we may assume that

|A+|
|A|

=
|B+|
|B|

.
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Since #A+ + #B+ < #A + #B = N + 1, the inductive hypothesis applies; the same goes for
A− and B−. Notice now that A+ +B+ ⊂ {xd ≥ 0} and A−+B− ⊂ {xd ≤ 0}, so that we finally
get the following estimate

|A+B| ≥ |A+ +B+|+ |A− +B−| ≥
(
|A+|1/d + |B+|1/d

)d
+
(
|A−|1/d + |B−|1/d

)d
= |A+|

(
1 +
|B|1/d

|A|1/d

)d
+ |A−|

(
1 +
|B|1/d

|A|1/d

)d
=
(
|A|1/d + |B|1/d

)d
,

which concludes the induction. We may conclude in the general case by approximation.

The isoperimetric inequality below is then an easy consequence of the Brunn-Minkowski
inequality, theorem 1.12. The proof presented here is slightly informal, because we do not wish
to define too many measure theoretic notions: instead of using the Hausdorff measure to quantify
the surface area of the boundary, we shall use the outer-Minkowski content, which coincides with
the Hausdorff measure for regular enough sets anyway (Lipshitz, for example).

Theorem 1.14 (Isoperimetric inequality). Let A ⊂ Rd be a set with Lipshitz boundary, and let
B be the open ball centered in zero such that |B| = |A|. Then

Hd−1(∂A) ≥ Hd−1(∂B), (1.14)

and if there is equality, then A = B up to a translation and a set of zero measure.

Remark 1.15. The surface area of B may be explicitly calculated, so that inequality (1.14)
becomes

Hd−1(∂A) ≥ dω1/d
d |A|

(d−1)/d
, (1.15)

where ωd = |B(0, 1)|.

Proof. Let A be a bounded subset of Rd. For ε > 0, define the dilated set Aε = A + B(0, ε); it
is the set of all points at distance less than ε from A. Since A is assumed smooth enough, the
surface area of the boundary may be calculated in the following manner

Hd−1(∂A) = lim
ε→0

|Aε| − |A|
ε

.

Applying the Brunn-Minkowski inequality (1.12) to Aε, we get

|Aε| ≥
(
|A|1/d + εω

1/d
d

)d
≥ |A|+ εdω

1/d
d |A|

(d−1)/d
,

where ωd = |B(0, 1)| is the volume of the d-dimensionnal unit ball. Taking the limit ε → 0, we
immediately conclude that

Hd−1(∂A) ≥ dω1/d
d |A|

(d−1)/d
,

where the right-hand side is nothing else than the surface area of a ball that has the same volume
as A, and the proof is complete.
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Remark 1.16. It is interesting to note that the only inequality that we used in the proof of the
isoperimetric inequality is the Brunn-Minkowski inequality, which, as we have seen, is really a
consequence of the arithmetic-geometric inequality. Remarkably, this last inequality is also an
isoperimetric property: indeed, it expresses the fact that amongst all boxes with a fixed volume,
the one with smallest surface area is the cube. In fact, this is a rather interesting property of
boxes: in dimension d, for any k ∈ {0, . . . , d}, the measure of the k-dimensional border of a box
of unit volume is always greater then the measure of the k-dimensional border of the unit cube.
For example, in dimension 3, a box of unit volume has both greater surface area and total edge
length than the unit cube.

Now that these tools are defined, we turn to the proof of the following statement, where we
claim equivalence between two inequalities. Obviously, from the point of view of logic, any pair
of true statements are equivalent, what we mean here is that the one can be obtained from the
other rather naturally, and vice versa.

Claim. In Rd, with d ≥ 2, the isoperimetric inequality theorem 1.14 and the Sobolev inequality
for p = 1, theorem 1.1, are equivalent.

The proof does not go too much into measure-theoretic details, but hopefully gets the point
across. We refer the interested reader to the reference book by Herbert Federer [Fed69], and also
to a perhaps more easily digestible book by Evans and Garieppy [EG15]. Talenti’s paper [Tal76]
contains a nice short but slightly formal proof of a related fact, the Pólya-Szegő inequality.

Proof. Let us retrieve the Sobolev inequality for smooth functions from the isoperimetric in-
equality. We will use the coarea formula, a kind of generalized Fubini theorem, which relates the
integral of the derivative of a function to the Hausdorff measure of its level sets. Before writing
it down, let us first give some intuition for that formula: let u ∈ C∞c (Rd) be nonnegative. If
t > 0 is not a critical value of u, i.e. there is no x ∈ Rd such that u(x) = t and ∇u(x) = 0, then
the level set u−1{t} = {x ∈ Rd, u(x) = t} is a (finite) union of smooth hypersurfaces. By Sard’s
theorem, since u is smooth, the set of critical values is of zero measure, so that the following
formula is true. ∫

Rd
‖∇u‖ =

∫
R+

Hd−1(u−1{t})dt.

As it turns out, this formula, called the coarea formula, is valid in a more general case, when u
is only assumed to be Lipshitz, see for instance [EG15].

For t ≥ 0, we write {u > t} = u−1((t,+∞]) and {u = t} = u−1{t}. The smoothness of u
furthermore implies that {u = t} = ∂{u > t} for almost every t ≥ 0, so that, calling to the
isoperimetric inequality (1.15), we find that∫

Rd
‖∇u‖ ≥ dω1/d

d

∫
R+

|{u > t}|(d−1)/d
dt.

The goal is now to relate this last integral to the L1∗ norm of u, where 1∗ = d
d−1 . Note that, by

Fubini’s theorem, if χA denotes the characteristic function of a set A, then for all x ∈ Rd,

u(x) =

∫ +∞

0

χ{u>t}(x)dt.

Since, for a fixed x ∈ Rd, the function t 7→ χ{u>t}(x) is piecewise constant, it is also Riemann-
integrable. We may thus see u as the limit of Riemann sums, and the triangular inequality
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readily passes to the limit and implies that

‖u‖1∗ ≤
∫ +∞

0

∥∥χ{u>t}∥∥1∗
dt =

∫
R+

|{u > t}|(d−1)/d
dt,

which immediately proves
‖∇u‖1 ≥ dω

1/d
d ‖u‖1∗ . (1.16)

It is not yet clear whether or not this inequality is sharp, information may have been lost
in this little calculation. Nevertheless, we will see that it implies the isoperimetric inequality,
which is sharp, and will also prove that the optimal constant in the Sobolev inequality is indeed
S(d, 1) =

(
dω

1/d
d

)−1. This implication is easier than the other one, as is usually the case when
going between inequalities applying to sets and their functional counterparts. Consider a smooth
bounded set A ⊂ Rd. For ε > 0, let

uε : x 7→


1 if x ∈ A,
1− d(x,A)

ε if x ∈ Aε\A,
0 if d(x,A) > ε,

where Aε = A + B(0, ε). Even though uε is not smooth, the Sobolev inequality still applies by
approximation by smooth functions. Then, for ε small enough, we find that ‖∇uε‖ = 1

εχAε\A,
so that inequality (1.16) reads

‖∇uε‖1 =
|Aε| − |A|

ε
≥ dω1/d

d ‖uε‖d/(d−1).

Since it is pretty clear that limε→0 uε = χĀ, letting ε go to 0 ultimately yields exactly the
isoperimetric inequality (1.15), which, being sharp, also implies that there can be no better
constant in inequality (1.16).

While we may derive Sobolev inequalities for p ∈ (1, d) from the case p = 1 (1.16) using
the substitution u = fp(d−1)/(d−p) and then applying Hölder’s inequality to the integral where
the gradient appears, the resulting inequality turns out not to be sharp. Nevertheless, it is
still possible to recover the whole family of sharp Sobolev inequalities for p ∈ [1, d) using only
inequalities derived from the Brunn-Minkowski inequality. To that end, we will introduce the
Borell-Brascamp-Lieb inequality, a variant of which was used by Sergei Bobkov and Michel
Ledoux in [BL08] for a direct proof of Sobolev inequalities.

1.3.2 The Borell-Brascamp-Lieb inequality

Before tackling the inequalities in this subsection, let us briefly introduce the useful concept of
p-means.

Definition 1.17 (p-means). Let p ∈ [−∞,+∞], and a, b ≥ 0, t ∈ [0, 1]. If ab > 0, then

Mp(a, b ; t) =
(
(1− t)ap + tbp

)1/p
, (1.17)

and if ab = 0, then Mp(a, b ; t) = 0. For p = 0, the value of M0(a, b ; t) is to be understood as
the limit of Mp(a, b ; t) when p goes to 0, and the same goes for +∞ and −∞. In particular,
M0(a, b ; t) = a1−tbt corresponds to the geometric mean, and M+∞(a, b ; t) = max(a, b), and
M−∞(a, b ; t) = min(a, b).
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Applying Jensen’s inequality to p-means immediately yields the following important conse-
quence :

if p ≥ q, then Mp(a, b ; t) ≥Mq(a, b ; t). (1.18)

With this notation, Brunn-Minkowski’s inequality (1.13) reads |(1− t)A+ tB| ≥M1/d(|A|, |B| ;
t). The ordering of the p-means leads to a whole family of inequalities, for all p ∈ [−∞, 1/d],
|(1− t)A+ tB| ≥ Mp(|A|, |B| ; t). However, as it turns out, all of them are equivalent: the case
p = −∞ can easily be used to recover the case p = 1/d, see for instance [Gar02, Section 4].

Perhaps the case p = 0 is of particular interest: for all nonempty compact subsets A,B ⊂ Rd
and all t ∈ [0, 1],

|(1− t)A+ tB| ≥ |A|1−t|B|t.

This multiplicative form of the Brunn-Minkowski inequality has a functional counterpart:

Theorem 1.18 (Prékopa-Leindler inequality). Let u, v, w be nonnegative integrable functions
on Rd. If, for all x, y ∈ Rd,

w
(
(1− t)x+ ty

)
≥ u(x)1−tv(y)t,

then
‖w‖1 ≥ ‖u‖

1−t
1 ‖v‖t1.

If A, B are nonempty compact subsets of Rd, applying theorem 1.18 to the functions u =
χA, v = χB readily yields the multiplicative version of the Brunn-Minkowski inequality, of which
the Prékopa-Leindler is thus, in fact, a generalization. This inequality differs from the Brunn-
Minkowski inequality in that it does not involve the dimension of the underlying space. Thus,
it is well suited to study properties of the Gaussian measure, that is infinite dimensional in the
sense that it can be seen as the limit of measures in spaces of increasing dimension. It was
notably used by Bobkov and Ledoux to recover the sharp logarithmic Sobolev inequality for the
Gaussian measure in [BL00].

The Prékopa-Leindler inequality has been extensively studied, notably by Herm Jan Bras-
camp and Elliott Lieb, and also Christer Borell independently, who further generalized the in-
equality [Bor75, BL76], as well as alleviated some integrability technicalities, linked to the fact
that the Minkowski sum of two measurable sets might not be measurable. They proved the
following theorem, which now bears their name. We refer to the survey [Gar02, Section 10] and
the references therein for further historical details.

Theorem 1.19 (Borell-Brascamp-Lieb inequality). Let u, v, w be nonnegative integrable func-
tions on Rd, and let p ∈ [−1/d,+∞]. If, for all x, y ∈ Rd,

w
(
(1− t)x+ ty

)
≥Mp(u(x), v(y) ; t)

then
‖w‖1 ≥Mq(‖u‖1, ‖v‖1 ; t),

where q = p/(1 + pd), with q = −∞ when p = −1/d and q = 1/d when p = +∞.

Note how the case p = 0 is exactly the Prékopa-Leindler inequality. Interestingly, the case
p = −1/d is the strongest in the sense that it can be used to recover all the other cases. Rewriting
the theorem in that case after replacing w by w−d, and doing the same with u and v, reads: if,
for all x, y ∈ Rd,

w
(
(1− t)x+ ty) ≤ (1− t)u(x) + tv(y),
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then ∫
Rd
w−d ≥ min

(∫
Rd
u−d,

∫
Rd
v−d

)
. (1.19)

While this inequality is a definite improvement on the Prékopa-Leindler inequality, it is still
not enough to reach the sharp Sobolev inequality. To that end, Bobkov and Ledoux used a
strengthened version of the Borell-Brascamp-Lieb inequality for functions which projections onto
a line have the same L∞ norm [BL08]. They elegantly proved it using nothing else than an
elementary lemma from the Brunn-Minkowski theory and smart tensorization.

In chapter 2, we will use a different strengthening of the Borell-Brascamp-Lieb inequality, that
was proved with optimal transport in a recent paper by Bolley et al. [BCEF+17], and which we
reproduce in the next section. The idea is to be able to use the parameter p in theorem 1.19 up to
−1/(d−1), or, equivalently, to be able to find a lower bound for

∫
w1−d in inequality (1.19). This

is only possible at the cost of further assumptions on u and v, namely, that
∫
u−d =

∫
v−d = 1.

If this assumption is fulfilled, and if

∀x, y ∈ Rd, w((1− t)x+ ty) ≤ (1− t)u(x) + tv(y)

then ∫
Rd
w1−d ≥ (1− t)

∫
Rd
u1−d + t

∫
Rd
v1−d.

1.4 Optimal transport

1.4.1 Fundamentals

Somewhat recently, the theory of optimal transport has proved a very powerful tool in the study
of sharp Sobolev inequalities, in that the proofs are usually quite short and simple. For a very nice
introduction on this topic with a lot of historical context, we refer to Dario Cordero-Erausquin,
Bruno Nazaret and Cédric Vilani’s paper [CENV04]. While we do not use optimal transport in
chapters 3 and 4, the inequality on which all of chapter 2 is based has only been proved, up to
our knowledge, using optimal transport. Furthermore, optimal transport is very much relevant
for all the other results as well, since it can usually provide an interesting viewpoint to interpret
them. For that reason, we will briefly introduce the theory here, as well as provide a quick
proof of the strengthened Borell-Brascamp-Lieb inequality, theorem 2.1 below, for the sake of
completeness.

Geometry and analysis are at the very center of the theory of optimal transport. Seeing
how both Sobolev inequalities are at the confluence of both of these fields, it makes sense that
optimal transport is an appropriate tool to tackle problems related to such inequalities. Although
the topic itself is very old and generally attributed to Gaspard Monge, it was not before 1987
that it started being immensely popular amongst many reasearchers. The work that sparked
that revival is a note by Yann Brenier [Bre87], in which he proved that given two probability
measures, requiring that the first one is absolutely continuous with respect to the Lebesgue
measure is enough to ensure that there exists a mapping which pushes the first measure forward
onto the second one, and that is the gradient of some convex function. It was later refined by
various authors, including Robert McCann, who removed the assumption that the second order
moments should be finite. We recall this theorem here without proof, and refer the interested
reader to Cédric Villani’s book [Vil03] for a presentation rich in context and insightful remarks.

Theorem 1.20 (Brenier’s theorem). Let µ and ν be two probability measures on Rd. If µ
is absolutely continuous with respect to the Lebesgue measure, then there exists a (µ-almost
everywhere unique) convex function ϕ : Rd → R such that ∇ϕ#µ = ν.
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Here, T#µ designates the measure obtained by pushing µ forward (or transporting) with the
map T . In other words, for all Borel subset B ⊂ Rd, T#µ(B) = µ(T−1(B)). Now, let us assume
that both measures µ and ν are absolutely continuous with respect to the Lebesgue measure, and
abuse the notation slightly by denoting their densities by µ(x) and ν(x), respectively. The fact
that ν = ∇ϕ#µ implies that for all nonnegative measurable functions f : Rd → R+,∫

Rd
f(x)ν(x)dx =

∫
Rd
f(∇ϕ(x))µ(x)dx. (1.20)

Assuming that ∇ϕ is a C1-diffeomorphism of Rd onto itself, the change of variables x = ∇ϕ(y)
in equation (1.20) shows that ϕ is a solution of the so-called Monge-Ampère equation,

µ(x) = ν(∇ϕ(x)) det(∇2ϕ(x)). (1.21)

To try to make sense of that equation without any regularity assumption, we rely on the fact
that ϕ is convex. Hence, ϕ is locally Lipschitz, hence almost everywhere differentiable, according
to Rademacher’s theorem. But convexity is even stronger, and Aleksandrov’s theorem asserts
that the distributionnal Hessian of ϕ is actually almost everywhere absolutely continuous with
respect to the Lebesgue measure, see for example [EG15, pp. 242–245] for a proof.

As Robert McCann proved in his paper [McC97, Remark 4.5], the absolute continuity of both
measures µ and ν implies that the Monge-Ampère equation (1.21) is indeed satisfied µ-almost
everywhere in the Aleksandrov sense, meaning that the second derivative∇2ϕ is to be understood
as the absolutely continuous part (w.r.t the Lebesgue measure) of the distributional Hessian.
Note that, under various conditions on µ and ν, Luis Cafarelli proved that equation (1.21) is
actually satisfied in the classical sense, but we will not need such strong results in our applications.

Theorem 1.21 (Monge-Ampère). Let µ and ν be two absolutely continuous probability measures.
If ϕ is a convex function such that ν = ∇ϕ#µ, then, for µ-almost every x ∈ Rd,

µ(x) = ν(∇ϕ(x)) det(∇2ϕ(x)). (1.22)

1.4.2 A proof of the improved Borell-Brascamp-Lieb inequality

We turn here to the proof of theorem 2.1 for the sake of completeness. Before tackling the proof
itself, we will need two elementary lemmata.

The first lemma, which we will not prove, and refer to the last point in [Vil03, Theorem 2.12],
is a classical result about Legendre transforms. It states that the inverse of the gradient of a
convex function ϕ is the gradient of its Legendre transform ϕ∗, given by

ϕ∗(y) = sup
x∈Rd
{x · y − ϕ(x)}.

Lemma 1.22. If µ and ν are both absolutely continuous probability measures, and ∇ϕ is the
unique gradient of a convex function transporting µ onto ν, then

∇ϕ∗ ◦ ∇ϕ(x) = x, ∇ϕ ◦ ∇ϕ∗(y) = y

for µ-almost every x and ν-almost every y.

Remark 1.23. Lemma 1.22 also implies that ∇ϕ∗ is the unique gradient of a convex function
transporting ν onto µ.
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We will also use the following application of the arithmetic-geometric inequality, which is a
very natural matrix version of the Brunn-Minkowski inequality, if one understands the determi-
nant of a matrix as the (oriented) volume of the image of the unit cube. However, stating this
is not enough to prove the lemma, since it is not entirely clear that the image of a (vector) sum
of matrices is the same thing as the (Minkowski) sum of the images. The same result is used by
McCann in his thesis to prove a similar inequality [McC94, Corollary D.4].

Lemma 1.24. For any two symmetric positive matrices A, B ∈Md(R),

det
(
A+B

)1/d ≥ det(A)1/d + det(B)1/d.

Proof. Factorizing by A, it is sufficient to prove that det(Id + C)1/d ≥ 1 + det(C)1/d, where
C = A−1B. As a product of positive matrices, C is also positive, and it is similar to a symmetric
matrix, C = A−1/2(A−1/2BA−1/2)A1/2, and thus diagonalizable. If ci, i ∈ {1, . . . , d}, are the
eigenvalues of C, the lemma then boils down to proving that

d∏
i=1

(1 + ci)
1/d ≥ 1 +

d∏
i=1

c
1/d
i ,

which follows from the arithmetic-geometric inequality applied to(
d∏
i=1

1

1 + ci

)1/d

+

(
d∏
i=1

ci
1 + ci

)1/d

.

Theorem 1.25 (Improved Borell-Brascamp-Lieb inequality). Let d ≥ 2, and t ∈ [0, 1]. Let u,
v, and w : Rd → (0,+∞] be measurable functions such that

∫
u−d =

∫
v−d = 1 and

∀x, y ∈ Rd, w((1− t)x+ ty) ≤ (1− t)u(x) + tv(y) (1.23)

then ∫
Rd
w1−d ≥ (1− t)

∫
Rd
u1−d + t

∫
Rd
v1−d.

Proof. u−d and v−d being probability measures, consider the convex function ϕ such that ∇ϕ
transports u−d onto v−d. McCann’s displacement interpolation is given by ρt = ∇ϕt#u−d, where
∇ϕt = (1− t)x+ t∇ϕ. For all t ∈ [0, 1], almost everywhere, the Monge-Ampère equation holds:

u−d = ρt(∇ϕt) det(∇2ϕt).

In particular, for t = 1, u−d = v−d(∇ϕ) det(∇2ϕ) almost everywhere. Now, the concavity of the
map M 7→ det1/d on positive symmetric matrices (lemma 1.24) implies that,

det(∇2ϕt)
1/d = det((1− t)I + t∇2ϕ)1/d

≥ (1− t) det(I)1/d + tdet(∇2ϕ)1/d,

so that almost everywhere

ρt(∇ϕt) ≤ u−d
(

(1− t) + tdet(∇2ϕ)1/d
)−d

=
(

(1− t)u+ tudet(∇2ϕ)1/d
)−d

=
(
(1− t)u+ tv(∇ϕ)

)−d
.
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This estimate on ρt, together with hypothesis (1.23) on w, yields that almost everywhere,

((1− t)u+ tv(∇ϕ))ρt(∇ϕt) ≤ ((1− t)u+ tv(∇ϕ))
1−d ≤ w(∇ϕt)1−d. (1.24)

In particular, we may apply equation (1.24) to ∇ϕ∗t (x) and use the fact that almost everywhere
in Rd, ∇ϕt ◦ ∇ϕ∗t = Id to find that, almost everywhere,

((1− t)u(∇ϕ∗t ) + tv(∇ϕ ◦ ∇ϕ∗t ))ρt ≤ w1−d. (1.25)

Integrating inequality (1.25), we find, by definition of the transport,∫
Rd
w1−d ≥

∫
Rd

((1− t)u(∇ϕ∗t ) + tv(∇ϕ ◦ ∇ϕ∗t ))ρt

= (1− t)
∫
Rd
u(∇ϕ∗t ◦ ∇ϕt)u−d + t

∫
Rd
v(∇ϕ ◦ ∇ϕ∗t ◦ ∇ϕt)u−d

= (1− t)
∫
u1−d + t

∫
Rd
v(∇ϕ)u−d

= (1− t)
∫
u1−d + t

∫
Rd
v1−d,

which concludes the proof.

Remark 1.26. This theorem can also be seen as the result of the convexity of the functional
F(ρ) =

∫
Rd −ρ(x)1−1/ddx along the McCann’s displacement interpolation, a property that is

called displacement convexity. The crucial step, which is already present in McCann’s the-
sis [McC94], is the domination of the displacement interpolant ρt ≤ w−d.

1.4.3 Some words on Otto’s calculus

To provide a bit of context to the equations considered in chapters 3 and 4, we introduce Otto’s
calculus. Its name, coined by Cédric Villani in [Vil09], refers to Felix Otto, who in his 2001
paper [Ott01] proposed an interesting way to see the space of probability measures, endowed
with a distance derived from optimal transport, as a Riemannian manifold. While this point of
view was, at the beginning, mostly formal, Ambrosio, Gigli and Savaré [AGS08] removed many
technical problems since. Nevertheless, Otto’s calculus remains an excellent heuristic tool to
understand flows of probability measures.

Let us first define a few additional classical notions of optimal transport,

Definition 1.27. Let µ and ν be two probability measures on Rd. We define Π(µ, ν) as the
set of all probability measures on Rd × Rd with marginals µ and ν, respectively. Equivalently,
π ∈ Π(µ, ν) if for all A ⊂ Rd, π(A × Rd) = µ(A) and π(Rd × A) = ν(A). If µ and ν have finite
second moment, that is x 7→ ‖x‖2 ∈ L2(µ) ∩ L2(ν), then we define

W2(µ, ν) = inf
π∈Π(µ,ν)

(∫
Rd
‖x− y‖2dπ(x, y)

)1/2
. (1.26)

W2 is a distance on the set of probability measure with finite second moment, P2(Rd), it is called
the Wasserstein distance, and consequently, (P2(Rd),W2) is called the Wasserstein space.

Remark 1.28. Replacing 2 with some p ≥ 1 in equation (1.26), one may define p-Wasserstein
distances, and thus other Wasserstein spaces. However, since it is the only one we consider, the
Wasserstein space will always designate (P2(Rd),W2) in this manuscript.
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Remarkably, if µ is absolutely continuous with respect to the Lebesgue measure, which we
write µ ∈ P2,ac(Rd), then the infimum in equation (1.26) is reached for π = (Id⊗∇ϕ)#µ, where
∇ϕ is Brenier’s map from theorem 1.20. We recall this fact in the next theorem.

Theorem 1.29 (Brenier’s theorem, continued). If µ, ν ∈ P2,ac(Rd), then there exists a µ-almost
everywhere unique ∇ϕ with ϕ convex, such that ∇ϕ#µ = ν, and furthermore,

W 2
2 (µ, ν) =

∫
Rd
‖x−∇ϕ(x)‖2dµ(x).

Note that, by the uniqueness of the map ∇ϕ, given any convex function ψ such that ∇ψ#µ =

ν, then necessarilyW 2
2 (µ, ν) =

∫
‖x−∇ψ(x)‖2dµ(x). As a consequence, MacCann’s displacement

interpolation, µt = ((1 − t)Id + t∇ϕ)#µ is a constant speed geodesic, since a straightforward
computation shows that W2(µt, µs) = (t − s)W2(µ, ν) for 0 ≤ s ≤ t ≤ 1. It is thus pretty
clear that the Wasserstein distance endows the probability space P2(Rd) with a very convenient
structure.

Otto’s idea was, at least heuristically, to see the space of probability measures with finite
second moment as an infinite dimensional manifold, by defining a tangent space at every prob-
ability measure, as well as an inner product associated to that probability, so that the resulting
Riemannian distance coincides with the Wasserstein distance. We would like to give the reader
a sense of how this can work here, using Ivan Gentil’s note [Gen19] (in French) as an inspiration,
and also drawing parallels with fluid mechanics. In the rest of this subsection, we purposefully
keep the presentation mostly formal, and we will also use the same notation for a measure and
its density with respect to the Lebesgue measure. The first observation is the following: given a
path (µt)t∈[0,1] ⊂ P2(Rd), there exists a function φt such that

∂tµt + div(µt∇φt) = 0, (1.27)

This equation, called the continuity equation, is a very natural consequence of mass conservation.
In a fluid with density field ρ and velocity field v, mass conservation readily implies ∂tρ+div ρv =
0. Of course, some regularity hypothesis are needed on the path (µt) to have existence of the
function φt, but we will not bother with technicalities now, and instead redirect the reader
to [AGS08, Theorem 8.3.1].

Given a path (µt) satisfying the continuity equation, we may choose to define its tangent
vectors to be µ̇t = ∇φt. Thus, for a probability measure µ, we define the tangent space
TµP2(Rd) = {∇φ, φ : Rd → R} as the space of velocities. A natural metric is then the quadratic
form associated to the kinetic energy. For ∇φ,∇ψ ∈ TµP(Rd),

(∇φ,∇ψ)µ =

∫
Rd
∇φ · ∇ψdµ.

The (formal) Riemannian distance associated to that metric is then

d(µ, ν) = inf
(µt,φt)∈C(µ,ν)

(∫ 1

0

(∫
Rd
‖∇φt‖2dµt

)1/2
dt

)
where C(µ, ν) = {(µt, φt)t∈[0,1] | ∂tµt = div(µt∇φt), µ0 = µ, µ1 = ν} designates the (continuous)
paths between µ and ν. As announced, this coincides exactly with the Wasserstein distance, as
Jean-David Benamou and Yann Brenier [BB00] have proved:

Proposition 1.30 (Benamou-Brenier formula). If µ, ν ∈ P2(Rd), then

W2(µ, ν) = inf
(µt,φt)∈C(µ,ν)

(∫ 1

0

∫
Rd
‖∇φt‖2dµtdt

)1/2
= d(µ, ν).
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Remark 1.31. It might not be completely obvious that finding minimizers of the energy functional∫ 1

0

∫
Rd
‖∇φt‖2dµtdt

yields paths with minimal length between µ and ν, but it is a classical fact of Riemannian
geometry, still true in this context, as it is just a consequence of the Cauchy-Schwarz inequality
in L2((0, 1)) equipped with the Lebesgue measure.

With that setting in place, we may identify the gradient of functionals defined on the Wasser-
stein space with the formula

(gradµt F , µ̇t)µt =
d

dt
F(µt).

For example, if F is Boltzmann’s entropy defined by Ent(µ) =
∫
Rd µ log(µ), then

d

dt
Ent(µt) =

d

dt

∫
Rd
µt log(µt) = −

∫
Rd

log(µt) div(µt∇φt)

=

∫
Rd
∇ log(µt) · ∇φtµt = (∇ logµt, µ̇t)µt

so that gradµ Ent = ∇ logµ. This fact will prove very relevant, because then the heat equation
∂tµt = ∆µt is exactly the gradient flow of the Boltzmann entropy: indeed,

∆µt = div(µt∇(logµt)),

so that
∂tµt = ∆µt ⇐⇒ µ̇t = − gradµt Ent(µt).

Such an equation is an example of a gradient flow, which implies important consequences on its
solutions. Notably, if we consider a functional F , and a solution to µ̇t = −(gradµt F , u̇t)µt , then,
by definition,

d

dt
F(µt) = −‖µ̇t‖2µt ≤ 0.

We will come back to this with concrete examples in the next sections.

1.5 Long-term behavior of solutions to the heat equation

1.5.1 Convergence on compact manifolds

In this section, we stray apart from the more geometric considerations of the previous sections,
and we expand on the analysis side of Sobolev inequalities. One of the popular uses of the Sobolev
inequalities is to study long-term behavior of solutions of certain parabolic equations, with the
use of particular entropies. To illustrate this phenomenon, let us look at the heat equation on
a Riemannian manifold M , that we also assume compact and smooth. For some nonnegative
initial condition u0 such that ‖u0‖1 = 1, let us study the heat equation{

∂tu = ∆u, t > 0,

u = u0, t = 0,
(1.28)

where ∆ is the Laplace-Beltrami operator. Let us not bother with existence and regularity of
solutions to this equation right now: assume there is a unique solution, and that it is smooth and
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positive. In what follows, we will take the liberty to consider this solution as a one-parameter
family of functions (ut)t∈R+

defined by ut(x) = u(t, x) for all x ∈M , which we call the flow. For
positive functions u defined on M , define the entropy

Entµ(u) =

∫
M

u log(u)dµ,

where µ is the (only) probability measure proportionnal to the Riemannian volume form. Dif-
ferentiating the entropy along the flow yields

d

dt
Entµ(ut) =

∫
M

∆ut(log(ut) + 1)dµ

= −
∫
M

‖∇ut‖2

ut
dµ < 0,

the integration by parts being valid since µ is proportionnal to the Riemannian volume form.
The fact that the entropy is always decreasing translates the fact that the physical phenomenon
that the heat equation models is not reversible. In chapters 3 and 4, we will use functionnals
which we will still call entropy, even though they will not necessarily be the physical (Boltzmann)
entropy. That is because the entropy is to be thought of merely as a tool; a functionnal that is
decreasing along a particular flow.

If the logarithmic Sobolev inequality (1.2) is valid on the manifold M for some constant
C > 0, then note that it relates exactly the entropy and its derivative along the flow. Thus,

Entµ(ut) ≤ −C
d

dt
Entµ(ut),

which, when integrated, leads to

Entµ(ut) ≤ e−Ct Entµ(u0).

Finally, we may use the classical Csiszár-Kullback-Pinsker inequality (see for example [Jü16,
Theorem A.2] for a quick proof) to relate the entropy to the L1 norm.

Lemma 1.32 (Csiszár-Kullback-Pinsker inequality). Let u, v be integrable functions, u ≥ 0 and
v > 0, such that

∫
M
udµ =

∫
M
vdµ = 1. Then

‖u− v‖21 ≤ 2 Entµ(u | v) =

∫
M

u log
(u
v

)
dµ.

Applying this lemma to u = ut and v = 1, we may conclude that ut converges towards 1 in
L1(µ) with exponential speed.

Proposition 1.33. If ut is the solution to the heat equation (1.28) on a manifoldM that satisfies
a logarithmic Sobolev inequality (1.2) with constant C, then

‖ut − 1‖2L1(µ) ≤ 2 Entµ(ut) ≤ 2e−Ct Entµ(u0).

Remark 1.34. Like we pointed out in the previous section, the heat flow is the gradient flow
of the Boltzmann entropy, which makes this particular entropy a good candidate to study the
equation. However, it is not the only possible choice: in subsection 1.6.3, we study the L2 norm
instead to prove the Poincaré inequality (1.3).



1.5. LONG-TERM BEHAVIOR OF SOLUTIONS TO THE HEAT EQUATION 19

1.5.2 Relaxation to self-similarity

Even though we made use of the fact that the manifoldM is compact in the previous paragraph,
a similar behavior can be observed on Rd. Again, we consider a solution ut of the heat equation
∂tut = ∆ut, with nonnegative, unit-mass initial condition u0. In that particular case, the unique
solution ut ∈ L1(Rd) is known, and explicitly given by

ut(x) =
1

(4πt)d/2

∫
Rd
e−‖x−y‖

2/(4t)u0(y)dx.

We observe that
‖ut‖∞ ≤

1

(4πt)d/2
,

so that, by interpolation, for all p > 1, the Lp norm of ut goes to zero when time goes to infinity.
Just like on a compact manifold, the solution converges towards a steady solution of the heat
equation. However, in the case of of Rd, the only integrable steady solution of the heat equation
is the zero function. The fact that the heat equation is mass-preserving and that there is no
steady solution of unit mass is already hinting to the fact that solutions of the heat equation
need to be seen in a different context to study their long-term behavior. To circumvent this
limitation, the trick is to not study ut directly, but a time-dependent rescaling of it, namely

v(t, x) = edtu

(
e2t − 1

2
, etx

)
,

where we used u(t, x) = ut(x) for clarity. This rescaling is mass-preserving too, and v is then a
solution of {

∂tvt = ∆vt + div(xvt),

v0 = u0.
(1.29)

This equation, called the Fokker-Planck equation, is exactly the heat equation with an added
confining potential, so that the mass of its solutions does not escape to infinity. To look for
its steady states, and better understand the long-term behavior of its solutions, it is worth to
rewrite it in the following manner: if v is a positive function,

∆v + div(xv) = div(∇v + xv) = div(v∇(log(v)− log(v∞))), (1.30)

where v∞ is such that ∇ log(v∞) = −x, so that we can choose v∞ to be the standard Gaussian,

v∞(x) =
1

(2π)d/2
e−‖x‖

2/2.

Assuming v is a positive and integrable steady state of the Fokker-Planck equation, it is the
rescaling of an integrable solution to the heat equation, and thus smooth and decreases sufficiently
fast at infinity for the following integration by parts to be valid: multiplying equation (1.29) by
log(v)− log(v∞) and integrating yields

0 =

∫
Rd

(log(v)− log(v∞)) div(v∇(log(v)− log(v∞))) = −
∫
Rd
v‖∇ log(v)−∇ log(v∞)‖2,

so that log(v) = log(v∞) + C, where C is some real constant. Thus, we have determined all
positive steady states to be multiples of v∞, the standard Gaussian.
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Let us now go back to our rescaled solution of the heat equation vt. In the same manner as
the compact manifold case, vt has unit mass, and thus converges towards v∞. Furthermore, the
relative entropy decays exponentially:

Entdx(vt | v∞) =

∫
Rd
vt log

(
vt
v∞

)
≤ e−2t Entdx(v0 | v∞).

This classical fact is a direct consequence of theorem 4.3 below, which generalizes Sobolev inequal-
ities. It is otherwise formally proved in [Jü16, Theorem 2.1]. Finally, we may once again invoke
the classical Csiszár-Kullback-Pinsker inequality to conclude exponential decay of ‖vt − v∞‖21,
whence, after changing variables, we find the following proposition.

Proposition 1.35. If ut ∈ L∞(R+, L
1(Rd)) is the solution to the heat equation (1.28) on Rd,

‖ut − Ut‖21 ≤
2

2t+ 1
Entdx(u0 | v∞),

where
Ut(x) =

1

(2t+ 1)d/2
v∞

(
x√

2t+ 1

)
.

Remark 1.36. The function Ut is a particular solution of the heat equation called the self-similar
solution of the heat equation. The solution ut is thus said to relax to self-similarity.

The change of point of view that we operated here, going from the heat equation (1.28) to
the Fokker-Planck (1.29), is particularly efficient, and will be the starting point of chapter 4. For
example, instead of studying the fast diffusion equation ∂tu = ∆um, for m ∈ [1/d, 1), we will
instead study the following nonlinear Fokker-Planck equation

∂tv = div(v(mvm−2∇w + x)), (1.31)

obtained through the change of variables

v(t, x) = edtu

(
eλt − 1

λ
, etx

)
, λ = 2− (1−m)d

Just like we did with equation (1.30), equation (1.31) can be rewritten in a perhaps more natural
way using the function ψ(x) = − m

1−mx
m−1, as it allows for easy identification of steady states

for example:

∂tv = div
(
v∇(ψ(v)− ψ(v∞))

)
, v∞(x) =

(
1 +

1−m
m

‖x‖2

2

)−1/(1−m)

.

This point of view was adopted by various authors to study the long-term behavior of solutions
of the fast diffusion equation, as well as its counterpart for exponents m > 1, the porous medium
equation [dPD02, Ott01, CJM+01]. The other key of these approaches is the use of the Bakry-
Émery method, which we introduce in the subsequent subsection.

1.6 The Bakry-Émery method

In their resonating paper of 1985, Dominique Bakry and Michel Émery [BE85] proposed a tech-
nique that is now commonly called after their names. To study hypercontractivity, a property
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of Markov semigroups intimately linked with logarithmic Sobolev inequalities, they computed
not just the first derivative of the entropy along a flow, but the second. Under some convexity
conditions on the entropy functional, and curvature conditions of the underlying space, they
prove that the entropy is not only nonincreasing, but also convex. The convexity may, in turn,
be used to prove Sobolev-type inequalities.

This is quite a shift of perspective: originally, the logarithmic Sobolev inequality was used to
study the heat flow, and the Bakry-Émery method proposes to do the reverse. It is a striking
property of the heat flow that the one relevant functional inequality to study its solutions would
be a rather natural consequence of the convexity of the entropy along the flow. This approach
is at the core of both chapters 3 and 4, where we use flows to prove Sobolev inequalities, and
we skip the study of the long-term behavior of solutions altogether. The goal here really is the
Sobolev inequality itself.

While Bakry and Émery’s original article pertains to probabilities, we shall work in the field
of partial differential equations instead. The two fields obviously share an intimate relationship,
and some of the terminology and the concepts that we will use – such as the carré du champ
operator, written Γ – are borrowed from the field of probability. In this section, we introduce the
formalism known as Γ-calculus, the main and most thorough reference for which is probably the
book written by Dominique Bakry, Ivan Gentil, and Michel Ledoux [BGL14]. This formalism
will be used in the linear case, chapter 3, as well as the nonlinear one, chapter 4. It makes a
lot of sense in the linear case, since that is the context for which it was developped. Indeed,
Γ-calculus is used in the analysis of Markov diffusion (linear) operators, hence the name of the
book [BGL14]. In a nonlinear setting, it might seem a bit out of place, however we believe it is
an efficient formalism for multiple reasons: not only is it slightly more compact and easily adapts
from the Euclidean space to Riemannian manifolds, it also emphasizes the fact that results in
both cases are actually extremely similar, see for instance lemma 3.8 and proposition 4.14 below.

1.6.1 Markov semigroups: a crashcourse

This subsection is an introduction to the linear case, where we define the carré du champ and
related operators, and we recall some classical results about linear parabolic partial differential
equations.

Let (M, g) be a smooth, connected, d-dimensionnal Riemannian manifold, equipped with the
differential operator

L = ∆−∇W · ∇,

where ∆ is the Laplace-Beltrami operator, and W : M → R is a smooth function. Equivalently,
in a local chart, L can be written

L =
∑
ij

gij∂2
ij +

∑
i

bi∂i,

where gij are the components of the inverse metric tensor, and the bi are smooth, real functions.
Then, L is symmetric with respect to the measure dµ = e−W dx, where dx is the Riemannian
measure on (M, g). In other words, for all functions u, v ∈ C∞c (M),∫

M

uLvdµ =

∫
M

vLudµ.

Although unbounded measures like the Lebesgue measure on Rd are of particular importance,
let us restrict ourselves to probability measures, and assume from now on that µ is of mass 1.
Some subtle considerations are required for the unbounded case, and we do not want to dive into
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too much detail in this somewhat long section. For a fixed initial condition u0 to be specified,
consider the system {

∂tu = Lu, t > 0,

u = u0, t = 0.
(1.32)

The question of existence and uniqueness of solutions to problem (1.32) is classically solved with
tools from the theory of operators. It is a very interesting topic, albeit way out of the scope of
this manuscript, so we only try to give a taste of some classical results here, even more so since
the operators we will work with are rather tame. We refer to the book [BGL14] and references
therein for further details.

Assume just in this paragraph that L is a symmetric matrix of size n, and that we are looking
for solutions to equation (1.32) with initial condition u0 ∈ Rn. Because it is self-adjoint, L is
diagonalizable with eigenvalues λ1 ≤ · · · ≤ λn. In a basis made out of eigenvectors of L, the
solution u = (u1, . . . , un) simply writes

ui(t, .) = eλitu0
i ,

or, in matrix notation and independently of the basis, u(t, .) = etLu0. This example might seem
extremely basic, but it is essentially what we try to do when L is not a matrix, but an operator
acting on a infinite dimensional Hilbert space. Of course, the tools involved are more technical,
and one has to be more careful with the setting, but that is the gist of it.

Let us now return to the differential operator L = ∆ −∇W · ∇, seen as an operator acting
on the real Hilbert space L2(µ), and defined on the dense subset of smooth bounded functions
C∞c (M) ⊂ L2(µ). For t ≥ 0, we would like to define the operator etL, to construct the function
t 7→ etLu0, which is a good candidate to solve equation (1.32). This is exactly what the spectral
theorem allows to do for self-adjoint nonnegative operators, but while L is nonpositive (so that
we could potentially apply the spectral theorem to −L), a discussion is to be had regarding
self-adjointness. First, we prove that L is indeed nonpositive. To that end, we introduce the
carré du champ operator Γ, which will also be the focus of the next subsection.

Definition 1.37 (Carré du champ). For u, v ∈ C∞c (M), define the nonnegative symmetric
bilinear map Γ by

Γ(u, v) =
1

2
(L(uv)− uLv − vLu).

For compactness of the notations, we will also write Γ(u, u) = Γ(u)

It is readily seen that, in a local chart,

Γ(u, v) =
∑
ij

gij∂iu∂jv, (1.33)

so that the positivity of the metric implies the nonnegativity of Γ. But then, since L1 = 0 and
L is symmetric with respect to µ, we have the integration by parts formula∫

M

uLvdµ =
1

2

∫
M

uLvdµ+
1

2

∫
M

vLudµ−
∫
M

L(uv)dµ = −
∫
M

Γ(u, v)dµ. (1.34)

In particular, (u, Lu)L2(µ) = −
∫
M

Γ(u)dµ ≤ 0, where (., .)L2(µ) is the scalar product in the
Hilbert space L2(µ). This is, however, where a specificity of the infinite dimensional setting
kicks in: in general, symmetric operators are not self-adjoint. These two notions are, in fact,
quite different for unbounded operators, which differential operators usually are. Let us recall
their definition here, and refer to the book by Michael Reed and Barry Simon [RS80] for a more
thorough introduction to unbounded operators and their properties.
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Definition 1.38. Let A be an operator densely defined on a Hilbert space H, and let D(A) be
its domain. Let y ∈ H for which there exists z ∈ H such that

∀x ∈ D(A), (y,Ax)H = (z, x)H.

We note z = A∗y, where A∗ is called the adjoint of A, and the set of all such y is noted D(A∗).
By Riesz’s lemma, y ∈ D(A∗) if, and only if, there exists C > 0 such that |(y,Ax)H| ≤ C‖x‖H
for all x ∈ D(A).

The operator A is said symmetric if, for all x, y ∈ D(A), (y,Ax)H = (Ay, x)H. Equivalently,
A is symmetric if, and only if, A∗ is an extension of A, that is D(A) ⊂ D(A∗), and A and A∗
coincide on D(A).

A symmetric operator is said self-adjoint if A = A∗, or equivalently, if D(A∗) = D(A).

While the operator −L = −∆ + ∇W · ∇ is indeed positive and symmetric on C∞c (M), it
is never self-adjoint. Indeed, it is pretty clear that L∗ is well-defined on the set of bounded
functions of class C2, so that there is no way that C∞c (M) = D(L∗). In practice, this is however
not a problem: instead of working with L, we may work with an extension of L. If that extension
is self-adjoint, then the spectral theorem still allows the construction of eL, and we thus recover
a solution to the system (1.32). Furthermore, Kurt Friedrichs proposed a canonical construction
of a self-adjoint extension to any nonnegative symmetric densely defined operator. The main
problem is that, in general, there is not uniciqueness of the self-adjoint extension. In other words,
as far as the partial differential equation (1.32) is concerned, existence of a solution is generally
not a problem, but uniciqueness is. The following notion is thus of prime importance:

Definition 1.39. A symmetric operator A is said essentially self-adjoint if it has a unique
self-adjoint extension.

Note that self-adjoint operators are also essentially self-adjoint, their only self-adjoint exten-
sion being themselves. To better put this notion in perspective in the context of differential
operators, let us consider the following example: let H = L2([0, 1]) with the standard Lebesgue
measure, and L = −d2/dx2, with domain

D = {u ∈ C∞([0, 1]), u(0) = u′(0) = u(1) = u′(1) = 0}.

A straightforward integration by parts shows that L is symmetric and nonnegative. We may
define the extensions Ld = −d2/dx2 and Ln = −d2/dx2 on their respective domain

Dd = {u ∈ C∞([0, 1]), u(1) = u(0) = 0}, Dn = {u ∈ C∞([0, 1]), u′(1) = u′(0) = 0}.

The operators Ld and Ln are still symmetric and nonnegative, but remarkably, do not admit a
common symmetric extension. Indeed, such an extension would be symmetric on Dd ∪ Dn, and
consequently on C∞([0, 1]), which is impossible. As a consequence, L must admit more than
one self-adjoint extension, which translates to non-uniqueness of the solutions to the equation
∂tu = Lu. Specifically, it appears that the boundary conditions play a crucial role in the unicity
of solutions to parabolic differential equations. Chapter 3 focuses on manifolds that do not have
boundaries, so that the theory may apply. In chapter 4 however, we study equations defined on
bounded subsets of Rd, and none of this is applicable, but we will come back to this in the next
subsection. Classical criteria for essential self-adjointness lead to the following result:

Theorem 1.40. Let M be a smooth, connected Riemannian manifold, and L = ∆ − ∇W · ∇,
where ∆ is the Laplace-Beltrami operator and W : M → R is a smooth function. Assume that
the measure e−W dx, with respect to which L is symmetric, is finite, and let define µ to be the



24 CHAPTER 1. INTRODUCTION

probability measure proportionnal to e−W dx. Then L is essentially self-adjoint on C∞c (M), and
there exists a unique family of bounded operators (Pt)t∈R+

defined on L2(µ) such that Ptu0 is the
unique solution to the problem (1.32) in L2(µ).

Remark 1.41. This result may be extended to unbounded measures, but additional hypotheses
on the space are needed to get the full conclusions of proposition 1.42 below.

In the following proposition, we list a number of essential properties of the family of operators
(Pt)t∈R+

. We will not prove any of them, but refer again to classical material on the subject,
such as the book [BGL14] and the cited work therein for proofs. Most of it simply follows from
construction, but some other properties still require more work.

Proposition 1.42. Let (Pt)t∈R+
be the family of operators given by theorem 1.40. It satisfies

the following properties:

(i) P0 = id.

(ii) For all t, s ∈ R+, Pt+s = PtPs = PsPt. (semigroup property)

(iii) For u ∈ L2(µ), t 7→ Ptu is a continuous map from R+ to L2(µ), and ‖Ptu‖2 ≤ ‖u‖2.
(contraction property)

(iv) Pt1 = 1. (mass conservation)

(v) If u ≥ 0, then Ptu ≥ 0. (positivity preservation)

(vi) For all u, v ∈ L2(µ),
∫
M
uPtvdµ =

∫
M
vPtudµ. (reversibility)

(vii) For all u ∈ L2(µ), limt→+∞ Ptu =
∫
M
udµ in L2(µ). (ergodicity)

Generally, a family of operators (Pt)t∈R+
satisfying conditions (i) to (v) is called a Markov

semigroup of operators. Note that properties (i) to (iv), as well as (vi), are direct consequences
of the construction of Pt. Property (v) is linked to the fact that L is a diffusion operator, and
property (vii) follows from property (iv) and the fact that µ is a probability measure.

1.6.2 Introduction to Γ-calculus

Before showcasing, in an example, one use of the notions developped in the previous subsection,
we define and motivate some notions introduced by Bakry and Émery, and developped in the
book [BGL14], to which we refer for many more details and discussions.

The Γ-calculus formalism is called that because of its eponymous operator introduced in
definition 1.37. We still assume that (M, g) is a smooth, connected Riemannian manifold, and the
operator L = ∆−∇W · ∇, with smooth W . According to equation (1.33), Γ(u, v) = g(∇u,∇v),
where g designates the metric tensor of M . The following iterated version of Γ is then a natural
operator to consider in order to meaningfully study the geometry of M .

Definition 1.43 (Iterated carré du champ operator). For u, v ∈ C∞c (M), define the symmetric
bilinear map Γ2 by

Γ2(u, v) =
1

2
(LΓ(u, v)− Γ(u, Lv)− Γ(v, Lu)).

We will also write Γ2(u, u) = Γ2(u) for brievity.

Remark 1.44. LΓ(u, v) is well-defined because C∞c (M) is a stable subset of the operator L.
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The operator Γ2 is, in general, not necessarily nonnegative. However, lower bounds are
also not an unreasonable expectation. On the Euclidean space equipped with the standard
Laplacian, for example, given two smooth functions u and v, Γ(u, v) = ∇u · ∇v, and Γ2(u, v) =
tr((∇2u)t∇2v), which is nonnegative. Actually, on the Euclidean space, the Γ2 operator is
slightly more than just nonnegative: indeed, by the Cauchy-Schwarz inequality,

Γ2(u) =
∑
ij

(
∇2u

)2
ij
≥
∑
i

(
∇2u

)2
ii
≥ 1

d

(∑
i

(
∇2u

)
ii

)2

=
1

d
(∆u)

2
.

Moreover, the fact that the Γ2 operator writes so nicely is not a coincidence. Its definition, as
matter of fact, was motivated by the following identity:

Proposition 1.45 (Bochner-Lichnerowicz formula). If u is a smooth function u defined on M ,

Γ2(u) =
∥∥∇2u

∥∥2

H.S.
+ (Ricg +∇2W )(∇u,∇u), (1.35)

where ‖.‖H.S. designates the Hilbert-Schmidt norm, and Ricg is the Ricci tensor of M equipped
with the metric tensor g.

The metric tensor of a manifold encapsulates its curvature, so one may be tempted to com-
pare it, in local coordinates, to the identity matrix Id. However, such a comparison is not
intrinsic: it is dependent on the choice of local coordinates. For that reason, it is preferable to
work with intrinsic quantities, such as the scalar curvature, or the Ricci curvature appearing in
equation (1.35).

Assume just in this paragraph that W = 0, so that L = ∆ is the Laplace-Beltrami operator.
When the Ricci curvature is bounded below by some constant ρ ∈ R times the metric g, as is
the case for instance on compact manifolds, then Γ2(u) ≥ ρg(∇u,∇u) = ρΓ(u). This inequality
is, in fact, equivalent to the lower bound of the Ricci tensor, since the first-order and second-
order terms in the Bochner-Lichnerowicz formula (1.35) may be considered independent from
one another. The Cauchy-Schwarz inequality, just like in the Euclidean case, further shows that∥∥∇2u

∥∥2

H.S.
≥ 1

d (∆u)2, since ∆u = tr(∇2u). Putting both of those inequalities together, we find
that

Γ2(u) ≥ ρΓ(u) +
1

d
(∆u)2.

Just as announced, while Γ2 is not always nonegative (in the case where ρ < 0), it does have
a lower bound. As we shall see in the next subsection, this inequality is crucial in proving the
convexity of various functionnals defined on M . This motivates the following definition, which
we will extensively use in chapter 3.

Definition 1.46 (Curvature-dimension condition). The operator L is said to satisfy a curvature-
dimension condition with constants ρ ∈ R and n ∈ R∗∪{∞}, written CD(ρ, n), if, for all smooth
functions u : M → R,

Γ2(u) ≥ ρΓ(u) +
1

n
(Lu)2. (1.36)

We have already seen that the Laplace-Beltrami operator, on a d-dimensional manifold with
a Ricci tensor bounded below by ρg, satisfies a CD(ρ, d) condition. Of particular interest are
the manifolds with constant Ricci curvature, also called Einstein manifolds. For instance, the
Euclidean space has a constant zero Ricci tensore, but more generally, any manifold with constant
sectional curvature is an Einstein manifold. An example of particular interest is the d-dimensional
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sphere Sd, that satisfies Ricg = (d−1)g for the round metric g. Thus, Laplace-Beltrami operator
on the d-sphere with the round metric satisfies a CD(d− 1, d) condition.

Note also that there is a hierarchy in the curvature-dimension conditions, in that the CD(ρ, n)
condition implies the CD(ρ′, n′) condition for all ρ ∈ (−∞, ρ] and all n′ ∈ R∗ ∪ {∞} such that
1/n′ ≤ 1/n.

1.6.3 An introductory example

In this subsection, we showcase the Bakry-Émery method together with the Γ-calculus formalism
in an elementary yet already rich example. On a smooth, connected manifold M , assuming that
the differential operator L = ∆ − ∇W · ∇ satisfies a CD(ρ,∞) condition for some ρ > 0, we
prove the Poincaré inequality for the measure dµ = Ze−W dx, under the assumption that it is
indeed a probability.

Proposition 1.47. Let L = ∆−∇W ·∇ be a differential operator defined on M , symmetric with
respect to the measure µ. If µ is a probability measure, and if L satisfies a CD(ρ,∞) condition
for some ρ > 0, then, for all nonnegative u ∈ C∞c (M),∫

M

u2dµ−
(∫

M

udµ

)2
≤ 1

ρ

∫
M

Γ(u)dµ. (1.37)

Proof. Consider the evolution equation{
∂tut = Lut on M × (0,+∞)

u0 = u on M.

Since L is assumed nice, there exists a solution to this problem, and it is given by a Markov
semigroup, ut = Ptu. Now, consider the variance of ut along the flow:

Varµ(Ptu) =

∫
M

(Ptu)2dµ−
(∫

M

Ptudµ

)2
,

The reversivility, together with mass conservation from proposition 1.42, imply that
∫
M
Ptudµ =∫

M
udµ. Furthermore, ergodicity (from that same theorem) implies that Ptu converges in L2(µ)

towards its mean,
∫
M
udµ. As a result,

lim
t→+∞

Varµ(Ptu) = lim
t→+∞

(∫
M

(Ptu)2dµ−
(∫

M

udµ

)2)
= 0

In this example, the variance plays the role of the entropy in section 1.5, and we shall even be
so bold as to actually call it entropy in the upcoming chapters. Differentiating the variance with
respect to time, we find

d

dt
Varµ(Ptu) = 2

∫
M

PtuL(Ptu)dµ

= −2

∫
M

Γ(Ptu)dµ ≤ 0.

(1.38)

At this stage, take a moment to notice that comparing the variance to its derivative along the flow
would exactly amount to prove the Poincaré inequality 1.37. We proceed with the Bakry-Émery



1.6. THE BAKRY-ÉMERY METHOD 27

method, differentiating again:

d2

dt2
Varµ(Ptu) = −4

∫
M

Γ(Ptu, L(Ptu)) = 4

∫
M

[
1

2
L(Γ(Ptu))− Γ(Ptu, L(Ptu))

]
dµ

= 4

∫
M

Γ2(Ptu)dµ,

(1.39)

where we used the fact that
∫
M
L(Γ(Ptu))dµ = 0, which is a direct consequence of the integration

by parts formula, equation (1.34). Carefully note that the integration by parts in both equa-
tions (1.38) and (1.39) are, a priori, not justified, since it is not true in general that Ptu ∈ C∞c .
For example, in the case of the Euclidean heat semigroup, Ptu0 is strictly positive everywhere on
Rd for all t > 0. However, we assumed that L satisfies a CD(ρ, n) condition, which is sufficient
to extend the integration by parts formula to functions that are not in C∞c . As is by now usual,
we refer to the book [BGL14, Section 3.2.3] for details.

Finally, we may invoke the CD(ρ,∞) condition to prove that

d2

dt2
Varµ(Ptu) ≥ 4ρ

∫
M

Γ(Ptu)dµ = −2ρ
d

dt
Varµ(Ptu),

which proves that the variance is convex along the flow, since its first derivative is nonpositive.
However, the inequality we have is stronger than just a convexity inequality, since we can integrate
it between 0 and +∞ to find

Varµ(u)− lim
t→+∞

Varµ(Ptu) ≤ 1

2ρ

(
− d

dt
Varµ(Ptu)

∣∣∣∣
t=0

+ lim
t→+∞

d

dt
Varµ(Ptu)

)
.

Now, we already established that limt→+∞Varµ(Ptu) = 0, the other limit being 0 too is a
consequence of the variance being convex, decreasing and having a lower bound. We are thus
left with

Varµ(u) ≤ 1

ρ

∫
Γ(u)dµ, (1.40)

which is exactly the Poincaré inequality and concludes the proof.

Equation (1.40) is a type of inequality also called entropy - entropy production inequality.
Indeed, the variance playing the role of the entropy here, it is an inequality between the entropy
and its derivative along the flow, the entropy production.

1.6.4 Nonlinear parabolic equations

In chapter 4, we want to apply the Bakry-Émery method to flows that are nonlinear, but also
have boundary conditions. For both of these reasons, the Markov semigroup tools developped for
the linear case completely fall apart. We have to rely on tools purely designed for the study of
parabolic partial differential equations. While the tools used to study both of those are different,
the results are extremely similar. Essentially, after differentiating the entropy twice, we find
something related to what we found in the introductory example, equation (1.39), only with two
more terms involving Γ(φ) and (Lφ)2 for some function φ depending on the flow u. The goal
will thus be to recover the properties of a standard Markov semigroup for the final calculations
to work. Specifically, we will need mass conservation and ergodicity if the Bakry-Émery method
is ever going to work.
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In their 2002 article [dPD02], Manuel del Pino and Jean Dolbeault used the Gagliardo-
Nirenberg-Sobolev inequality to study the asymptotic behavior of solutions to the fast-diffusion
equation on Rd, {

∂tut = ∆umt , t > 0,

u0 = u, t = 0,
(1.41)

with m ∈ (1− 1/d, 1). In particular, they showed that the Gagliardo-Nirenberg-Sobolev inequal-
ity could be rewritten as an entropy - entropy production inequality: for all smooth, nonnegative
and integrable u of unit mass,

F(u | u∞) ≤ −C d

dt
F(ut | u∞)

∣∣∣∣
t=0

,

for some sharp constant C > 0, for a particular entropy functional F , and along a particular
flow, all of which we will come back to in due time. Just like in the heat flow – logarithmic
inequality case of section 1.5.2, the interesting flow to consider is not the fast diffusion one, but
a time-dependent rescaling of it. In particular, if we define the function

ψ(x) = − m

1−m
xm−1

on R∗+, then the function vt = v(t, .), defined for all t ∈ R+ and x ∈ Rd by

v(t, x) = edtu

(
eλt − 1

λ
, etx

)
, λ = 2 + (m− 1)d,

solves the following generalized Fokker-Planck equation{
∂tvt = −div

(
vt∇(ψ(v∞)− ψ(vt))

)
, t > 0,

v0 = u, t = 0.
(1.42)

Again, instead of studying long-term behavior of solutions to (1.42) using Sobolev inequalities,
we may do the opposite with the Bakry-Émery method. Equation (1.42) will be the starting
point of chapter 4.



Chapter 2

Sharp trace Gagliardo-Nirenberg-Sobolev
inequalities for convex cones, and convex
domains

Abstract

We find a new sharp trace Gagliardo-Nirenberg-Sobolev inequality on convex cones, as well as a
sharp weighted trace Sobolev inequality on epigraphs of convex functions. This is done by using
a generalized Borell-Brascamp-Lieb inequality, coming from the Brunn-Minkowski theory.
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2.1 Introduction and main results

The classical Sobolev inequality states that, for any function f sufficiently smooth and decaying
fast enough at infinity, defined on the Euclidean space Rd with d ≥ 2 (for instance, f ∈ C∞c (Rd)),
and for any p ∈ [1, d),

‖f‖Lp∗ (Rd) ≤ C‖∇f‖Lp(Rd), p∗ =
pn

n− p
, (2.1)

Furthermore, equality is reached in inequality (2.1) if f can be written

f(x) =
(

1 + ‖x‖p/(p−1)
) p−d

p

,

29
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up to a translation, a rescaling, and multiplication by a constant, where ‖.‖ is the Euclidean
norm. This was proved by Talenti [Tal76] and Aubin [Aub76] independently for p = 2. The
Sobolev inequality can be seen as a corollary of a more general inequality, the Gagliardo-Nirenberg
inequality, which states that

‖f‖Lq(Rd) ≤ C‖∇f‖
θ
Lp(Rd)‖f‖

1−θ
Lr(Rd), (2.2)

for any p ∈ [1, d), q, r ∈ [1,+∞], θ ∈ [0, 1] such that

1

q
=

(
1

p
− 1

d

)
θ +

1− θ
r

;

whence the case θ = 1 is exactly the Sobolev inequality. This family of inequalities has been
notably investigated by del Pino and Dolbeault [dPD02], who, studying the 1-parameter sub-
family given by p = 2 and r = q/2 + 1, have not only found an explicit sharp constant, but also
proved that there is equality if, and only if, f has the form

f(x) =
(

1 + ‖x‖2
) 2

2−q
,

up to, once again, a translation, a rescaling, and multiplication by a constant.
As Bobkov and Ledoux [BL08] showed, these sharp inequalities can be reached within the

framework of the Brunn-Minkovski theory [Sch14]. With this approach, the sharp inequality
follows in the more general case where the Euclidean norm is replaced by a generic norm on
Rd, which is a result already proved by Cordero-Erausquin, Nazaret, and Villani using optimal
transport [CENV04]. This makes sense, since the Brunn-Minkovski inequality directly implies
the isoperimetric inequality, which is famously equivalent to the sharp Sobolev inequality with
p = 1 (for a nice overview on this subject, see Osserman’s article on the isoperimetric inequality
[Oss78]).

The key tool Bobkov and Ledoux use is an extended Borell-Brascamp-Lieb inequality, a quick
proof of which using optimal transport is given by Bolley, Cordero-Erausquin, Fujita, Gentil and
Guillin [BCEF+17]. For a bit of context, let us state the Brunn-Minkoski inequality: for any
compact nonempty subsets A and B in Rd, and any t ∈ [0, 1]

|tA+ (1− t)B|1/d ≥ t|A|1/d + (1− t)|B|1/d,

where |.| denotes the Lebesgue measure on Rd. This is to say that the volume, to the power 1/d,
is concave with respect to the Minkowski sum, defined by A+B = {a+ b, (a, b) ∈ A×B}. The
classical Borell-Brascamp-Lieb inequality [Bor75][BL76], just like the isoperimetric inequality,
follows from the Brunn-Minkowski inequality. It is, in some sense, its functional counterpart: let
t ∈ [0, 1] and u, v, w : Rd → (0 ; +∞] such that for all x, y ∈ Rd,

w((1− t)x+ ty) ≥
(

(1− t)(u(x))−1/d + t(v(y))−1/d
)−d

,

then ∫
w ≥ min

(∫
u,

∫
v

)
.

Playing with the exponents and normalizing this inequality gives the following reformulation of
the Borell-Brascamp-Lieb inequality: let g, W , and H : Rd → (0,+∞], and t ∈ [0, 1], such that∫
g−d =

∫
W−d = 1 and

∀x, y ∈ Rd, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y),
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then ∫
H−d ≥ 1. (2.3)

Note that the choice to use g, W and H is not random, we want to stress the fact that unlike
in the classical Borell-Brascamp-Lieb inequality, the functions will not have symmetrical roles.
Furthermore, W will generally be assumed convex.

Applying inequality (2.3) to the greatest function H meeting these criteria allows us to prove
that ∫

W ∗(∇g)g−d−1 ≥ 0, (2.4)

where W ∗ is the Legendre transform of W . This inequality, as we will see in the next section,
turns out to be equivalent to the Borell-Brascamp-Lieb inequality we use here. This might look
like it is to be expected, because of the semigroup structure that underlies the theorem, but
is actually a little bit surprising, because said semigroup is not quite linear. The equivalence
between the more general theorems with which we work here remains an open question.

Inequality (2.4) can, in turn, be used to prove sharp Sobolev-type inequalities, but in the
end proves to be limited as it does not allow to reach the full range of Gagliardo-Nirenberg
inequalities showcased by del Pino and Dolbeault [dPD02]. Thus, a better inequality to work
with is the following extension of the Borell-Brascamp-Lieb inequality, which was proved by
Bolley et al. [BCEF+17].

Theorem 2.1. Let d ≥ 2, and t ∈ [0, 1]. Let g, W , and H : Rd → (0,+∞] be measurable
functions such that

∫
g−d =

∫
W−d = 1 and

∀x, y ∈ Rd, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y) (2.5)

then ∫
H1−d ≥ (1− t)

∫
g1−d + t

∫
W 1−d.

With this theorem, which is proved in the introductory subsection 1.4.2, we are able to prove
sharp trace-Sobolev inequalities on convex domains. More specifically, we prove sharp trace
Sobolev in some convex domains, and sharp trace Gagliardo-Nirenberg inequalities in convex
cones. In what follows, ‖.‖ is a norm on Rd, and ‖.‖∗ is the dual norm, defined by ‖x‖∗ =
sup‖y‖=1 x·y. In Lq norms of vector functions, the dual norm ‖.‖∗ will be used. Let ϕ : Rd−1 → R
be a convex function such that ϕ(0) = 0. We consider functions defined on ϕ’s epigraph, that is
Ω = {(x1, x2) ∈ Rd−1 × R, x2 ≥ ϕ(x1)}. We say that Ω is a convex cone whenever ϕ is positive
homogeneous of degree 1: for all t > 0 and x1 ∈ Rd−1, ϕ(tx1) = tϕ(x1).

Theorem 2.2 (Sharp trace Gagliardo-Nirenberg inequality). Let a ≥ d > p > 1, and Ω =
{(x1, x2) ∈ Rd−1 × R, x2 ≥ ϕ(x1)} be a convex cone. There exists a positive constant Dd,p,a(Ω)
such that for any non-negative function f ∈ C∞c (Ω),(∫

Rd−1

fq(x, ϕ(x))dx

)1/q

≤ Dd,p,a(Ω)‖∇f‖θLp(Ω)‖f‖
1−θ
Lq(Ω), (2.6)

where
θ =

a− p
p(a− d− 1) + d

, q = p
a− 1

a− p
.

Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
a−p
p−1 , then (2.6) is an equality.
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The fact that there exists a function for which the equality is reached means that the constant
Dd,p,a(Ω) may be computed explicitly. Choosing a = d, Theorem 2.2 immediately yields the
sharp trace Sobolev inequality as a corollary:

Corollary 2.3 (Sharp trace Sobolev inequality). Let d > p > 1, and Ω = {(x1, x2) ∈ Rd−1 ×
R, x2 ≥ ϕ(x1)} be a convex cone. There exists a positive constant Dd,p(Ω) = Dd,p,d(Ω) such that
for any non-negative function f ∈ C∞c (Ω),(∫

Rd−1

fp
d−1
d−p (x, ϕ(x))dx

) d−p
p(d−1)

≤ Dd,p(Ω)‖∇f‖Lp(Ω), (2.7)

Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
d−p
p−1 , then (2.7) is an equality.

The case Ω = Rd+ has already been studied by Nazaret [Naz06].
If we only assume Ω to be convex, we prove, under some growth criteria on Ω, the following

sharp weighted trace Sobolev inequality:

Theorem 2.4 (Sharp trace Sobolev inequality). Let d > p > 1, and Ω = {(x1, x2) ∈ Rd−1 ×
R, x2 ≥ ϕ(x1)} be a convex set. There exists a positive constant D′d,p(Ω) such that for any
nonnegative function f ∈ C∞c (Ω),∫

Rd−1

fp
d−1
d−p (x1, ϕ(x1))P (x1)dx1 ≤ D′d,p(Ω)

(∫
Ω

‖∇f‖p∗

) d−1
d−p

(2.8)

where P (x1) = 1 + ϕ(x1) − x1 · ∇ϕ(x1). Furthermore, when f(x) = ‖(x1, x2 + 1)‖−
d−p
p−1 , then

(2.8) is an equality.

Once again, D′d,p(Ω) can be computed explicitly. This inequality may be surprising, since the
weight P can (and usually is, whenever Ω is not a cone) negative outside a compact neighbour-
hood of 0, but it is still sharp. For instance, with the set defined by ϕ(x) = ‖x‖2, the weight
becomes P (x) = 1− ‖x‖2, which happens to be negative outside the unit ball. One may define
∂Ω+ ⊂ ∂Ω such that ∂Ω+ = {(x1, ϕ(x1)), P (x1) > 0}. In that case, inequality (2.8) restricted
to functions f ∈ C∞c (Ω̊ ∪ ∂Ω+) becomes a regular weighted inequality, with a positive weight.

In the next section, we first study the infimal convolution, which is the key tool in the proof
of Theorems 2.2 and 2.4. Once some crucial properties are established, we prove the claimed
equivalence between the classical Borell-Brascamp-Lieb inequality (2.3) and its differentiated
formulation (2.4), within some limitations. Next, in section 2.3, we move on to prove the main
Theorems 2.2 and 2.4, starting from an improved version of the Borell-Brascamp-Lieb inequality.
The technical details, which will be glided over in these sections, can be found in the compre-
hensive appendix 2.4, at the end of the chapter.

2.2 Generalities

Let t ∈ [0, 1). To use Theorem 2.1, instead of considering any H such that

∀x, y ∈ Rd, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y),

we may well choose the greatest such function. That is,

H(z) = inf
x,y∈Rd

(1−t)x+ty=z

{(1− t)g(x) + tW (y)},
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or, writing h = t/(1− t),

H(z)

1− t
= inf
y∈Rd

{
g

(
z

1− t
− hy

)
+ hW (y)

}
.

This formula, being explicit, allows for some properties to be brought to light. It motivates the
definition, and the study, of the so-called infimal convolution:

Definition 2.5. Let f, g : Rd → R ∪ {+∞}. Their infimal convolute f 2 g : Rd → R ∪ {+∞} is
defined by

(f 2 g)(x) = inf
y,z∈Rd

{f(y) + g(z), y + z = x} = inf
y∈Rd
{f(y) + g(x− y)}.

The infimal convolution of f with g is said to be exact at x if the infimum is achieved, and exact
if it is exact everywhere.

With this definition, and whenever h = t/(1 − t) > 0, the greatest function H in Theorem
2.1 is given by

H(z) = (1− t) inf
y∈Rd

{
g

(
z

1− t
− y
)

+ hW (y/h)

}
= (1− t) (g2hW (./h)) (z/(1− t)),

we thus define
QWh (g) = g2hW (./h) = x 7→ inf

y∈Rd
{g(x− y) + hW (y/h)}.

Using QWh in Theorem 2.1, inequality (2.5) becomes∫
QWh (g)1−d ≥

∫
g1−d + h

∫
W 1−d (2.9)

but there exists a slightly more general version of this inequality, namely Theorem 2.16, which
we will use in section 2.3.

To begin with, let us first showcase some properties of the infimal convolution.

2.2.1 The general infimal convolution

This subsection is here to build some intuition about infimal convolution, before proving specific
results useful for the study of QWh .

Definition 2.6. With any function f : Rd → R ∪ {+∞}, we associate its

• essential domain (usually shortened to domain), dom f = {x ∈ Rd, f(x) < +∞};

• epigraph, epi f = {(x, α) ∈ Rd × R, f(x) ≤ α};

• strict epigraph, epis f = {(x, α) ∈ Rd × R, f(x) < α}.

Furthermore, the function f is said to be proper if it is not equal to the constant +∞.

With these definitions, we highlight in the next proposition the link between infimal convo-
lution of functions and Minkowski sum of sets, classically defined for two sets A,B by A+B =
{a+ b, (a, b) ∈ A×B}.

Proposition 2.7. Let f, g : Rd → R ∪ {+∞}. Then
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• dom f 2 g = dom f + dom g;

• epis f 2 g = epis f + epis g;

• epi f 2 g ⊃ epi f + epi g, and equality holds if, and only if, the infimal convolution is exact
at each x ∈ dom f 2 g.

Proof of this proposition and more in-depth details on infimal convolutions can be found
in Thomas Strömberg’s thesis [Str96]. The more delicate question of regularity of the infimal
convolution is only addressed in subsection 2.2.2 in the particular study of QWh (g). That is
because there is not one natural set of assumptions ensuring regularity, so it really depends on
the goal, which, here, is that QWh (g) should be smooth enough to prove Sobolev inequalities. We
only prove the following lemma in the most general case, since it is very useful.

Lemma 2.8. Let f, g : Rd → R∪ {+∞} be lower semicontinuous functions. If f is nonnegative
and g is coercive, that is,

lim
‖x‖→+∞

g(x) = +∞,

then f 2 g is exact.

Proof. Fix x ∈ Rd. Consider ψ : Rd → R ∪ {+∞}, y 7→ f(x − y) + g(y) and assume that there
exists y0 such that ψ(y0) < +∞: ψ is lower semicontinuous, and greater than g, thus tends to
+∞ as ‖y‖ goes to +∞. As such, {y ∈ Rd, ψ(y) ≤ ψ(y0)} is closed and bounded, thus compact.
Now, let (yn) ⊂ {ψ ≤ ψ(y0)} be a minimizing sequence, limn→+∞ ψ(yn) = infy∈Rd{ψ(y)}. By
compactness, we can assume that the sequence (yn) converges towards z ∈ Rd, and by lower
semicontinuity, −∞ < ψ(z) ≤ limn→+∞ ψ(yn) = infy∈Rd{ψ(y)}, thus the infimum is finite and
is actually a minimum. If such a y0 does not exist, then f 2 g(x) = +∞, and the infimum is also
reached.

2.2.2 Regularity of the inf-convolution QW
h (g)

We begin here the specific study of QWh (g) = g2hW (./h). The study of the regularity of QWh (g)
with respect to h > 0 is crucial, because we would like to differentiate inequality (2.9) with
respect to h. Let us first state some classical results about the Legendre transform. The proofs
can be found in Evans’ book, [Eva98, p.120], and Brézis’ book, [Bre99, p.10].

Definition 2.9. The Legendre transform of W is defined by

W ∗(y) = sup
x∈Rd
{x · y −W (x)} ∈ R.

By definition, W ∗ is a lower semicontinuous convex function, but it is not always proper. For
W ∗ to be well behaved, we have to assume a little bit more about W . In fact, it is enough to
assume W to be lower semicontinuous: indeed, if W : Rd → R∪{+∞} is a lower semicontinuous
proper convex function, then W ∗ is also a lower semicontinuous proper convex function, and
(W ∗)∗ = W . The infimal convolution is not only closely related to Minkovski sums, but also to
Legendre transforms, as the next lemma shows.

Lemma 2.10. Let g,W : Rd → (−∞,+∞] be two measurable functions. If g is nonnegative
and almost everywhere differentiable on its domain dom g = Ω0 (with nonempty interior), and
W grows superlinearly,

lim
‖x‖→+∞

W (x)

‖x‖
= +∞,
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then for almost every x ∈ Ω̊0, h 7→ QWh (g)(x) is differentiable at h = 0, and

∂

∂h

∣∣∣∣
h=0

QWh (g)(x) = −W ∗(∇g(x)),

where W ∗ is the Legendre transform of W .

Proof. Let Ω1 = domW , and fix x ∈ Ω̊0 such that the differential of g at x exists. Let y ∈ Ω1.
For h > 0 sufficiently small, x− hy ∈ Ω0, and we get, by definition of QWh (g),

QWh (g)(x)− g(x)

h
≤ g(x− hy)− g(x)

h
+W (y).

Taking the superior limit when h→ 0 yields

lim sup
h→0

QWh (g)(x)− g(x)

h
≤ −∇g(x) · y +W (y).

This being true for any y ∈ Ω1, we may take the infimum to find that

lim sup
h→0

QWh (g)(x)− g(x)

h
≤ −W ∗(∇g(x)).

Conversely, fix e ∈ Ω1, and h0 > 0 such that B(x, h0‖e‖) ∈ Ω̊0. For h ∈ (0, h0), define

Ωx,h = {y ∈ Ω1, hW (y) ≤ g(x− he) + hW (e)};

note that e ∈ Ωx,h. We claim that lim suph→0{h‖y‖, y ∈ Ωx,h} = 0. Indeed, if y ∈ Ωx,h, then

h‖y‖W (y)

‖y‖
≤ g(x− he) + hW (e) ≤ sup

z∈B(x,h0‖e‖)
g(z) + h0W (e).

Now, when h goes to 0, either lim sup‖y‖ < +∞, or lim sup‖y‖ = +∞; in both cases, since
lim‖y‖→+∞

W (y)
‖y‖ = +∞, the claim is proved. Notice now that for all h ∈ (0, h0), QWh (g)(x) ≤

g(x− he) + hW (e), hence QWh (g)(x) = infy∈Ωx,h{. . .}. Thus,

QWh (g)(x)− g(x)

h
= inf
y∈Ωx,h

{
g(x− hy)− g(x)

h
+W (y)

}
= inf
y∈Ωx,h

{−∇g(x) · y + y · εx(hy) +W (y)}

where εx(z) → 0 when ‖z‖ → 0. Let 1 ≥ η > 0; the claim proves that there exists hη ∈ (0, h0)
such that for all 0 < h < hη, ∀y ∈ Ωx,h, ‖εx(hy)‖ ≤ η. Thus,

QWh (g)(x)− g(x)

h
≥ inf
y∈Ωx,h

{−∇g(x) · y − η‖y‖+W (y)}

= inf
y∈Ωx,h
y∈B(0,R)

{. . .}

≥ inf
y∈Ωx,h

{−∇g(x) · y +W (y)} −Rη

≥ −W ∗(∇g(x))−Rη,
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where R was chosen such that ‖y‖ ≥ R =⇒ W (y) ≥ (‖∇g(x)‖ + 1)‖y‖ + W (e) − ∇g(x) · e.
Finally, taking the inferior limit of this inequality, and noticing that the result stays true for any
0 < η ≤ 1, we may conclude (since R is independent from η) that

lim
h→0

QWh (g)(x)− g(x)

h
= −W ∗(∇g(x)).

This differentiation result is enough to prove the main theorems contained in section 2.3, but
we can go a little bit further with more assumptions on g and W . Assuming W to be convex
bestows upon QWh a semigroup structure:

Lemma 2.11. Assume that g : Rd → [0,+∞] is lower semicontinuous, and that W is a lower
semicontinuous proper convex function such that lim‖x‖→+∞W (x) = +∞. Then, for all x ∈ Rd
and 0 < s < h,

QWh (g)(x) = min
y∈Rd
{g(x− hy) + hW (y)}

= QWh−s(Q
W
s (g))(x).

Proof. Exactness was already proved in Lemma 2.8. Notice that

QWh−s(Q
W
s (g))(x) = inf

y∈Rd
inf
z∈Rd
{g(x− (h− s)y − sz) + (h− s)W (y) + sW (z)}

≤ inf
y∈Rd
{g(x− hy) + hW (y)} = QWh (g)(x).

Conversely, let y ∈ Rd, and choose z ∈ Rd such that

QWs (g)(x− (t− s)y) = g(x− sz) + sW (z).

Then, by convexity,

QWt (g)(x) ≤ g(x− (t− s)y − sz) + tW

(
t− s
t

y +
s

t
z

)
≤ g(x− (t− s)y − sz) + (t− s)W (y) + sW (z)

= (t− s)W (y) +QWs (g)(x− (t− s)y).

Taking the infimum over y ∈ Rn proves that QWt (g)(x) ≤ QWh−s(Q
W
s (g))(x), and thus there is

equality.

We want to investigate if some kind of regularity is preserved under the operation of infimal
convolution. The answer is yes, under certain specific conditions. We will also provide an
example showcasing regularity loss, emphasizing the delicate nature of this question. Work on
this subject already exists, notably in Evans’ book [Eva98, p. 128], where there is a global
Lipschitz assumption, or in Villani’s book [Vil09, Theorem 30.30], where functions are bounded.
However, such assumptions are at odds with the goals we aim for here, as ultimately, we want
g−α to be integrable for some exponant α > 0.

Let us study the case where g and W are finite everywhere.

Lemma 2.12. Let g,W : Rd → R. If g is nonnegative, locally Lipschitz continuous, and W is
convex and coercive, then (h, x) 7→ QWh (g) is locally Lipschitz continuous.
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Proof. In order to prove the full local Lipschitz continuity, we must first localize the arginf of
the infimal convolution. Fix ρ > 0, η > 0, and let x, x′ ∈ B(0, ρ) and 0 < h < η. Consider the
set

Ωx,h := {y ∈ Rd, g(x− y) + hW (y/h) ≤ g(x) + hW (0)}.

We claim that, by positivity of g, and convexity of W , the set is bounded. Indeed, since W is
convex and coercive, there exists R > 0 and m > 0 such that

‖y‖ > R =⇒ W (y) ≥ m‖y‖.

If y ∈ Ωx,h, then either ‖y‖ ≤ hR ≤ ηR, or ‖y‖ > hR and then g(x) + hW (0) ≥ hW (y/h) ≥
m‖y‖. Invoking continuity of g, we may prove the claim, and conclude that there exists Rρ,η,
independent from x and h, such that Ωx,h ⊂ B(0, Rρ,η).

Let us now prove the local Lipschitz continuity with respect to x. The functions g and W
are assumed continuous, and so the infimal convolution is exact, and there exists y ∈ Rn such
that QWh (g)(x) = g(x− y) + hW (y/h). Necessarily, ‖y‖ ≤ Rρ,η, so

QWh (g)(x′)−QWh (g)(x) = inf
y′∈Rd

{g(x′ − y′) + hW (y′/h)} − g(x− y)− hW (y/h)

≤ g(x′ − y)− g(x− y)

≤
(

LipB(0,ρ+Rρ,η) g
)
‖x− x′‖,

where LipA f := supx 6=x′∈A{|f(x)− f(x′)|/‖x− x′‖}. By symmetry, we conclude that∣∣QWh (g)(x′)−QWh (g)(x)
∣∣ ≤ (LipB(0,ρ+Rρ,η) g

)
‖x− x′‖,

hence the local Lipschitz continuity with respect to x.
Now,

QWh (g)(x)− g(x) = inf
y∈B(0,Rρ,n)

{g(x− y)− g(x) + hW (y/h)}

≥ inf
y∈B(0,Rρ,η)

{
−(LipB(0,ρ+Rρ,η) g)‖y‖+ hW (y/h)

}
= h inf

z∈B(0,Rρ,η/h)
{−λ‖z‖+W (z)}

≥ −h sup
z∈Rd

{λ‖z‖ −W (z)}

≥ −h sup
t∈B(0,λ)

W ∗(t),

where λ = LipB(0,ρ+Rρ,η) g. Conversely, by definition,

QWh (g)(x)− g(x) ≤ hW (0),

and thus
∣∣QWh (g)(x)− g(x)

∣∣ ≤ Ch, where C = max{W (0), supt∈B(0,λ)W
∗(t)}. Note that C is

finite because W ∗ is, by definition, convex and finite on Rd, thus continuous. Finally, using
the semigroup property QWh+s(g) = QWh (QWs (g)) and the fact that the Lipschitz constant with
respect to x is uniformly bounded by LipB(0,ρ+Rρ,η) for 0 < h < η, we may conclude for the full
local Lipschitz continuity.

The above lemma is a slight generalization of the following proposition:
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Proposition 2.13. Let f, g : Rd → R be lower semicontinuous functions. If f is nonnegative,
locally Lipschitz continuous, and g is coercive, then f 2 g is locally Lipschitz continuous.

Here, we do not need any convexity assumption, which was only used to prove Lipschitz
continuity with respect to the (n + 1)th variable, h. Also, note here that it is important for f
and g to be finite everywhere, which will not be the case in sections 2.3 and appendix 2.4. In
order for f 2 g to be locally Lipschitz continuous, further assumptions are needed on f and g, in
particular on their domain. For example, if dom f = {x0}, then f 2 g = f(x0) + g( . − x0), so
it already seems necessary that both f and g be at least locally Lipschitz continuous. However,
this is not sufficient. Consider for example the following functions f and g, defined on R2 by

f(x1, x2) =


1 if x1 ∈ [0, 1], x2 = 0,

1− x2 if x1 = 0, x2 ∈ [0, 1],

+∞ otherwise,
and g(x1, x2) =

{
0 if x1 ∈ [0, 1], x2 = 0,

+∞ otherwise,

then

(f 2 g)(x1, x2) =


1 if x1 ∈ (0, 1], x2 ∈ [0, 1],

1− x2 if x1 = 0, x2 ∈ [0, 1],

0 if x1 = 0, x2 ∈ [1, 2],

+∞ otherwise

is not a continuous function. This example can easily be adapted to obtain a discontinuous
infimal convolution for smooth functions f and g. We conjecture that if the domain is assumed
convex, and if both functions are Lipschitz continuous, and their domain is of non-empty interior,
then their infimal convolution is Lipschitz continuous.

Lemma 2.12, together with Lemma 2.10 and Rademacher’s theorem, prove the following
proposition:

Proposition 2.14 (Hamilton-Jacobi). Let g,W : Rd → R. If g is nonnegative, locally Lipschitz
continuous, and W is convex and grows superlinearly,

lim
‖x‖→+∞

W (x)

‖x‖
= +∞,

then, for almost every h ≥ 0 and x ∈ Rd,
∂

∂h
QWh (g)(x) = −W ∗(∇QWh g(x)).

2.2.3 An equivalent formulation of the classical Borell-Brascamp-Lieb
inequality

In this subsection, we prove an interesting equivalence between the classical Borell-Brascamp-
Lieb inequality and its differentiated expression, as announced in the introduction. It is also a
good presentation of what is to come in the following sections.

Proposition 2.15. Let g,W : Rd → R. If g is nonnegative, locally Lipschitz continuous, and
W is convex and grows superlinearly,

lim
‖x‖→+∞

W (x)

‖x‖
= +∞,

and are such that
∫
g−d =

∫
W−d = 1, and if (g,W ) is admissible in the sense of Definition

2.20, then the following statements are equivalent:
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1. The Borell-Brascamp-Lieb inequality holds: for every t ∈ [0, 1] and H : Rd → R such that

∀x, y ∈ Rd, H((1− t)x+ ty) ≤ (1− t)g(x) + tW (y),

there holds ∫
H−d ≥ 1.

2. The following inequality stands: ∫
W ∗(∇g)

gn+1
≥ 0.

Proof. By definition of the infimal convolution QWh (g), it is actually sufficient to only consider
the function H = (1− t)QWh (g)( . /(1− t)), where h = t/(1− t), in statement a. In fact, this leads
to the statement a′.: ∫

QWh (g)−d ≥ 1,

which we prove is equivalent to b.
Let us consider the function φ : h 7→

∫
QWh (g)−d, which is continuous and almost everywhere

differentiable in light of Lemma 2.12 and Theorem 2.21 in the Appendix. Its derivative is given
by

φ′(h) = n

∫
W ∗(∇g)

gn+1
.

The implication a′. =⇒ b. follows from the fact that φ(0) = 1, and φ(h) ≥ 1 for h ≥ 0. Then,
necessarily, φ′(0) ≥ 0.

Conversely, assume that b. holds. Then, whenever h > 0 is such that φ(h) =
∫
QWh (g)−d = 1,

statement b. applied to the function g̃ = QWh (g) and the corresponding function φ̃ implies that
φ̃′(0) = φ′(h) ≥ 0 thanks to the semigroup property proved in Lemma 2.11. This, together with
the fact that φ(0) = 1, proves that φ stays above 1, which is exactly statement a.

Once again, we insist on the fact that the semigroup QWh is not linear, and not Markov, which
means, in particular, that there is no mass conservation. As such, this result stands as a bit
unusual among similar results.

2.3 Sharp Gagliardo-Nirenberg-Sobolev inequalities

2.3.1 Borell-Brascamp-Lieb

Let us start from Theorem 8 in the recent paper by Bolley et al. [BCEF+17], the dynamical
formulation of Borell-Brascamp-Lieb inequality. The proof from the introduction 1.4.2 may be
easily adapted, swapping the exponent d for the parameter a ≥ d, then giving it the same
treatment than the one required to reach inequality (2.9).

Theorem 2.16 ([BCEF+17]). Let a > 1 and d ∈ N∗ such that a ≥ d, and g,W : Rd → (0,+∞]
be measurable functions such that

∫
g−a =

∫
W−a = 1. Then, for any h ≥ 0,

(1 + h)a−d
∫
Rd
QWh (g)1−a ≥

∫
Rd
g1−a + h

∫
Rd
W 1−a, (2.10)

where
QWh (g)(x) = inf

y∈Rd
{g(x− hy) + hW (y)} ∈ (0,+∞].

Furthermore, when g is equal to W and is convex, there is equality.
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To see that there is equality whenever g = W is convex, fix x ∈ Rd. For any y ∈ Rd, since
x

1+h = 1
1+h (x− hy) + h

1+hy,

(1 + h)

(
W (x− hy)

1 + h
+

h

1 + h
W (y)

)
≥ (1 + h)W

(
x

1 + h

)
.

Conversely, QWh (g)(x) is achieved at y = x/(1 + h). In particular, for all x ∈ Rd, h ≥ 0,

QWh (W )(x) = (1 + h)W

(
x

1 + h

)
,

and equality in (2.10) is a straightforward computation.
In [BCEF+17], subsection 3.2, Bolley, Cordero-Erausquin, Fujita, Gentil, and Guillin use

Theorem 2.16 to prove optimal Sobolev and Gagliardo-Nirenberg-Sobolev type inequalities in
the half-space Rd+ = Rd−1 ×R+. We want to extend these results to more general domains Ω in
Rd, where d ≥ 2. Let us assume that Ω is the epigraph of a continuous function ϕ : Rd−1 → R
such that ϕ(0) = 0. In other words,

Ω = {(x1, x2) ∈ Rd−1 × R, x2 ≥ ϕ(x1)}.

Let e = (0, 1) ∈ Rd−1 × R, and for h ≥ 0, define

Ωh = Ω + {he} = {(x1, x2) ∈ Rd−1 × R, x2 ≥ ϕ(x1) + h}.

Let a ≥ d, and consider g : Ω→ (0,+∞) and W : Ω1 → (0,+∞), two measurable functions such
that

∫
Ω
g−a =

∫
Ω1
W−a = 1. After extending these functions by +∞ outside of their respective

domain, inequality (2.10) yields

(1 + h)a−n
∫
Bh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a (2.11)

where
Bh = dom(QWh (g)).

When g(x) = W (x+ e) and W is convex, then

QWh (g)(x) = (1 + h)W

(
x+ e

1 + h

)
and equality is reached in the inequality above.

To get a sense of what is to follow, notice that there is equality in inequality (2.11) when h = 0.
Now, when Ω = Rd+, the interesting fact that Ωh = Bh allows us, under certain admissibility
criteria for W and g, to compute the derivative of inequality (2.11) with respect to h, at h = 0.
By doing so, the term

∫
∂Rd+

QW0 (g)1−a =
∫
∂Rd+

g1−a appears in the left hand side, thus leading to
trace inequalities.

Before going any further, let us investigate under which condition the two sets Ωh and Bh
coincide. We have the following lemma:

Lemma 2.17. There exists h0 > 0 such that for all h ∈ (0, h0), Bh = Ωh if, and only if, Ω is a
convex cone. In that case, Bh and Ωh coincide for all h ≥ 0.
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Proof. First, note that QWh (g)(x) < +∞ if, and only if, there exists y ∈ Ω1 such that x−hy ∈ Ω.
By definition of Ω, this is equivalent to

∃ (y1, y2) ∈ Rd−1 × R s.t.

{
y2 ≥ ϕ(y1) + 1

x2 − hy2 ≥ ϕ(x1 − hy1)

⇐⇒
(
∃ y1 ∈ Rd−1 s.t. x2 ≥ ϕ(x1 − hy1) + hϕ(y1) + h)

)
.

If x ∈ Ωh, then choosing y1 = 0 proves that x ∈ Bh, so Ωh ⊂ Bh. If h > 0, Ωh = Bh if, and only
if, for all x1, y1 ∈ Rd−1,

ϕ

(
x1 − y1

h

)
≥ ϕ(x1)− ϕ(y1)

h
. (2.12)

Indeed, if Ωh ⊃ Bh, then, for any x1, y1 ∈ Rd−1,

x2 := ϕ(x1 − hy1) + hϕ(y1) + h ≥ ϕ(x1) + h

and thus, replacing y1 by (x1− y1)/h, we get the stated inequality. The reciprocal is immediate.
Now, let z ∈ Rd−1, ‖z‖ = 1. Inequality (2.12), for y1 = 0, becomes

ϕ(z) ≥ 1

h
ϕ(hz)

for any h smaller than h0. Let α = lim suph→0 ϕ(hz)/h. Using inequality (2.12) once again, we
get, for any s ≥ 0,

ϕ(sz) ≥ s

sh
ϕ(shz),

for any sufficiently small h > 0. Taking the inferior limit when h→ 0 proves that for any s ≥ 0

ϕ(sz) ≥ sα. (2.13)

The set {s ≥ 0, ϕ(sz) = sα} is non-empty because it contains 0, and it is closed by continuity.
Let s ≥ 0 be such that ϕ(sz) = sα. Then, invoking inequality (2.12), and then inequality (2.13),
we get

ϕ

(
(1 + h)sz − sz

h

)
= ϕ(sz) = sα ≥ ϕ((1 + h)sz)− ϕ(sz)

h

=
ϕ((1 + h)sz)− sα

h

≥ (1 + h)sα− sα
h

= sα

so there is actually equality, and ϕ((1 + h)sz) = (1 + h)sα for any sufficiently small h > 0. This
shows that the connected component of {s ≥ 0, ϕ(sz) = sα} containing 0 is open in R+. Since
it is also closed, it is the half real line R+. Thus, ϕ is linear over half-lines with initial point 0.
Inequality (2.12) then becomes

ϕ(x1 − y1) ≥ ϕ(x1)− ϕ(y1)

for any x1, y1 ∈ Rd−1. Let t ∈ [0, 1]; replacing x1 by (1 − t)x1 + ty1 and y1 by ty1, and using
linearity, the inequality becomes exactly the convexity inequality, that is

ϕ((1− t)x1 + ty1) ≤ (1− t)ϕ(x1) + tϕ(y1).

The reciprocal is trivial. It is also clear that in this case, Bh = Ωh for any h ≥ 0.
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This lemma will be used in section 2.3.2 to prove the trace Sobolev and the trace Gagliardo-
Nirenberg-Sobolev inequalities in convex cones. We can go a bit further, and impose only ϕ to
be convex.

Lemma 2.18. If ϕ is convex, then

Bh =

{
(x1, x2) ∈ Rd, x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)}
.

Proof. One may notice that setting ω(x) = 0 if x ∈ Ω and +∞ if x ∈ Ωc, and W (x) = ω(x− e),
then ω is convex, thus

Bh = dom(QWh (ω)) = dom

(
x 7→ (1 + h)W

(
x+ e

1 + h

))
,

and

W

(
x+ e

1 + h

)
< +∞ ⇐⇒ x+ e

1 + h
− e ∈ Ω

⇐⇒ x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)
.

2.3.2 Convex cones

In this subsection, we assume that Ω is a convex cone. In that case, invoking Lemma 2.17,
inequality (2.10) becomes

(1 + h)a−d
∫

Ωh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a, (2.14)

for any h > 0, and there is equality when h = 0. Taking the derivative of this inequality
with respect to h, under the admissibility conditions for g and W exposed in full details in
Appendix 2.4, and evaluating at h = 0, we prove that

(a− d)

∫
Ω

g1−a + (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rd−1

g1−a(x1, ϕ(x1))dx1 ≥
∫

Ω1

W 1−a. (2.15)

There, we used Lemma 2.10, and the fact that

1

h

(∫
Ωh

QWh (g)1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h
+

1

h

(∫
Ωh

g1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h
− 1

h

(∫
Rd−1

∫ h+ϕ(x1)

ϕ(x1)

g1−a(x1, x2)dx2dx1

)

−−−→
h→0

(1− a)

∫
Ω

W ∗(∇g)

ga
−
∫
Rd−1

g1−a(x1, ϕ(x1))dx1,

see Theorem 2.21.
Let p ∈ (1, d), and q its conjugate exponent, 1/p+ 1/q = 1. Applying inequality (2.15) to the

function W defined by W (x) = C‖x‖q/q, where C > 0 is such that
∫
W−a = 1, which happens

to be admissible for this choice of q, in the sense of Definition 2.20 in the Appendix. We find

(a− d)

∫
Ω

g1−a + C1−p a− 1

p

∫
Ω

‖∇g‖p∗
ga

−
∫
Rd−1

g1−a(x1, ϕ(x1))dx1 ≥
∫

Ω1

W 1−a
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for any admissible g, where
‖x‖∗ = sup

‖y‖=1

x · y (2.16)

is the dual norm of x. Next, we extend the above inequality to all functions g such that f =
g(p−a)/p ∈ C∞c (Ω). This can be done by approximation by admissible functions, we refer to the
Appendix 2.4. Rewriting the quantities in terms of f = g−(a−p)/p yields∫

Rd−1

fp
a−1
a−p (x, ϕ(x))dx ≤ C1−p a− 1

p

(
p

a− p

)p ∫
Ω

‖∇f‖p∗ −
∫

Ω1

W 1−a + (a− d)

∫
Ω

fp
a−1
a−p .

We may then remove the normalization to find that inequality (2.15) becomes∫
Rd−1

fp
a−1
a−p (x, ϕ(x))dx ≤ C1−p a− 1

p

(
p

a− p

)p(∫
Ω

‖∇f‖p∗

)
βp

p−1
a−p −

(∫
Ω1

W 1−a
)
βp

a−1
a−p

+ (a− d)

∫
Ω

fp
a−1
a−p

(2.17)
where

β =

(∫
Ω

f
pa
a−p

) a−p
ap

.

Now, define u = a−1
a−p and v = u′ = a−1

p−1 , so that u, v > 1 and 1/u + 1/v = 1. By Young’s
inequality, we find

A

∫
Ω

‖∇f‖p∗β
p p−1
a−p −

(∫
Ω1

W 1−a
)
βp

a−1
a−p = Bv

(
A

Bv

∫
Ω

‖∇f‖p∗β
p p−1
a−p − 1

v
βp

a−1
a−p

)
≤ D

(∫
Ω

‖∇f‖p∗

)u
,

(2.18)

where

A = C1−p a− 1

p

(
p

a− p

)p
, B =

∫
Ω1

W 1−a and D =
Au

(Bv)u−1

1

u
.

In order to find a more compact inequality, we consider, for λ > 0, fλ : x 7→ f(λx). By
linearity of ϕ, applying (2.18) to fλ leads to∫

Rd−1

fp
a−1
a−p (x, ϕ(x))dx ≤ λ(a−d) p−1

a−p
Au

(Bv)u−1

1

u

(∫
Ω

‖∇f‖p∗

)u
+
a− d
λ

∫
Ω

fp
a−1
a−p .

Optimizing this inequality with respect to λ > 0 finally yields inequality (2.6) of Theorem 2.2
It remains to show that inequality (2.6) is optimal. The function for which equality is reached

does not have compact support, but this technicality does not bear much relevance. To prove
optimality, note that there is equality in (2.15) when g(x) = W (x+ e), which implies equality in
(2.17) when f(x) = ‖x+ e‖−

a−p
p−1 . If Young’s inequality (2.18) is an equality, then the optimiza-

tion with respect to parameter λ necessarily preserves the equality. Thus, it is enough to show
that for f(x) = ‖x+ e‖−

a−p
p−1 , there is equality in (2.18). This is the case if, and only if,

A

Bv

∫
Ω

‖∇f‖p∗ =
(
βp

p−1
a−p

)v−1

.

Let us now write, for α > 0

Iα :=

∫
Ω

‖x+ e‖−α.



44 CHAPTER 2. TRACE GNS INEQUALITIES

Then,

C = q

(∫
Ω

‖x+ e‖−qa
) 1
a

=
p

p− 1
I

1/a
ap/(p−1)

hence

A =
(a− 1)(p− 1)p−1

(a− p)p
I

(1−p)/a
ap/(p−1), B = I

(1−a)/a
ap/(p−1)Ip(a−1)/(p−1), and

(
βp

p−1
a−p

)v−1

= I
(a−p)/a
ap/(p−1).

Claim. For γ ∈ R, let δ : Rd\{0} → ]0,+∞[ , x 7→ ‖x‖γ . Then, almost everywhere, δ is
differentiable, and ‖∇δ(x)‖p∗ = |γ|‖x‖γ−1.

Using this, we conclude that there is indeed equality in (2.18), since then∫
Ω

‖∇f‖p∗ =

(
a− p
p− 1

)p
Ip(a−1)/(p−1).

Proof of the claim. Consider φ : x 7→ ‖x‖ and ψ : ρ 7→ ργ . φ is convex, hence almost everywhere
differentiable by Rademacher’s theorem, and ψ smooth on ]0,+∞[, hence the claimed regularity
of δ = ψ ◦ φ. For almost every x, ∇δ(x) = γ∇φ(x)‖x‖γ−1, so

‖∇δ(x)‖∗ = |γ|‖x‖γ−1‖∇φ(x)‖∗

If x 6= 0 is a point of differentiability of φ, and t > 0, then

1 =
‖x+ tx/‖x‖‖ − ‖x‖

t
−−−→
t→0

∇φ(x) · x

‖x‖
,

so ‖∇φ(x)‖∗ ≥ 1. Conversely, if ‖v‖ = 1, then

∇φ(x) · v = lim
t→0+

‖x+ tv‖ − ‖x‖
t

≤ lim
t→0+

‖v‖ = 1,

so ‖∇φ(x)‖∗ = 1 and the claim is proved.

2.3.3 Convex sets

Let us now assume that Ω is the epigraph of a convex function ϕ, with ϕ(0) = 0. Then, according
to Lemma 2.18, for h ≥ 0,

Bh = dom(QWh (g)) =

{
(x1, x2) ∈ Rd, x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)}
.

Inequality (2.10) becomes

(1 + h)a−d
∫
Bh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a, (2.19)

and there still is equality for all h > 0 whenever g(x) = W (x + e) and is convex. However,
it is slightly trickier to compute the derivative at h = 0, since Bh 6= Ωh, and their symmetric
difference depends heavily on ϕ. Effectively, a third term appears when trying to differentiate∫
Bh
QhW (g)1−a:

1

h

(∫
Bh

QWh (g)1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h
− 1

h

∫
Ω\Ωh

g1−a +
1

h

∫
Bh\Ωh

QWh (g)1−a.



2.4. ADMISSIBILITY 45

Taking the derivative at h = 0, when possible, yields

(a− d)

∫
Ω

g1−a + (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rd−1

g1−a(x1, ϕ(x1))P (x1)dx1 ≥
∫

Ω1

W 1−a, (2.20)

where
P (x1) = 1 + ϕ(x1)− x1 · ∇ϕ(x1).

Using inequality (2.20) with W = C‖.‖q/q, and extending it for all f = g−(a−p)/p ∈ C∞c (Ω)
just like we did for convex cones, and finally invoking Young’s inequality, we get the theorem

Theorem 2.19. Let a ≥ n > p > 1, and Ω = {(x1, x2) ∈ Rd−1 × R, x2 ≥ ϕ(x1)} be a convex
set. There exists a positive constant D′n,p,a(Ω) such that for any positive function f ∈ C∞c (Ω),

∫
Rd−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1 ≤ D′n,p,a(Ω)

(∫
Ω

‖∇f‖p∗

) a−1
a−p

+ (a− d)

∫
Ω

fp
a−1
a−p , (2.21)

where P (x1) = 1 + ϕ(x1)− x1 · ∇ϕ(x1). Furthermore, when f(x) = ‖x+ e‖−
a−p
p−1 , then (2.21) is

an equality.

Applying this theorem for a = d, we find a new version of the trace Sobolev inequality,
Theorem 2.4, with D′d,p(Ω) = D′d,p,d(Ω). It is important to note that in Theorem 2.4, as well as
in Theorem 2.19, the left-hand side can be negative. The weight P itself generally is negative
outside of a compact neighbourhood of the origin, but the inequality is still optimal.

2.4 Admissibility

In this section, we prove that the results are true for a class of admissible functions, and we
extend these results to the appropriate, more general setting, by approximation by admissible
functions. The difficulty here lies in that g must not be bounded or even Lipschitz, since g−a
has to be integrable. The case of the half-plane has already been investigated (in [BCEF+17]),
and easily extends to convex cones. Here, we will only tackle convex sets, which, although more
technical, follows the same general idea.

Throughout this section, ϕ : Rd−1 → [0,+∞) is a convex function such that ϕ(0) = 0,
g : Ω→ (0,+∞) is assumed to be locally Lipschitz continuous, andW : Ω1 → (0,+∞) is convex.

2.4.1 Differentiating the Borell-Brascamp-Lieb inequality

Inequality (2.19),

(1 + h)a−d
∫
Bh

QWh (g)1−a ≥
∫

Ω

g1−a + h

∫
Ω1

W 1−a,

is trivially an equality for h = 0, we thus ask compute its derivative. Let us first give a non-
rigorous proof for clarity. The most difficult part is computing the derivative of

∫
Bh
QWh (g)1−a,

so let us start with that. Notice that Ωh ⊂ Bh ∩ Ω, thus

1

h

(∫
Bh

QWh (g)1−a −
∫

Ω

g1−a
)

=

∫
Ωh

QWh (g)1−a − g1−a

h︸ ︷︷ ︸
(i)

− 1

h

∫
Ω\Ωh

g1−a

︸ ︷︷ ︸
(ii)

+
1

h

∫
Bh\Ωh

QWh (g)1−a

︸ ︷︷ ︸
(iii)

.
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Recalling Lemma 2.10, almost everyhere,

lim
h→0

QWh (g)(x)− g(x)

h
= −W ∗(∇g(x)),

thus (i) should converge towards

(a− 1)

∫
Ω

W ∗(∇g)

ga
.

Next, (ii) can be rewritten in a way such that the convergence is quite clear:

(ii) =

∫
Rd−1

(
1

h

∫ ϕ(x1)+h

ϕ(x1)

g1−a(x1, x2)dx2

)
dx1 −−−→

h→0

∫
Rd−1

g1−a(x1, ϕ(x1))dx1

as h→ 0. Finally, giving (iii) the same treatment,

(iii) =

∫
Rd−1

(
1

h

∫ h+ϕ(x1)

h+(1+h)ϕ(x1/(1+h))

QWh (g)1−a(x1, x2)dx2

)
dx1

−−−→
h→0

∫
Rd−1

g1−a(x1, ϕ(x1))(x1 · ∇ϕ(x1)− ϕ(x1))dx1,

since QW0 (g) = g and

lim
h→0

1

h

(
ϕ(x1)− (1 + h)ϕ

(
x1

1 + h

))
= x1 · ∇ϕ(x1)− ϕ(x1).

Summing these results up, we find the claimed derivative at h = 0. Whenever Ω is a convex
cone, Bh\Ωh = ∅, and thus (iii) = 0. In that case, the argument is much more succinct, but
since it is also a corollary of the more general case, we will not address it. The conditions for
the convergence to play out nicely are summed up in the following definition. They are mostly
growth conditions on g and W , and will come into play later on.

Definition 2.20. The couple of functions (g,W ) is said to be admissible if the following condi-
tions are satisfied for some constant γ:

(C0) γ > max
(

a
d−1 , 1

)
;

(C1) there exists A1 > 0 such that W (x) ≥ A1‖x‖γ for all x ∈ Ω1;
(C2) there exists A2 > 0 such that W (x) ≤ A2(1 + ‖x‖γ) for all x ∈ Ω1;
(C3) there exists A3 > 0 such that g(x) ≥ A3(1 + ‖x‖γ) for all x ∈ Ω;

(C4) there exists A4 > 0 such that ‖∇g(x)‖ ≤ A4(1 + ‖x‖γ−1
) for all x ∈ Ω.

The challenge is to prove that under these conditions, QWh (g) converges towards g in a
controlled manner as h→ 0. The main result of this section is the following:

Theorem 2.21. Assume that the couple (g,W ) is admissible, and that there exist some constants
C > 0 and R > 0 such that

∀ ‖x1‖ > R, |x1 · ∇ϕ(x1)| ≤ C‖(x1, ϕ(x1))‖. (2.22)

Then

lim
h→0

1

h

(∫
Bh

QWh (g)1−a(g)−
∫

Ω

g1−a
)

= (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rd−1

g1−a(x1, ϕ(x1))P (x1)dx1,

(2.23)
where P (x1) = 1 + ϕ(x1)− x1 · ∇ϕ(x1).
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In what follows, we will use a good number of different positive constants, which will all be
written C for convenience. They will not depend on x ∈ Rd, or h > 0, but might depend on Ai,
i ∈ {1, 2, 3, 4}, γ.

Convergence of (i) and (ii)

Lemma 2.22. If (g,W ) is admissible, there exist constants C > 0 and h0 > 0, such that for all
0 < h < h0, and x ∈ Ωh, ∣∣QWh (g)(x)− g(x)

∣∣ ≤ Ch(1 + ‖x‖γ).

Proof. First, let x′, x ∈ Ω. Then, we may estimate |g(x′)− g(x)| using hypothesis (C4):

|g(x′)− g(x)| ≤
∫ 1

0

∥∥∥∥ ∂∂θ g(x+ θ(x′ − x))

∥∥∥∥dθ
≤ ‖x′ − x‖

∫ 1

0

A4(1 + ‖x+ θ(x′ − x)‖γ−1
)dθ

≤ C‖x′ − x‖
(

1 + ‖x‖γ−1
+ ‖x′ − x‖γ−1

)
. (2.24)

Now, let 0 < h ≤ 1 and x ∈ Ωh. Then, x− he ∈ Ω, so

QWh (g)(x)− g(x) ≤ g(x− he) + hW (e)− g(x)

≤ Ch(1 + ‖x‖γ−1
+ hγ−1) + hW (e)

≤ Ch(1 + ‖x‖γ−1
).

For the converse inequality, we will of course use hypotheses (C1) and (C3), but we first have to
localize the point where the infimum QWh (g)(x) is reached. Let y ∈ Ω1 be such that QWh (g)(x) =
g(x− hy) + hW (y). Then, invoking hypothesis (C1) and inequality (2.24),

hA1‖y‖γ ≤ hW (y) = QWh (g)(x)− g(x− hy)

= QWh (g)(x)− g(x) + g(x)− g(x− hy)

≤ Ch(1 + ‖x‖γ−1
) + Ch‖y‖(1 + ‖x‖γ−1

+ (h‖y‖)γ−1).

We thus choose h0 ∈ (0, 1) such that for any h ∈ (0, h0), A1 − Chγ−1 > hγ−1. Then, for any
h ∈ (0, h0),

hγ−1‖y‖γ < (A1 − Chγ−1)‖y‖γ

≤ C(1 + ‖y‖)(1 + ‖x‖γ−1
),

which implies that
hγ−1‖y‖γ−1 ≤ C(1 + ‖x‖γ−1

),

since ‖y‖γ−1 ≤ max
(

1, 2 ‖y‖
γ

1+‖y‖

)
. Now, using inequality (2.24) once again,

|g(x− hy)− g(x)| ≤ Ch‖y‖(1 + ‖x‖γ−1
+ hγ−1‖y‖γ−1

)

≤ Ch‖y‖(1 + ‖x‖γ−1
).
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Plugging this in the definition of QWh (g)(x), we find

QWh (g)(x)− g(x) ≥ inf
y∈Ω1

{
−Ch‖y‖(1 + ‖x‖γ−1

) + hA1‖y‖γ
}

≥ inf
y∈Rd
{. . .} = −Ch(1 + ‖x‖γ).

To conclude, it is enough to notice that 1 + ‖x‖γ−1 ≤ 2 + ‖x‖γ since γ > 1.

Now that we have this estimation, we may estimate the speed of convergence of QWh (g)1−a

towards g1−a.

Proposition 2.23. If (g,W ) is admissible, there exist constants C > 0 and h0 > 0, such that
for all 0 < h < h0, and x ∈ Ωh,∣∣QWh (g)1−a(x)− g1−a(x)

∣∣
h

≤ C

1 + ‖x‖γ(a−1)
.

Proof. First, let α, β > 0. Then,∣∣∣∣∣
∫ β

α

t−adt

∣∣∣∣∣ =

∣∣∣∣ 1

1− a
(β1−a − α1−a)

∣∣∣∣ ≤ max(α−a, β−a)|α− β|,

implying that ∣∣α1−a − β1−a∣∣ ≤ (a− 1)|α− β|(α−a + β−a). (2.25)

Then, according to Lemma 2.22, there exists h0 > 0 such that for any h ∈ (0, h0), and any
x ∈ Ωh, ∣∣QWh (g)1−a(x)− g1−a(x)

∣∣
h

≤ C
∣∣QWh (g)(x)− g(x)

∣∣
h

(
QWh (g)−a(x) + g−a(x)

)
≤ C(1 + ‖x‖γ)

(
QWh (g)−a(x) + g−a(x)

)
. (2.26)

Now, hypotheses (C1) and (C3) and a straightforward computation yield

QWh (g)(x) ≥ inf
y∈Ω1

{A3(1 + ‖x− hy‖γ) + hA1‖y‖γ}

≥ inf
y∈Rd
{A3(1 + |‖x‖ − h‖y‖|γ) + hA1‖y‖γ}

≥ C(1 + ‖x‖γ).

Using (C3) once again, we know that

g−a(x) ≤ (A3(1 + ‖x‖γ))
−a

;

putting these two inequalities together with inequality (2.26), we finally obtain∣∣QWh (g)1−a(x)− g1−a(x)
∣∣

h
≤ C 1 + ‖x‖γ

(1 + ‖x‖γ)a

≤ C

1 + ‖x‖γ(a−1)
.
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Proposition 2.23, together with Lemma 2.10, proves the dominated convergence, and

lim
h→0

(i) = (a− 1)

∫
Ω

W ∗(∇g)

ga
,

as claimed. The convergence of (ii) is straightforward, as it is a direct implication of the local
Lipschitz continuity of g and hypothesis (C3).

Convergence of (iii)

This term is a bit trickier, because comparing QWh (g) to g is not possible on the entirety of Bh,
g being defined only on Ω. For many functions ϕ, Bh 6⊂ Ω as is showcased on figure 2.1 below.
Thus, we prove the following result:

x1

x2

Ω
Ωh

Bh

Figure 2.1: Graph of Ω, Ωh, and Bh for ϕ(x1) = ‖x1‖2 and h = 0.5

Lemma 2.24. If (g,W ) is admissible, there exist constants C > 0 and h1 > 0, such that for all
0 < h < h1, and (x1, x2) ∈ Bh\Ωh,∣∣QWh (g)(x1, x2)− g(x1, ϕ(x1))

∣∣ ≤ hC(1 + ‖(x1, ϕ(x1))‖γ + |x1 · ∇ϕ(x1)|γ). (2.27)

The proof follows the same logic as the proof of Lemma 2.22.

Proof. Recall that, according to Lemma 2.18

Ωh =
{

(x1, x2) ∈ Rd, x2 ≥ h+ ϕ (x1)
}
, Bh =

{
(x1, x2) ∈ Rd, x2 ≥ h+ (1 + h)ϕ

(
x1

1 + h

)}
,

and that

|g(x′)− g(x)| ≤ C‖x′ − x‖
(

1 + ‖x‖γ−1
+ ‖x′ − x‖γ−1

)
(2.24 revisited)

for any x′, x ∈ Ω.
1. Fix h ∈ (0, 1), x = (x1, x2) ∈ Bh\Ωh, and define p(x1, x2) = (x1, ϕ(x1)), its projection

onto ∂Ω. Letting y =
(
x1

1+h , 1 + ϕ
(
x1

1+h

))
, we find that y ∈ Ω1, and also that x− hy ∈ Ω, thus,

with hypothesis (C2) and inequality (2.24),

QWh (x)− g(p(x)) ≤ g(x− hy)− g(p(x)) + hW (y)

≤ C‖x− hy − p(x)‖
(

1 + ‖p(x)‖γ−1
+ ‖x− hy − p(x)‖γ−1

)
+ hA2(1 + ‖y‖γ).

For brevity, let us write u = ‖p(x)‖ = ‖(x1, ϕ(x1)‖, and v = x1 · ϕ(x1) = |x1 · ϕ(x1)|. Now,
notice that

‖x− hy − p(x)‖ = h

∥∥∥∥( x1

1 + h
,
x2 − h− ϕ(x1)

h
− ϕ

(
x1

1 + h

))∥∥∥∥.
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From the definition of Ωh and Bh, we find out that

0 ≤ h+ ϕ(x1)− x2

h
≤ ϕ(x1)− (1 + h)ϕ(x1/(1 + h))

h
≤ x1 · ∇ϕ(x1) = v,

since ϕ is convex and nonnegative. Thus,

‖x− hy − p(x)‖ ≤ h
∥∥∥∥( x1

1 + h
, ϕ

(
x1

1 + h

))∥∥∥∥+ h|x1 · ∇ϕ(x1)|

≤ h(‖p(x)‖+ |x1 · ∇ϕ(x1)|) = h(u+ v),

so, since h < 1,

1 + ‖p(x)‖γ−1
+ ‖x− hy − p(x)‖γ−1 ≤ 1 + uγ−1 + (h(u+ v))γ−1

≤ C(1 + uγ−1 + vγ−1).

Finally,

A2(1 + ‖y‖γ) = A2

(
1 +

∥∥∥∥ x1

1 + h
, 1 + ϕ

(
x1

1 + h

)∥∥∥∥γ) ≤ C(1 + uγ).

Putting all these inequalities together, we find

QWh (x)− g(p(x)) ≤ hC(u+ v)(1 + uγ−1 + vγ−1) + hC(1 + uγ)

≤ hC(1 + uγ + vγ). (2.28)

2. Conversely, let y ∈ Ω1 be such that QWh (g)(x) = g(x−hy)+hW (y). As before, we localize
y. Using hypothesis A1 and inequalities (2.24) and (2.28),

hA1‖y‖γ ≤ hW (y) = QWh (g)(x)− g(p(x)) + g(p(x))− g(x− hy)

≤ hC(1 + uγ + vγ) + C‖x− hy − p(x)‖
(

1 + uγ−1 + ‖x− hy − p(x)‖γ−1
)

≤ hC(1 + uγ + vγ) + hC(‖y‖+ v)
(
1 + uγ−1 + hγ−1(‖y‖+ v)γ−1

)
≤ hC(1 + uγ + vγ) + hC(‖y‖+ v)

(
1 + uγ−1 + hγ−1‖y‖γ−1

+ vγ−1
)
.

Rearranging the terms and dividing by h yields

A1‖y‖γ − Chγ−1‖y‖γ−1
(‖y‖+ v) ≤ C(1 + uγ + vγ) + C(‖y‖+ v)

(
1 + uγ−1 + vγ−1

)
≤ C(1 + u+ v + ‖y‖)

(
1 + uγ−1 + vγ−1

)
.

We must now split the reasoning in two cases: either ‖y‖ ≤ v, in which case the conclusion
follows, or ‖y‖ ≥ v, and then A1‖y‖γ − Chγ−1‖y‖γ−1

(‖y‖ + v) ≥ A1‖y‖γ − 2Chγ−1‖y‖γ . We
thus choose 0 < h1 < 1 such that for all h ∈ (0, h1), A2 − 2Chγ−1 ≥ hγ−1. Then, we have, for
any h ∈ (0, h1),

hγ−1‖y‖γ

1 + u+ v + ‖y‖
≤ C

(
1 + uγ−1 + vγ−1

)
.

Once again, either ‖y‖ ≤ 1 + u+ v, or

hγ−1‖y‖γ−1 ≤ 2hγ−1‖y‖γ

1 + u+ v + ‖y‖
.
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Taking the greatest of the constants in those two cases, we may conclude that

hγ−1‖y‖γ−1 ≤ C(1 + uγ−1 + vγ−1). (2.29)

3. We may now proceed with the converse inequality. Invoking once again inequality (2.24),
and then inequality (2.29),

|g(x− hy)− g(p(x))| ≤ hC(‖y‖+ v)(1 + uγ−1 + hγ−1‖y‖γ−1
+ vγ−1)

≤ hC(‖y‖+ v)(1 + uγ−1 + vγ−1).

Finally,

QWh (g)(x)− g(p(x)) = g(x− hy)− g(p(x)) + hW (y)

≥ −hC(‖y‖+ v)(1 + uγ−1 + vγ−1) + hA2‖y‖γ

≥ h inf
y∈Rd
{−C(‖y‖+ v)(1 + uγ−1 + vγ−1) +A2‖y‖γ}

≥ −hC
(
1 + uγ−1 + vγ−1

)γ/(γ−1)
,

and we may conclude.

We may now prove Theorem 2.21: using the same notations as in the proof above, that is
u = ‖p(x)‖ = ‖(x1, ϕ(x1)‖, and v = x1 ·ϕ(x1) = |x1 · ϕ(x1)|, hypothesis (C2) immediately yields,
for all h > 0 and all x ∈ Bh\Ωh,

g−a(p(x)) ≤ C

(1 + uγ)a
.

Furthermore, inequality (2.27) and hypothesis (C2) yield

QWh (g)(x) ≥ −hC(1 + uγ + vγ) + C(1 + uγ)

for all x ∈ Bh\Ωh and 0 < h < h1. Now, assumption (2.22) reads: for all x1 ∈ Rd−1 such that
‖x1‖ > R,

v ≤ Cu.
Since both u and v are bounded functions of x on the set {(x1, x2) ∈ Bh\Ωh, ‖x1‖ ≤ R}, there
exists h2 > 0 such that, for all 0 < h < h2,

QWh (g)(x) ≥

{
C > 0 whenever ‖x1‖ ≤ R
C(1 + uγ) whenever ‖x1‖ > R

Thus, for all 0 < h < h2 and all x ∈ Bh\Ωh,

QWh (g)−a(x) ≤ C

(1 + uγ)a
.

Finally, invoking inequality (2.25) together with assumption (2.22) yields, for any 0 < h < h2

and x = (x1, x2) ∈ Bh\Ωh,∣∣QWh (g)1−a(x)− g1−a(p(x))
∣∣

h
≤ C

∣∣QWh (g)(x)− g(p(x))
∣∣

h

(
QWh (g)−a(x) + g−a(p(x))

)
≤ C(1 + uγ + vγ)

1

(1 + uγ)a

≤ C 1

1 + u(a−1)γ
.
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Note that u ≥ ‖x1‖, and we chose a such that (a− 1)γ > n, hence q(a− 1)γ − q > q(n− 1),
thus the dominated convergence theorem applies, and we may conclude that

lim
h→0

∫
Bh\Ωh

1

h
QWh (g)1−a = lim

h→0

∫
Rd−1

(
1

h

∫ h+ϕ(x1)

h+(1+h)ϕ(x1/(1+h))

g1−a(x1, ϕ(x1))dx2

)
dx1

=

∫
Rd−1

(x1 · ∇ϕ(x1)− ϕ(x1))g1−a(x1, ϕ(x1))dx1,

this last equality also being a dominated convergence result, using the hypotheses on g.

2.4.2 Extending the differentiated inequality

We just proved that whenever (g,W ) is admissible, with
∫

Ω
g−a =

∫
Ω1
W−a = 1, and ϕ satisfies

the asymptotic growth condition (2.22), then

(a− d)

∫
Ω

g1−a + (a− 1)

∫
Ω

W ∗(∇g)

ga
−
∫
Rd−1

g1−a(x1, ϕ(x1))P (x1)dx1 ≥
∫

Ω1

W 1−a. (2.30)

Let q > 1. We want to use this inequality with W (x) = C‖x‖q/q, where C > 0 is such that∫
Ω1
W−a = 1. The goal being to prove Sobolev-type inequalities, we may consider only the real

q such that their conjugate exponent p = q/(q−1), which will appear in W ∗, is strictly less than
n. Thus, we assume that q > n/(n − 1), and conditions (C0), (C1) and (C2) are automatically
satisfied with γ = q.

We now compute W ∗:

W ∗(y) = sup
x∈Ω1

{x · y − C‖x‖q/q} ≤ sup
x∈Rd
{x · y − C‖x‖q/q} (2.31)

= sup
R≥0

sup
‖x‖=R

{x · y − C‖x‖q/q}

= sup
R≥0
{R‖y‖∗ − CR

q/q}

= C1−p‖y‖p∗/p.

It is important to note that (2.31) becomes an equality for y = ∇g(z) whenever g( . ) = W ( .+e),
since in that case,

W ∗(∇g(z)) = sup
x∈Ω1

{x · ∇g(z)−W (x)} = sup
x∈Ω
{(x+ e) · ∇g(z)− g(x)} = e · ∇g(z) + g∗(∇g(z))

and the supremum is indeed reached inside the right set. Optimality is not lost, and inequality
(2.30) then becomes

(a−d)

∫
Ω

g1−a+C1−p
(
a− 1

p

)∫
Ω

‖∇g‖p

ga
−
∫
Rd−1

g1−a(x1, ϕ(x1))P (x1)dx1 ≥
∫

Ω1

W 1−a. (2.32)

The next step is to lift the restrictions on the function g, extending the results to more general
functions. Our tool here will be approximation by admissible functions.

f = g(p−a)/p is a smooth function with compact support

Let f ∈ C∞c (Ω) be a nonnegative function such that
∫

Ω
fap/(a−p) = 1. Let us fix some

γ > max{1, a/(n− 1)} and consider, for ε > 0,

fε(x) =
(
ε‖x+ e‖−γ(a−p)/p

+ Cεf
)
,
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where Cε is such that
∫

Ω
f
ap/(a−p)
ε = 1, whenever ε is small enough for Cε to exist. It is

not difficult to see that the corresponding functions gε = f
p/(p−a)
ε satisfy conditions (C3) and

(C4), and that
∫

Ω
g−aε = 1. Furthermore, Cε increases strictly as ε decreases towards 0, and

an argument of continuity shows that limε→0 Cε = 1, meaning that, pointwise, limε→0 gε =

f (p−a)/p =: g. Finally, the dominated convergence theorem, applied to g1−a
ε = f

(a−1)p/(a−p)
ε ,

proves that inequality (2.32) is indeed valid for g. Rewriting it with f yields

(a− d)

∫
Ω

fp
a−1
a−p + C1−p

(
a− 1

p

)(
p

a− p

)p ∫
Ω

‖∇f‖p −
∫
Rd−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1

≥
∫

Ω1

W 1−a.

(2.33)

Ω is the epigraph of a general convex function

Finally, we may lift the growth condition on ϕ (2.22) and prove theorem 2.4 in its full generality.
Let ϕ be a convex function with ϕ(0) = 0, and let Ω be its epigraph. The subdifferential of

ϕ at point x ∈ Rd−1 is the convex set

∂ϕ(x) = {v ∈ Rd−1 | ∀x′ ∈ Rd−1, ϕ(x)− ϕ(x′) ≥ v · (x− x′)}.

Whenever ϕ is differentiable, the subdifferential coincides with the gradient. Next, given x ∈ Rd−1

and v ∈ ∂ϕ(x), we consider the tangent half-space

Hx,v = {(y1, y2) ∈ Rd−1 × R, y2 − ϕ(x) ≥ v · (y1 − x)}.

For R > 0, define
ΩR =

⋂
x∈B(0,R)
v∈∂ϕ(x)

Hx,v.

ΩR is the epigraph of a convex function ϕR that coincides with the function ϕ on the ball
B(0, R) ∈ Rd−1, and its gradient is uniformly bounded by supx∈B(0,R)|∇ϕ(x)| < +∞, so that it
verifies the condition (2.22). Now, fix a function f ∈ C∞c (Ω). The support of f is inside a ball of
radius R0, so for any R ≥ R0, we may apply inequality (2.33) to the function f :

(a− d)

∫
ΩR

fp
a−1
a−p +AR

∫
ΩR

‖∇f‖p −
∫
Rd−1

fp
a−1
a−p (x1, ϕR(x1))PR(x1)dx1

=(a− d)

∫
Ω

fp
a−1
a−p +AR

∫
Ω

‖∇f‖p −
∫
Rd−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1 ≥

∫
ΩR,1

W 1−a
R .

where PR, ΩR,1, and WR are the usual definition of P , Ω, and W respectively, with function

ϕR instead of ϕ. The constants are given by AR = C1−p
R

a−1
p

(
p

a−p

)p
and CR > 0 is such that∫

ΩR,1
W−aR = 1, i.e.

CR = qa
∫

ΩR,1

‖x‖−qadx.

It is now easy to verify that limR→+∞ CR = qa
∫

Ω1
‖x‖−qadx = C; AR, and

∫
Ω1,R

W 1−a
R also

converge towards the right constants, so that equation (2.33) is still valid for the function ϕ,
without any growth condition.



54 CHAPTER 2. TRACE GNS INEQUALITIES

Optimality remains to be shown. Let f be the optimal function (which does not have compact
support) given in theorem 2.19. First, note that

lim
R→+∞

∫
ΩR

fp
a−1
a−p =

∫
Ω

fp
a−1
a−p , lim

R→+∞

∫
ΩR

‖∇f‖p =

∫
Ω

‖∇f‖p,

and also that for all R, f is an optimal function for inequality (2.33) on domain ΩR. Then,
by approximation by smooth functions with compact support, inequality (2.33) is true for f , so
that, writing A = limR→+∞AR, and putting these facts together,∫

Rd−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1 ≤ (a− d)

∫
Ω

fp
a−1
a−p +A

∫
Ω

‖∇f‖p −
∫

ΩR

W 1−a

= lim
R→+∞

(
(a− d)

∫
ΩR

fp
a−1
a−p +AR

∫
ΩR

‖∇f‖p −
∫

ΩR,1

W 1−a
R

)

= lim
R→+∞

(∫
Rd−1

fp
a−1
a−p (x1, ϕR(x1))PR(x1)dx1

)
.

We can decompose that last integral as a sum of the two following integrals∫
Rd−1

fp
a−1
a−p (x1, ϕR(x1))dx1 −

∫
Rd−1

fp
a−1
a−p (x1, ϕR(x1)) (x1 · ∇ϕR(x1)− ϕR(x1)) dx1.

By monotone convergence, the first term converges to the integral of the pointwise limit of its
integrand. Furthermore, by convexity, for all x1 ∈ Rd−1, x1 · ∇ϕR(x1)− ϕR(x1) ≥ 0, so Fatou’s
lemma applied to the second term yields

lim
R→+∞

(∫
Rd−1

fp
a−1
a−p (x1, ϕR(x1))PR(x1)dx1

)
≤
∫
Rd−1

fp
a−1
a−p (x1, ϕ(x1))P (x1)dx1,

which finishes to prove equality in the previous inequalities, whence optimality.



Chapter 3

A family of Beckner inequalities under
various curvature-dimension conditions

This chapter is a collaborative work with Ivan Gentil.

Abstract

In this chapter, we offer a proof for a family of functional inequalities interpolating between the
Poincaré and the logarithmic Sobolev (standard and weighted) inequalities. The proofs rely both
on entropy flows and on a CD(ρ, n) condition, either with ρ = 0 and n > 0, or with ρ > 0 and
n ∈ R. As such, results are valid in the case of a Riemannian manifold, which constitutes a
generalization to what was proved in [BGS18, Ngu18].
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3.1 Introduction

The family of the Beckner inequalities interpolate between the Poincaré and the logarithmic
Sobolev inequalities. For instance, let dµ = e−V dx be a probability measure on Rd, where
V : Rd → R is a smooth function satisfying ∇2V ≥ ρ Id for some ρ > 0. Then, Bakry-Émery’s
curvature-dimension condition implies that, for any p ∈ (1, 2], and any nonnegative smooth
function f ,

p

p− 1

[∫
f2dµ−

(∫
f2/pdµ

)p]
≤ 2

ρ

∫
|∇f |2dµ, (3.1)

these results can be found in [BGL14, Sec. 7.6.2]. When p = 2, that is the usual Poincaré
inequality for the measure µ and when p → 1 the inequality becomes the logarithmic Sobolev

55
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inequality, ∫
f2 log

f2∫
f2dµ

dµ ≤ 2

ρ

∫
|∇f |2dµ,

both optimal when µ is the standard Gaussian measure.
Similar inequalities have first been proved by Bidaut-Véron-Véron in [BVV91] for the sphere,

using the method proposed in [GS81]. In this chapter, we refer to them as Beckner inequalities,
in reference to [Bec89], where Beckner proves inequallity (3.1) for the Gaussian measure. They
are sometimes called convex inequalities.

These inequalities play a major role among functional inequalities for probability measures,
being useful to understand both asymptotic behaviour of parabolic equations, and also the geom-
etry of measured spaces. It is interesting to notice that for the Gaussian measure, although the
Poincaré and the logarithmic Sobolev inequalities are optimal and have nonconstant extremal
functions, whenever p ∈ (1, 2), Beckner inequalities do not have extremal functions, and even
admit various improvements (see for instance [AD05, BG10, DEKL13]).

Other attractive examples appear for measures which satisfy a (weighted) Poincaré inequality
but no logarithmic Sobolev inequality. More precisely, let ϕ : Rd 7→ R∗+ be a smooth and positive
function such that for any β > d/2,

∫
ϕ−βdx < +∞. Now, define

dµβ = cβϕ
−βdx, (3.2)

where cβ is a normalization constant such that µβ is a probability measure on Rd. In [BGS18],
the authors prove that, when ϕ = 1 + |x|2 then for any β ≥ d+ 1 and p ∈ [p∗, 2].

p

p− 1

[∫
f2dµβ −

(∫
f2/pdµβ

)p]
≤ 1

β − 1

∫
|∇f |2ϕdµβ , (3.3)

where p∗ = 1+1/(β−d). This inequality is rich enough to be equivalent to the Sobolev inequality
on the sphere. This result has then been extended by N’Guyen in [Ngu18], where the author
proves similar inequalities in Rd with a function ϕ satisfying the convex assumption ∇2ϕ ≥ c Id
for some constant c > 0. The only difference with inequality (3.3) is that the constant (β−1)−1,
in front of the right hand side, becomes 2(c(β − 1))−1, which is consistant with previous results,
since c = 2 for ϕ : x 7→ 1 + |x|2. In that regard, N’Guyen’s result is more general, but there
exists a limitation: the range of the parameter p for which the inequality remains valid is strictly
smaller.

We would like to extend Beckner’s inequality, and more precisely inequality (3.3), in the
general context of curvature-dimension conditions. The goal is twofold. First, we extend some
results of [BGS18, Ngu18] in the context of a Riemannian manifold. Then, under a curvature-
dimension condition CD(ρ, n) with n negative, we also prove Beckner inequalities. We recover
for instance the weighted Poincaré inequality for generalized Cauchy distributions.

More precisely, we prove functional inequalities under two kinds of assumptions, the curvature-
dimension conditions CD(0, n) with n > 0 or CD(ρ, n) with ρ > 0 and n ∈ R. Let us give here
a flavour of our results.

• In Theorem 3.6, we prove the following Poincaré inequality under CD(0, n), n > 0. Let
(M, g) be a smooth d-dimensional Riemannian manifold with a nonnegative Ricci curvature
and let ϕ be a positive function such that Hess(ϕ) ≥ cg, c > 0. Then for any function f
and β ≥ n+ 1,

Varµϕ,β (f) ≤ 1

c(β − 1)

∫
Γ(f)ϕdµϕ,β , (3.4)
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where µϕ,β = Zϕ,βϕ
−βdx is a probability measure. This inequality generalizes previous

results on the subject.

• In Theorem 3.16, we prove a family of Beckner inequalities under CD(ρ, n) with ρ > 0 and
n ∈ R. On a d-dimensional Riemannian manifold, for any nonnegative function f ,

p

p− 1

(∫
f2dµ−

(∫
f2/pdµ

)p)
≤ 2

n− 1

ρn

∫
Γ(f)dµ.

– for all p ∈ (1, 2] if n ≥ d,
– for all p ∈ [p∗, 2] if n < −2, where p∗ = 1 + 1−4n

2n2+1 .

In this context, µ is the reversible measure and Γ is the carré du champ operator. The use
of a negative dimension is new, up to our knowledge.

The chapter is organized as follows. In the next section, we state various definitions useful for
the rest of the chapter. In Section 3.3 we prove weighted Beckner inequalities, like inequality (3.4)
under CD(0, n) conditions, n > 0. The Φ-entropy inequalities are also studied in this context.
Section 3.4 is devoted to Beckner’s inequality under the curvature-dimension condition CD(ρ, n)
conditions with ρ > 0 and n ∈ R. Finally in Section 3.5, we apply our methods in the one
dimensional case, giving another way to prove optimal weighted Poincaré inequality on R.

Acknowledgements: This research was supported by the French ANR-17-CE40-0030 EFI
project. The authors warmly thank L. Dupaigne for discussing the problem and proofreading a
draft version of this work.

3.2 Settings and definitions

Consider a connected, C∞ Riemannian manifold (M, g) of dimension d and the Laplace-Beltrami
operator ∆g given by, in a local chart

∆gf =
1√
|g|
∂i

(√
|g|gij∂jf

)
,

where gij are the components of the inverse metric tensor, g−1. In this formula and in what
follows, the Einstein notation was used, where the summation on indices is implied.

On this manifold, define the symmetric diffusion operator L = ∆g + Γ∆g (V, .), where Γ∆g is
the carré du champ operator (the definition of which is recalled below) associated to ∆g, and V
is a C∞ function. Most of the notions and results related to this operator Γ can be found in the
quite thorough [BGL14].

Definition 3.1 (Carré du champ operator). Given a differential operator L on a smooth manifold
M , the carré du champ operator ΓL is a symmetric bilinear map from C∞(M) × C∞(M) onto
C∞(M). It is defined by

ΓL(a, b) =
1

2
(L(ab)− aLb− bLa).

An important example to keep in mind is the manifold (Rd, Id), on which the Laplace-Beltrami
operator is the usual Laplacian, and its carré du champ operator is, for any smooth functions a
and b,

Γ∆(a, b) = ∇a · ∇b.
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More generally, respectively using the Levici-Vita connection ∇, and in a local chart, operator
Γ∆g is given by

Γ∆g (a, b) = g(∇a,∇b) = gij∂ia∂jb.

We iterate this definition to get the second order operator, Γ2.

Definition 3.2 (Iterated carré du champ operator). Given a differential operator L on a smooth
manifoldM , the iterated carré du champ operator ΓL2 is a symmetric bilinear map from C∞(M)×
C∞(M) onto C∞(M) defined by

ΓL2 (a, b) =
1

2

(
L(ΓL(a, b))− ΓL(a, Lb)− ΓL(b, La)

)
.

We point out that if L = ∆g + Γ∆g (V, .), then ΓL = Γ∆g : the drift part of L, namely V , does
not appear in this operator. For this reason, and for readability’s sake, we shall simply use the
notation Γ instead of Γ∆g in what follows, as long as it is not ambiguous. We will also write
Γ(a, a) = Γ(a) for brievety. We will do the same for Γ2, but one should keep in mind that the
drift does play a role in Γ2, and ΓL2 6= Γ

∆g

2 . The idea behind the carré du champ operator is
that it contains all the information about the geometry of the space (M, g), and it thus proves
worthwhile to stick to its use in the (sometimes heavy) calculations. Generally, a formula that is
valid for the standard Laplacian on Rd involving only the Γ operator will remain valid on more
general manifolds. For instance, if a, b, and c are smooth functions defined on Rd, the Hessian
of a may be expressed in the following fashion

Hess(a)(∇b,∇c) =
1

2
(∇b · ∇(∇a · ∇c) +∇c · ∇(∇a · ∇b)−∇a · ∇(∇b · ∇c)),

hence the following lemma

Lemma 3.3 (Hessian of a function). Let a, b, c be smooth functions on (M, g). Then, the Hessian
of a is given by

∇2a(∇b,∇c) =
1

2
(Γ(b,Γ(a, c)) + Γ(c,Γ(a, b))− Γ(a,Γ(b, c))),

where Γ is the carré du champ operator associated to the Laplace-Beltrami operator ∆g.

Proof. Since the Hessian is symmetric and bilinear, it is sufficient to prove that

∇2a(∇b,∇b) = Γ(b,Γ(a, b))− 1

2
Γ(a,Γ(b)).

By definition,

Hess(a)(∇b,∇b) = g(∇∇b∇a,∇b)
= ∇∇bg(∇a,∇b)− g(∇a,∇∇b∇b)
= g(∇b,∇g(∇a,∇b))− g(∇a, g(∇∇b,∇b))

= g(∇b,∇g(∇a,∇b))− 1

2
g(∇a,∇g(∇b,∇b))

which is the claimed formula.

In the development of this chapter, we shall assume so-called curvature-dimension conditions
on the different diffusion operators:
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Definition 3.4 (Curvature-dimension conditions CD(ρ, n)). A diffusion operator L is said to
satisfy a CD(ρ, n) condition for ρ ∈ R and n 6= 0, if for every smooth function f ,

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2. (3.5)

For example, the Bochner-Lichnerowicz formula implies that the Laplace-Beltrami operator
∆g satisfies the CD(ρ, n) condition with n ≥ d and ρ ∈ R whenever the Ricci curvature is
uniformly bounded form below by ρg, [BGL14, Sec. C.6].

Denoting by dx the Riemannian measure associated to (M, g), we define µ to be the reversible
measure associated to L, i.e. dµ = ZV e

−V dx, where ZV a normalizing constant such that µ is
a probability measure if finite, and ZV = 1 otherwise. The triple (M,Γ, µ) is a Markov triple,
as defined in [BGL14, Sec. 3.2]. Then, for any smooth functions a, b such that the integrals are
well defined, we have the following integration by parts formula:∫

M

Γ(a, b)dµ = −
∫
M

aLbdµ = −
∫
M

bLadµ,

a notable consequence of which is that
∫
M
Ladµ = 0.

Remark 3.5. We could have chosen to study a general symmetric Markov semigroup, for instance
a generic Markovian triple (E,Γ, µ) as proposed in [BGL14]. However, assuming L is a symmetric
diffusion operator in a smooth Riemannian manifold, which is the case of interest for us, there
exists a metric g̃ and a function V such that the operator can be rewritten L = ∆g̃ + Γ∆g̃ (V, .),
so we are not, in fact, losing any generality.

3.3 Weighted inequalities under nonnegative Ricci curvature

For a more pedestrian approach, we first explain the case of the Poincaré inequality, only to
tackle more general inequalities later on.

3.3.1 Weighted Poincaré inequality

Let ϕ be a C2 positive function on M such that

∇2ϕ ≥ cg (3.6)

for some positive constant c. For β ∈ R such that ϕ−β is integrable with respect to µ, let
µϕ,β = Zϕ,βϕ

−βµ, with the constant Zϕ,β such that this new measure is a probability measure.
The main result is the following:

Theorem 3.6 (Weighted Poincaré inequality). Assume that the diffusion operator L satisfies a
CD(0, n) condition with n ≥ d, and fix a real number β ≥ n + 1. Then for all smooth bounded
functions f ,

Varµϕ,β (f) =

∫
f2dµϕ,β −

(∫
fdµϕ,β

)2
≤ 1

c(β − 1)

∫
Γ(f)ϕdµϕ,β . (3.7)

Remark 3.7. As explained in Section 3.2, the main example to keep in mind is the Laplace-
Beltrami operator on a Riemannian manifold with a nonnegative Ricci curvature, in which case
µϕ,β = Zϕ,βϕ

−βdx.
This inequality happens to be optimal whenever (M, g) = (Rd, Id), and ϕ(x) = 1+ |x|2, where

the optimal constant is reached for projectors x 7→ xi, 1 ≤ i ≤ d. This optimal case has been
proved in [BBD+07] and also in [Ngu14, ABJ18] with different methods.
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Proof. Fix β ∈ R\{2}, and define

L := ϕL− (β − 1)Γ(ϕ, .).

Note that the operator L is, in fact, of the form L = ∆g + Γ∆g (V , .), where g = ϕ−1g and
V = V + (d/2 − β) logϕ, so the operator we are considering here is obtained from the first one
through a conformal transformation. In what follows, everything written with an overline relates
to objects associated to the operator L or the manifold (M, g). For instance, the carré du champ
operator is given by Γ = ϕΓ, its reversible measure is µ̄ = µϕ,β , and

Γ2(f) = ΓL2 (f) = ϕ2Γ2(f) + (β − 1)ϕ∇2ϕ(∇f,∇f) +
Γ(f)

2
(ϕLϕ− (β − 1)Γ(ϕ))

+ ϕΓ(ϕ,Γ(f))− ϕLfΓ(f, ϕ), (3.8)

a proof of which can be stringed together with information from [BGL14, Sec. 6.9.2], for instance.
Now, fix f , a smooth and bounded function onM , and consider the Markov semigroup (ft)t≥0,

solution of the initial-value system{
∂tft = Lft on (0,+∞)×M,

f0 = f on M.
(3.9)

Consider the variance of ft along the flow:

Λ(t) := Varµ̄(ft) =

∫
f2
t dµ̄−

(∫
ftdµ̄

)2

=

∫
f2
t dµ̄−

(∫
fdµ̄

)2

,

because L is mass-preserving. Then, we use the following estimate:

Lemma 3.8. If β > 1 and β 6= 2, then for all t ≥ 0,

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
4

β − 2

∫
ϕ2
[
(β − 1)Γ2(ft)− (Lft)

2)
]
dµ̄. (3.10)

Furthermore, there is equality in (3.10) for all t ≥ 0 whenever the Hessian of ϕ is a constant,
i.e. when inequality (3.6) is an equality.

Assume that L satisfies the CD(0, n) condition for some n > 0, and that β − 1 ≥ n, and
β > 2. Then, we deduce from equation (3.10) that

Λ′′(t) ≥ −2c(β − 1)Λ′(t)

which we can integrate once betwen 0 and t to find that

−Λ′(t) ≤ −Λ′(0)e−2c(β−1)t

and then once again, between t = 0 and t = +∞,

Λ(0)− lim
t→+∞

Λ(t) ≤ −1

2c(β − 1)
Λ′(0).

The Markov semigroup studied is ergodic, in other words, it ensures the convergence of ft towards
its mean in L2(µ̄), so that limt→+∞ Λ(t) = 0, and the previous inequality is simply the stated
result, for smooth and bounded functions, and for β > 2. The general case is established by
approximation. The particular case β = 2 (also implying n = d = 1) is proved by letting β → 2
directly in inequality (3.7).
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Proof of Lemma 3.8. By definition of µ̄, we may integrate by parts the derivative of Λ to find

Λ′(t) = 2

∫
ftLftdµ̄ = −2

∫
Γ(ft)dµ̄,

and, differentiating once again,

Λ′′(t) = −4

∫
Γ(ft, Lft)dµ̄ = −4

∫
Γ(ft, Lft)dµ̄+ 2

∫
L(Γ(ft)) = 4

∫
Γ2(ft)dµ̄.

We may now use formula (3.8) to find that

Λ′′(t) = 4

∫
(β − 1)ϕ∇2ϕ(∇ft,∇ft)dµ̄

+ 4

∫ [
ϕ2Γ2(ft) +

Γ(ft)

2
(ϕLϕ− (β − 1)Γ(ϕ)) + ϕΓ(ϕ,Γ(ft))− ϕLftΓ(ft, ϕ)

]
dµ̄. (3.11)

First, the convexity assumption (3.6) on ϕ yields

4

∫
(β − 1)ϕ∇2ϕ(∇ft,∇ft) ≥ 4c(β − 1)

∫
Γ(ft)dµ̄ = −2c(β − 1)Λ′(t).

Now, in the second integral of equation (3.11), we may not directly use the integration by parts
formula, because µ̄ is the invariant measure for Γ, and not for Γ. We must thus rewrite it in
terms of µ. First,∫

Γ(ft)

2
ϕLϕdµ̄ = Zϕ,β

∫
Γ(ft)

2
ϕ1−βLϕdµ = −Zϕ,β

∫
Γ

(
ϕ,ϕ1−β Γ(ft)

2

)
dµ

= −
∫
ϕ

2
Γ(ϕ,Γ(ft))dµ̄−

1− β
2

∫
Γ(ft)Γ(ϕ)dµ̄.

Then,∫
ϕΓ(ϕ,Γ(ft))dµ̄ = Zϕ,β

∫
ϕ1−βΓ(ϕ,Γ(ft))dµ =

Zϕ,β
2− β

∫
Γ(ϕ2−β ,Γ(ft))dµ

=
1

β − 2

∫
ϕ2LΓ(ft)dµ̄,

and likewise,

−
∫
ϕLftΓ(ft, ϕ)dµ̄ =

Zϕ,β
β − 2

∫
LftΓ(ft, ϕ

2−β)dµ =

Zϕ,β
β − 2

∫ [
Γ(ft, ϕ

2−βLft)− ϕ2−βΓ(ft, Lft)
]
dµ =

−1

β − 2

∫
ϕ2
[
(Lft)

2 + Γ(ft, Lft)
]
dµ̄.

We conclude putting these three identities together.

3.3.2 Φ-entropy and weighted Beckner inequalities

Instead of the variance, we may consider a generic Φ-entropy along the flow. Choose a strictly
convex real function Φ ∈ C4(I), (where I ⊂ R∗+ is an open interval) and consider the Φ-entropy
of any function f : M 7→ I such that the integrals below are well defined

EntΦ
µϕ,β

(f) :=

∫
Φ(f)dµϕ,β − Φ

(∫
fdµϕ,β

)
,
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so that Varµϕ,β = Entx 7→x
2

µϕ,β
. Generalizations of inequalities like (3.7) to Φ-entropies have already

been studied under CD(ρ,∞) condition, ρ > 0 in [Cha04, BG10]. We find a generalized version
of Theorem 3.6:

Theorem 3.9 (Φ-entropy inequalities). Assume that the diffusion operator L satisfies a CD(0, n)
condition with n ≥ 0, and fix a real number β ≥ n+1. Let Φ : I 7→ R be a strictly convex function
such that

Φ(4)Φ′′ ≥ Cn,β(Φ(3))2, (3.12)

with
Cn,β =

8(β − 1− n)(2β − 1) + 9n

8(β − 1− n)(β − 1)
.

Then, for all smooth bounded functions f : M 7→ I, there holds

EntΦ
µ̄ (f) ≤ 1

2c(β − 1)

∫
Φ′′(f)Γ(f)ϕdµ̄. (3.13)

Proof. Let us first assume that β > 2, the case β = 2 can be proved by passing to the limit
in (3.13). Assume also that f is a smooth and bounded function, the general case can be proved
by approximations. Consider, just like before, the function ft, solution of the initial-value system
(3.9) starting from f , and define, for t ≥ 0,

Λ(t) = EntΦ
µ̄ (ft) =

∫
Φ(ft)dµ̄− Φ

(∫
ftdµ̄

)
=

∫
Φ(ft)dµ̄− Φ

(∫
fdµ̄

)
,

where, again, µ̄ = µϕ,β . Differentiating the entropy yields

Λ′(t) = −
∫

Γ(Φ′(ft))
Φ′′(ft)

dµ̄,

and, from [BG10, Lem. 4],

Λ′′(t) =

∫ [
2

Γ2(Φ′(ft))
Φ′′(ft)

+

(
−1

Φ′′

)′′
(ft)

(
Γ(Φ′(ft))

Φ′′(ft)

)2
]
dµ̄.

We follow exactly the same steps as in Section 3.3.1. For brievety, we write h := Φ′(ft). First,
expanding Γ2 in terms of Γ2, Γ and L, and also using the convexity hypothesis on ϕ (3.6), we
find,

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +

∫ [
2

Φ′′(ft)

(
ϕ2Γ2(h) +

Γ(h)

2
(ϕLϕ− (β − 1)Γ(ϕ)) + ϕΓ(ϕ,Γ(h))

− ϕLhΓ(h, ϕ)

)
+ ϕ2

(
−1

Φ′′

)′′
(ft)

(
Γ(h)

Φ′′(ft)

)2
]
dµ̄.

We may now give these terms the same treatment as in the previous section: the goal is to
remove all derivatives on ϕ. The calculations are not made explicit here; they involve the exact
same ingredients we used before, only with more terms appearing. We finally find, using only
integration by parts, that

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
1

β − 2

∫
ϕ2

Φ′′(ft)

(
a0Γ2(h) + a′0(Lh)2 + a2Γ(h)Lh+ a3Γ(h)2

)
dµ̄,
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where 

a0 = 2(β − 1),

a′0 = −2,

a2 = 3
Φ′′′(ft)

(Φ′′(ft))2
,

a3 = (β − 1)
Φ(4)(ft)

(Φ′′(ft))3
+ (1− 2β)

(Φ′′′(ft))2

(Φ′′(ft))4
.

Just like for the Poincaré inequality proof, this inequality becomes an equality when Hess(ϕ) = cg.
Invoke the CD(0, n) condition to find that

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
1

β − 2

∫
ϕ2

Φ′′(f)

(
a1(Lh)2 + a2Γ(h)Lh+ a3Γ(h)2

)
dµ̄, (3.14)

where a1 = a0/n + a′0 = 2
n (β − 1 − n). In the same way as before, we want this integrated

quantity to be nonnegative. Since Φ is strictly convex, it is sufficient to require the polynomial
function X 7→ a1X

2 + a2X + a3 to be nonnegative, which itself is equivalent to

a1 ≥ 0 and a2
2 − 4a1a3 ≤ 0.

Straightforward computation yields that this, in turn, is equivalent, whenever n ≥ 0, to

β ≥ n+ 1 and Φ(4)Φ′′ ≥ Cβ,n(Φ′′′)2,

where
Cβ,n =

8(β − 1− n)(2β − 1) + 9n

8(β − 1− n)(β − 1)
.

If this condition is satisfied, the integrand is pointwise nonnegative, thus

Λ′′(t) ≥ −2c(β − 1)Λ′(t),

and integrating this twice yields the theorem.

We can explicit this theorem in the particular case where Φ(X) = Xp, p > 1. Condition
(3.12) is then equivalent to

p ∈ [p∗, 2],

where
p∗ = 1 +

8(β − 1− n) + 9n

8β(β − 1− n) + 9n
∈ (1, 2]. (3.15)

Thus, if this condition is satisfied,∫
fpdµ̄−

(∫
fdµ̄

)p
≤ p(p− 1)

2c(β − 1)

∫
fp−2ϕΓ(f)dµ̄.

Rewriting this inequality with f̃ = f2/p in place of f , we find

Corollary 3.10 (Weighted Beckner inequalities). Under the same assumptions as Theorem 3.9,
for all p ∈ [p∗, 2], and all smooth bounded functions f , we have

p

p− 1

[∫
f2dµϕ,β −

(∫
f2/pdµϕ,β

)p]
≤ 2

c(β − 1)

∫
ϕΓ(f)dµϕ,β , (3.16)

where p∗ is given by (3.15).
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Corollary 3.10 is optimal (and thus so is theorem 3.9) in the sense that there exists no
constant 0 < C < (c(β − 1))−1 such that L satisfies a Beckner inequality Bp(C) (see Definition
3.17 below), because Bp(C) (for any p ∈ (1, 2)) implies the Poincaré inequality with constant C.
Indeed, testing inequality (3.16) with the function 1 + εf , f bounded, we find that

p

p− 1

[∫
(1 + εf)2dµ̄−

(∫
(1 + εf)2/pdµ̄

)p]
≤ 2ε2

c(β − 1)

∫
ϕΓ(f)dµ̄,

which, after being expanded when ε is small, turns into∫
f2dµ̄−

(∫
fdµ̄

)2

+ o(1) ≤ 1

c(β − 1)

∫
ϕΓ(f)dµ̄,

which is exactly the optimal weighted Poincaré inequality 3.6.

Remark 3.11. In the case of interest, when Φ(X) = Xp, we may explicit inequality (3.14)

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
1

β − 2

∫
ϕ2h

2−p
p−1

(
a′1(Lh)2 + a′2

Γ(h)

h
Lh+ a′3

Γ(h)2

h2

)
dµ̄,

where the a′i, i ∈ {1, 2, 3} are real constants. The inequality can be then improved using the fact
that

a′1X
2 + a′2X + a′3 = a′1

(
X +

a′2
2a′1

)2

− (a′2)2 − 4a′1a
′
3

4a′1
,

so that, whenever δ := −1
4a′1

((a′2)2 − 4′a1a
′
3) ≥ 0, we find that

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
δ

β − 2

∫
ϕ2h

2−p
p−1

Γ(h)2

h2
dµ̄

≥ −2c(β − 1)Λ′(t) +
δ

β − 2

(∫
ϕh

2−p
p−1 Γ(h)dµ̄

)2

∫
h

p
p−1 dµ̄

= −2c(β − 1)Λ′(t) + Cp
Λ′(t)2

Λ(t)
,

by Jensen’s inequality, where, for reference,

Cp =
δ

β − 2
(p− 1)2p

2−p
p−1 ≥ 0.

This leads, when integrated, to a refined version of Beckner’s inequality, which we will come back
to in section 3.4, and specifically, corollary 3.18.

Remark 3.12. As explained in Section 3.1, we extend the result of Nguyen [Ngu18] in two aspects.
First, Beckner inequalities (3.16) are proved in the more general context of Riemannian manifolds
satisfying a CD(0, n) condition, and secondly, the range of parameter p ∈ [p∗, 2] given by (3.15)
strictly contains the one proposed in [Ngu18].

On the other hand, in [BGS18], corollary 3.10 is proved in the special case of M = Rd and
ϕ(x) = 1+|x|2. Interestingly, the range found in their article is greater than what we can manage
here. Indeed, it is valid for all p ∈ [p∗BGS , 2], where

1 < p∗BGS = 1 +
1

β − d
< p∗.
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It might be worth it to note that in our case, we used the fact that the second degree polynomial
appearing in the integral is greater than 0, when this is in fact quite a gross lower bound. Indeed,
the argument is that ∫

ϕ2h
2−p
p−1

(
hLh

Γ(h)
+

a′2
2a′1

)2
Γ(h)2

h2
dµ̄ ≥ 0,

but the squared term can probably be controlled in a way that leads to a wider range of p, since∫ [
hLh+

a′2
2a′1

Γ(h)

]
dµ =

(
a′2
2a′1
− 1

)∫
Γ(h)dµ < 0

whenever h is not a constant function.

3.4 Spaces with positive curvature and real dimension

The family of inequalities considered in this chapter, especially for sections 3.4 and 3.5, is the
following interpolation between the Poincaré inequality and the logarithmic Sobolev inequality

Definition 3.13 (Beckner inequalities). The Markov triple (M,Γ, µ) is said to satisfy a Beckner
inequality Bp(C) with parameter p ∈ (1, 2] and constant C > 0 if, for all nonnegative smooth
bounded functions f ,

p

p− 1

(∫
f2dµ−

(∫
f2/pdµ

)p)
≤ 2C

∫
Γ(f)dµ. (3.17)

The constants in front of the integrals are chosen so that for p = 2, this is exactly the Poincaré
inequality with constant C, and the limiting case p→ 1 corresponds to the logarithmic Sobolev
inequality, again with constant C. Indeed,

lim
p→1

p

p− 1

(∫
f2dµ−

(∫
f2/pdµ

)p)
=

∫
f2 log

(
f2∫
f2dµ

)
dµ.

Remark 3.14. The weighted Beckner inequalities proved in the previous section can be seen as
classical Beckner inequalities. Indeed, theorem 3.10 states that Bp((c(β − 1))−1) is valid for the
triple (M,ϕΓ, µϕ,β).

In this section, we consider a diffusion operator L defined on (M, g), juste like in Section 3.3,
with µ being its reversible measure. We assume that L satisfies a curvature-dimension condition
CD(ρ, n), with ρ > 0 and n ∈ R. That means, specifically but not exclusively, that we will
consider negative n. Such spaces, sometimes referred to as having negative effective dimension,
have been studied in the past, with articles dating as far back as 2003, up to our knowledge [Sch03,
Mil17a, Mil17b, BGS18]. Furthermore, one can easily construct examples of such operators
with [Oht16, Cor. 4.13]. Writing down the CD(ρ, n) inequality in good local coordinates like in
[BGS18], one can check that a necessary criterion for the inequality to be true is that d/n ≤ 1,
which means that we are actually restricted to n ∈ R\[0, d]. The main difference, compared to
the previous section, is that the curvature is positive, which is a stronger assumption, but n can
be negative, which is a weaker assumption.

Let us first recall the well known result for the Poincaré inequality, the proof of which is given
in [BGL14, Thm. 4.8.4].

Theorem 3.15 (Poincaré inequality under CD(ρ, n)). Assume that the diffusion operator L
satisfies a CD(ρ, n) condition, with ρ > 0 and n ∈ R\[0, d). Then the following Poincaré
inequality holds,

Varµ(f) ≤ n− 1

ρn

∫
Γ(f)dµ. (3.18)
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We extend this result to Beckner inequalities in the following theorem:

Theorem 3.16 (Beckner inequalities under CD(ρ, n)). Assume that the diffusion operator L
satisfies a CD(ρ, n) condition, with ρ > 0 and n ∈ R\[−2, d). Then, Bp

(
n−1
ρn

)
is satisfied

• for all p ∈ (1, 2] if n ≥ d,

• for all p ∈ [p∗, 2] if n < −2, where

p∗ = 1 +
1− 4n

2n2 + 1
.

Interestingly, we find nothing for n ∈ [−2, 0), which corresponds to the weakest CD(ρ, n)
conditions possible, even though the Poincaré inequality remains valid in that range. It seems
like there is not enough structure in that case.

Proof. In the same fashion as the previous section, fix f , a bounded smooth nonnegative function
on M , and consider the function ft, solution of the initial-value system{

∂tft = Lft on (0,+∞)×M,

f0 = f on M,
(3.19)

and consider its Φ-entropy along the flow, where Φ is assumed to be strictly convex.

Λ(t) = EntΦ
µ (ft) =

∫
Φ(ft)dµ− Φ

(∫
ftdµ

)
,

Invoking once again,

Λ′(t) = −
∫

Γ(Φ′(ft))
Φ′′(ft)

dµ, Λ′′(t) =

∫ [
2

Γ2(Φ′(ft))
Φ′′(ft)

+

(
−1

Φ′′

)′′
(ft)

(
Γ(Φ′(ft))

Φ′′(ft)

)2]
dµ.

Classically, one can assume −1/Φ′′ to be convex, whence the CD(ρ, n) condition yields

Λ′′(t) ≥
∫

2

Φ′′(ft)

[
ρΓ(Φ′(ft)) +

1

n
(LΦ′(ft))

2

]
dµ,

and, when n > 0, this leads to
Λ′′(t) ≥ −2ρΛ′(t),

which, ultimately, proves Poincaré-type inequalities, using arguments like the ones in section 3.3.
The problem is that the constant appearing in the inequality is, in fact, not optimal, and further-
more, the argument fails whenever n < 0. For the sake of simplicity, we will now assume that
Φ(X) = Xp, with p ∈ (1, 2], but the argument could very well be generalized to more general Φ.
The derivatives of the entropy then become

Λ′(t) = − p

p− 1

∫
f2−p
t Γ(fp−1

t )dµ, Λ′′(t) =
p

p− 1

∫ [
2f2−p
t Γ2(fp−1

t ) +
2− p
p− 1

f4−3p
t Γ(fp−1

t )2

]
dµ.

Rewriting these quantities with respect to q := 2−p
p−1 ∈ [0,+∞), and h = fp−1

t ,

p− 1

p
Λ′(t) = −

∫
hqΓ(h)dµ,

p− 1

p
Λ′′(t) =

∫ [
2hqΓ2(h) + qhq−2Γ(h)2

]
dµ.
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To get the most information out of this, we shall apply the CD(ρ, n) condition not to the function
h, but to η(h), where η is some function to be chosen later. Expanding every term in the CD(ρ, n)
inequality (3.5)

Γ2(η(h)) ≥ ρΓ(η(h)) +
1

n
(Lη(h))2

yields

η′2(h)Γ2(h) + η′(h)η′′(h)Γ(h,Γ(h)) + (η′′(h)Γ(h))2 ≥ ρη′2(h)Γ(h) +
1

n
(η′(h)Lh+ η′′(h)Γ(h))2.

This inequality is, in particular, true for the power function η(x) = xθ+1, with θ ∈ R, so that

Γ2(h) ≥ ρΓ(h)︸ ︷︷ ︸
i

+2θ
1

n

Γ(h)Lh

h︸ ︷︷ ︸
ii

−θ Γ(h,Γ(h))

h︸ ︷︷ ︸
iii

+θ2

(
1− n
n

)
Γ(h)2

h2︸ ︷︷ ︸
iv

+
1

n
(Lh)2︸ ︷︷ ︸
v

.

Multiplying this inequality by hq and then integrating it, we are left with five terms to consider.
The first term corresponds to the first derivative of the entropy, Λ′(t), so we may leave it as it
is. Terms ii and iii are trickier, because their sign is not known, so we must take care of them.
Term iv is always negative since n /∈ [0, 1], but it is compensated by another (positive) term of
the same nature appearing naturally in Λ′′(t). The sign of the last term depends on the sign of
n, so we must take care of it as well, at least for negative n.

Term ii: an integration by parts yields∫
hq−1Γ(h)Lhdµ = −

∫ [
hq−1Γ(h,Γ(h)) + (q − 1)hq−2Γ(h)2

]
dµ.

Term iii: we do not do anything for now with this term, and will adjust θ later so that it
disappears.

Term v: we use the fact that, by definition,∫
Γ2(h)dµ =

∫ [
1

2
L(Γ(h))− Γ(h, Lh)

]
dµ =

∫
(Lh)2dµ

to prove that, for any real function η,∫
η′2(h)(Lh)2dµ =

∫ [
η′2(h)Γ2(h) + 3η(h)η′(h)Γ(h,Γ(h)) + 2(η′′2(h) + η′(h)η′′′(h))Γ(h)2

]
dµ.

In particular,∫
hq(Lh)2dµ =

∫ [
hqΓ2(h) + q(q − 1)hq−2Γ(h)2 +

3

2
qhq−1Γ(h,Γ(h))

]
dµ.

Finally, we are left with an equality still involving the parameter θ:∫
hqΓ2(h)dµ ≥ ρn

n− 1

∫
hqΓ(h)dµ+

∫ [
Ahq−1Γ(h,Γ(h)) +Bhq−2Γ(h)2

]
dµ

where 
A =

1

n− 1

(
3q

2
− θ(n+ 2)

)
,

B =
q(q − 1)

n− 1
− θ2 − 2θ

q − 1

n− 1
.
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Choosing θ so that A = 0, i.e. θ = 3q
2(n+2) , we find that∫ [

2fqΓ2(h) + qhq−2Γ(h)2
]
dµ ≥ 2ρn

n− 1

∫
hqΓ(h)dµ+ α

∫
hq−2Γ(h)2dµ,

with

α = 2B + q =
q

2(n+ 2)2
(q(4n− 1) + 2n(n+ 2))

=
1

2(n+ 2)2

(
2− p
p− 1

)(
2− p
p− 1

(4n− 1) + 2n(n+ 2)

)
Remembering that q ≥ 0, this constant α turns out to be nonnegative for the following range of
parameters {

n ≥ d
q ≥ 0

or

{
n < −2

q ∈ [0, q∗]
with q∗ =

2n(n+ 2)

1− 4n
,

or equivalently, in terms of the exponent p,{
n ≥ d
p ∈ (1, 2]

or

{
n < −2

p ∈ [p∗, 2]
with p∗ = 1 +

1− 4n

2n2 + 1
,

Whenever α ≥ 0, we may, at last, compare Λ′′ to Λ′. Indeed, we find that

Λ′′(t) ≥ − 2ρn

n− 1
Λ′(t),

which proves the claimed Bp
(
n−1
ρn

)
inequality when integrated twice.

To prove this theorem, we used the nonnegativity of a specific term in a differential inequality,
but in fact, we can do a little bit better and compare it to the other terms, in order to prove a
refined version of the Beckner inequalities we are considering.

Definition 3.17. The Markov triple (M,Γ, µ) is said to satisfy a refined Beckner inequality
B∗p(C, θ) with parameter p ∈ (1, 2] and constants C > 0 and θ ≥ 0 if, whenever θ 6= 1,

p

p− 1

(
1

1− θ

)(∫
f2dµ−

(∫
f2/pdµ

)(1−θ)p(∫
f2dµ

)θ)
≤ 2C

∫
Γ(f)dµ

for all smooth functions f , and, when θ = 1,

p

p− 1

(∫
f2dµ

)
log

( ∫
f2dµ(∫
f2/pdµ

)p
)
≤ 2C

∫
Γ(f)dµ.

With this definition, Bp(C) is the same as B∗p(C, 0). The inequality given for θ = 1 is simply
the limit of the other inequality when θ → 1. This indeed corresponds to an improved version of
the Beckner inequality, because for all x, y > 0 and θ ∈ R+\{1},

x− y1−θxθ

1− θ
≥ x− y,

and more generally, B∗p(C, θ) implies B∗p(C, θ′) for all θ′ ∈ [0, θ]. Such improvements have been
shown in [AD05, BG10] under the CD(ρ,∞) condition. The limit case, that is, for the usual
entropy, is proposed in [BGL14, Thm. 6.8.1].
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Theorem 3.18 (Improved Beckner inequalities). Under the same assumptions of in Theorem
3.16, the inequality B∗p

(
n−1
ρn , θ

)
is satisfied for the same range of parameter p, and for θ given

by

θ =
1

2(n+ 2)2

(
p

p− 1

)(
2− p
p− 1

)(
2− p
p− 1

(4n− 1) + 2n(n+ 2)

)
.

Proof. Coming back to the proof of theorem 3.16, we have that∫ [
2fqΓ2(h) + qhq−2Γ(h)2

]
dµ ≥ 2ρn

n− 1

∫
hqΓ(h)dµ+ α

∫
hq−2Γ(h)2dµ,

or, in terms of Λ,

Λ′′(t) ≥ − 2ρn

n− 1
Λ′(t) + α

p

p− 1

∫
hq−2Γ(h)2dµ.

Invoking Jensen’s inequality, we find that∫
hq−2Γ(h)2dµ ≥

(∫
hqΓ(h)dµ

)2∫
hq+2dµ

=

(
p− 1

p

)2
Λ′(t)2

Λ(t)
,

so that

Λ′′(t) ≥ − 2ρn

n− 1
Λ′(t) + α

p

p− 1

Λ′(t)2

Λ(t)
,

just like we found in remark 3.11. Writing θ = α p
p−1 , we may now integrate this inequality, to

find that
−Λ′(t)

Λ(t)θ
≤ −Λ′(0)

Λ(0)θ
exp

(
− 2ρn

n− 1
t

)
,

which, integrated once more between 0 and +∞, leads to the claimed inequality.

Remark 3.19. As it turns out, the operator L from last section does not verify a good enough
CD(ρ, n) condition. The best constant c(β−1) only arises using an integrated CD(ρ, n) criterion.
To see this, we can use the following result from [Bak94]: the operator L = ∆g + Γ(V, .), defined
on (M, g), satisfies a CD(ρ, n) condition if, and only if,

n− d
n

(
Ricg −∇2V − ρg

)
≥ 1

n
∇V ⊗∇V,

this tensorial reformulation being valid for any ρ ∈ R and n 6∈ [0, d]. As stated in the proof
to theorem 3.6, the operator Lf = ϕLf − (β − 1)Γ(ϕ, f) on (M, g) is related to a Laplace-
Beltrami operator through the conformal transformation with conformal factor ϕ−1. Thus,
writing L = ∆g + Γ∆g (V , .), for some explicit function V , we find a somewhat easier to verify
criterion for the CD(ρ, n) condition in (M, g):

Ricg +(β − 1)
∇2ϕ

ϕ
+

(
2− d− (2β − 1)2

n− d

)
∇ϕ⊗∇ϕ

4ϕ2
+

(
∆ϕ

2ϕ
− 2β

Γ(ϕ)

4ϕ2
− ρ

ϕ

)
g ≥ 0. (3.20)

We leave it to the courageous to verify that indeed, even in the case where everything is nice
and explicit, for instance for ϕ(x) = 1 + |x|2, there exists no couple (ρ, n) ∈ R∗+× (R\[0, d]) such
that inequality (3.20) is verified and

ρn

n− 1
= c(β − 1),

making theorem 3.6 truly an integrated CD(ρ, n) criterion result.
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3.5 Results on the real line

In dimension d = 1, simplifications happen, so that we are able to do calculations directly. All
manifolds of dimension 1 are conformal to (R, 1), and even though the study of a generic manifold
(R, g) does not reduce exactly to the study of (R, 1), the calculations are similar, and so we will
only consider the Lebesgue measure λ for the reference measure. Following the work in section
3.3, assume ϕ is a C2, positive, convex function such that

ϕ′′ ≥ c

for some constant c > 0. Fix β ∈ R such that ϕ−β is in L1(R, λ). Then, we find the following
result version of the Poincaré inequality, for the probability measure µϕ,β = Zϕ,βϕ

−βλ

Theorem 3.20. Fix a real number β > 1. Then for all smooth bounded functions f ,∫
f2dµϕ,β −

(∫
fdµϕ,β

)2

≤ 1

c(β − 1)

∫
(f ′)2ϕdµϕ,β . (3.21)

For β > 2, this is in fact theorem 3.6, so this theorem is an extension to smaller exponants β.

Proof. The idea is to apply Theorem 3.16 to the special case of the operator L defined by

Lf = ϕf ′′ − (β − 1)ϕ′f ′,

after proving it satisfies a CD(ρ, n) condition with negative dimension. Since we are working
in dimension 1, expliciting the CD(ρ, n) is not too hard, and that is just what we do. Indeed,
straightforward computations yield

Γ2(f) =
1

2
L(Γ(f))− Γ(f, Lf)

=
1

2

(
(2β − 1)ϕϕ′′ + (1− β)(ϕ′)2

)
(f ′)2 + ϕϕ′f ′f ′′ + ϕ2(f ′′)2,

so that, given ρ ≥ 0 and n ∈ R\[0, 1],

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2

for all smooth functions f if, and only if,

A(f ′)2 +Bf ′f ′′ + C(f ′′)2 ≥ 0

for all f , where 

A =
1

2

(
(2β − 1)ϕϕ′′ + (1− β)(ϕ′)2

)
− ρϕ− 1

n
(1− β)2(ϕ′)2,

B =
1

n
(n+ 2β − 2)ϕϕ′,

C =

(
1− 1

n

)
ϕ2.

since C ≥ 0, this is in turn equivalent to B2 − 4AC ≤ 0, which, after simplifications, boils down
to the condition

−
(
β − 1

2

)(
1

n− 1

(
β − 1

2

)
+

1

2

)
(ϕ′)2

ϕ
+

(
β − 1

2

)
ϕ′′ − ρ ≥ 0. (3.22)
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For n = 2(1− β), the first term in the above inequality disappears and the condition becomes(
β − 1

2

)
ϕ′′ − ρ ≥ 0,

which is clearly true for ρ = c
(
β − 1

2

)
, which proves that L satisfies the CD(c

(
β − 1

2

)
, 2(1− β))

condition. We may now apply the theorem 3.15 to conclude that the Poincaré inequality is valid
with constant

n− 1

ρn
=

1− 2β

c(1− β)(2β − 1)
=

1

c(β − 1)
,

which is the claimed result.

This proof proves more than just the Poincaré inequality, since theorem 3.16 provides a range
of exponants for which the Beckner inequality holds, but this is only true when n < −2, which
corresponds to β > 2. As far as Beckner inequalities go, this result is exactly the same as the
one in section 3.3, and as such only constitutes an example of application of the results in section
3.4. The interest, however, lies in the fact that we extend the range of β for which the Poincaré
inequality is valid.

As it turns out, this inequality is optimal for β ≥ 3/2, but it is not optimal anymore for
β ∈ [1, 3/2), as proved in [BJM16] for the function ϕ(x) = 1 + x2. In fact, they find that
inequality (3.21) is valid for β ∈ (1/2, 3/2], and the optimal constant in that range changes from
(2(β − 1))−1 to (β − 1/2)−2. It might be worth noting that the method presented in theorem
3.20 actually works for the full range of β, as summed up in the following proposition

Proposition 3.21. Let ϕ : x 7→ 1 + x2. Fix a real number β > 1
2 . Then for all smooth bounded

functions f , ∫
f2dµϕ,β −

(∫
fdµϕ,β

)2

≤ 1

Cβ

∫
(f ′)2ϕdµϕ,β , (3.23)

where

Cβ =


2(β − 1)if β ≥ 3

2
,(

β − 1

2

)2

if β ∈
(

1

2
,

3

2

)
.

(3.24)

Proof. The proof builds on the proof for theorem 3.20, using the explicit form of ϕ. The condition
(3.22) becomes

−(2β − 1)

(
1

n− 1
(2β − 1) + 1

)
x2

1 + x2
+ (2β − 1)− ρ ≥ 0,

for all x ∈ R, or, equivalently,

ρ ≤ 2β − 1 and − (2β − 1)2

n− 1
− ρ ≥ 0.

Restricting our study to nonnegative curvatures, we thus prove that the condition CD(ρ, n) (with
ρ > 0) is satisfied if, and only if,

0 < ρ ≤ 2β − 1 and 0 < ρ(1− n) ≤ (2β − 1)2 (and n 6∈ [0, 1]).

We are looking, for a fixed β > 1/2, for the parameters (ρ, n) satisfying those criteria that lead
to the best possible value of ρn/(n− 1).
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Assuming (ρ, n) is such a couple, since n/(n − 1) is decreasing on R∗−, it is necessary that
ρ(1 − n) = (2β − 1)2, which then implies that ρ < 2(β − 1)2. We thus reduce the problem to
finding the maximum of the function

ρn

n− 1
= ρ− ρ2

(2β − 1)2

under the constraints 0 < ρ < max(2β − 1, (2β − 1)2). An easy study yields that this maximum
is Cβ as defined in equation (3.24). In other terms, the operator Lf = (1 + x2)f ′′ + (1− β)2xf ′

satisfies

• CD(2β − 1, 2(1− β)) when β ≥ 3/2,

• CD((2β − 1)2/2,−1) when β ∈ (1/2, 3/2),

and this leads to the proposition.

Remark 3.22. This method is applicable to other functions than just x 7→ 1+x2. For instance, for
the function ϕ : x 7→ 1+x2 +x4, one finds that the condition CD(2β−1, 4β−1) is satisfied, and
it is the one that leads to the best possible ρn/(n− 1) constant for the corresponding operator.



Chapter 4

Entropy flows and functional inequalities in
convex sets

Abstract

We revisit entropy methods to prove new sharp trace logarithmic Sobolev and sharp Gagliardo-
Nirenberg-Sobolev inequalities on the half space, with a focus on the entropy inequality itself
and not the actual flow, allowing for somewhat robust and self-contained proofs.
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4.1 Introduction

4.1.1 Brief introduction of the ideas

Sobolev inequalities have proved an important tool in the study of partial differential equations,
notably in establishing existence results. More recently, they have been very fruitfully used in
the study of the long term behavior of certain equations. For instance, the logarithmic Sobolev
inequality can be used to establish a rate of convergence of the heat flow towards its mean on
torus, or towards the self-similar profile on the Euclidean space.

These ideas and results fall in the general context of entropy methods [Jü16]. Boltzmann
defined his entropy in 1872 by Ent(u) =

∫
u log(u)dx for, say, positive functions defined on Rd.

73
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Now, if u is the solution of the heat equation, ∂tu = ∆u, differentiating the entropy yields

d

dt
Ent(u) =

∫
(1 + log(u))∆udx = −

∫
‖∇u‖2

u
dx,

which implies two important things: the first one is that the entropy is nonincreasing along
the flow, conveying the idea that the physical transformation u is describing is irreversible.
The second one, maybe more profound, is that the logarithmic Sobolev inequality is exactly
an equality relating the entropy and its derivative, which, after integration, implies exponential
decay of the entropy with respect to time. This relationship between the heat equation and the
entropy is no coincidence. It turns out that the space of probability measures, when equipped
with the Wasserstein distance, can be formally seen as a Riemannian manifold, and in that
setting, the heat equation is exactly the gradient flow of Boltzmann’s entropy. This approach
is mainly due to Felix Otto [Ott01], and the study of gradient flows on metric spaces has since
been made rigorous [AGS08]. See also Filippo Santambrogio’s survey on this topic [San17].

Somewhat recently, Manuel del Pino and Jean Dolbeault observed a similar result for the
Gagliardo-Nirenberg-Sobolev (GNS) inequalities [dPD99, dPD02]. They may be rewritten in
a way that involves both an entropy functional, different than Boltzmann’s, and its derivative
along a particular mass-preserving flow.

Theorem 4.1 ([dPD02, Corollary 13]). Let d ≥ 3, and 1 < p < d
d−2 . Then, the sharp Gagliardo-

Nirenberg-Sobolev inequality

∀w ∈ C∞c (Rd), ‖w‖2p ≤ C‖∇w‖
θ
2‖w‖

1−θ
1+p, (4.1)

where θ ∈ [0, 1] is fixed by the parameters, is equivalent to

∀u ∈ C∞c (Rd) s.t. ‖u‖1 = ‖v‖1, F(u)−F(v) ≤ 1

2

∫
Rd
u
∥∥x−∇(uα−1)

∥∥2
dx, (4.2)

where α = (p+ 1)/(2p) < 1, and

F(u) =

∫
Rd

[
−u

α

α
+ u

(
1 +
‖x‖
2

2
)]

dx and v(x) =

(
1 +
‖x‖
2

2
)1/(α−1)

.

Again, the right-hand side in inequality (4.2) is exactly the derivative of the functional F
along a flow obtained, depending on the value of α, from the porous medium equation or the fast-
diffusion equation through a change of variables. The resulting exponential decay of the entropy
F may be finally used to prove decay in various Lp norms using a general Csiszár-Kullback-
Pinsker inequality [AMTU01]. Note even though F is not Boltzmann’s original entropy, we
still call it entropy, and we will use that word again throughout the chapter without a rigorous
definition. Loosely speaking, entropies will be Lyapunov functional related to specific flows, but
the important thing is that they are only a tool.

Logarithmic Sobolev and Gagliardo-Nirenberg-Sobolev inequalities are not the only ones that
may be seen as an inequality between the entropy and its derivative along a flow. Indeed,
Poincaré inequalities, and the so-called Beckner inequalities, interpolating inequalities between
the Poincaré inequality and the logarithmic Sobolev inequality, are all natural examples of this
[GZ19]. This motivates the study of the so-called generalized Sobolev inequalities.

While these generalized Sobolev inequalities may be used to study a particular flow, a striking
fact is that they turn out to be contained in the flow itself [CJM+01, Jü16]. Indeed, in the good



4.1. INTRODUCTION 75

tradition of the Bakry-Émery method [BE85], differentiating the entropy along the flow twice
instead of once, and then invoking geometric properties of the underlying space (the Bochner-
Lichnerowicz inequality, or a curvature-dimension condition) as well as the convexity inherent
of the entropy functional, allows to recover said generalized Sobolev inequality. This method
was succesfully used by Toscani for the logarithmic Sobolev inequality [Tos97], and subsequently
quite thoroughly investigated in [CJM+01].

In the case of linear flows, the existence of Markov semigroups makes the study simpler [BGL14],
but in the general case, one has to resort to use tools from the realm of partial differential equa-
tions, possibly making the study quite convoluted. In this chapter, we wish to revisit the method
for general entropies of the form

F(u) =

∫
H(u) + uV, (4.3)

where H is a convex function on R+, and V a strictly uniformly convex function on some
subdomain of Rd.
Remark 4.2. In equation (4.3) much like in the rest of the chapter, the integration against the
standard Lebesgue measure, or the (d− 1)-dimensional Hausdorff measure when integrating on
boundaries, will always be implied.

We try for the proofs to be as self-contained as possible, while also keeping the calculations
to a minimum. This is possible since we do not want to study the long-term behavior of the
various flows considered, and are only interested in proving generalized Sobolev inequalities.
Furthermore, we will, starting in section 4.2, use the same vocabulary that is used in [BGL14],
i.e. we will make use of the Carré du champ operator Γ and its iterated version, Γ2. This
choice is motivated by two reasons: the first one is because the main results are very similar in
nature with ones involving Markov semigroups. The second one is because it makes calculations
systematic, and also makes the curvature-dimension hypotheses appear clearly, allowing for easy
generalization of all the results to manifolds.

4.1.2 Model example: the Euclidean Sobolev inequality

Let us showcase the method with the study of a simple example which will serve as a guide
in the next sections: the proof of the sharp Sobolev inequality on Rd. Define the functions
H ∈ C∞(R∗+,R) and v ∈ C∞(Rd,R∗+) by

H(x) = −x1−1/d, and v(x) = C(1 + ‖x‖2)−d, (4.4)

where C > 0 has been chosen so that −H ′(v) = 1 + ‖x‖2. For smooth positive functions u, we
define the entropy

F(u) =

∫
Rd
H(u)− uH ′(v). (4.5)

Note that, since H is convex, F(u) ≥ F(v). Now choose a function u0 ∈ C∞(Rd,R∗+) such that∫
Rd u0 =

∫
Rd v, and consider the relative entropy

F(u | v) = F(u)−F(v)

along the flow
∂tu = −∇ ·

(
u∇(H ′(v)−H ′(u))

)
in R∗+ × Rd,

u(0, .) = u0 in Rd.
(4.6)
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The first derivative of the entropy is easily calculated using an integration by parts:

d

dt
F(u) =

∫
Rd
∂tu(H ′(u)−H ′(v))

=

∫
Rd
∇ · (u∇(H ′(v)−H ′(u)))(H ′(v)−H ′(u))

= −
∫
Rd
u‖∇(H ′(v)−H ′(u))‖2 ≤ 0.

Note that the flow (4.6) is the gradient flow of the entropy functional (4.5). The fact that the
derivative of the entropy takes such a nice form is a general fact of gradient flows [San17].The
calculations for the second derivative are slightly tricky, so we refer to the next section for the
full details, but using both the fact that ∇2H ′(v) = −2Id and that

∥∥∇2φ
∥∥2

HS
≥ 1

d (∆φ)2, we find
that

d2

dt2
F(u) ≥ −4

d

dt
F(u), (4.7)

which, if one recalls that the first derivative is nonpositive, proves that the entropy along the
flow has a strong convexity property which is really the core of the argument. Assuming that
the function u converges, when t goes to infinity, to the stationnary solution v, it is quite clear
that limt→+∞ F(u) = F(v), and limt→+∞ d

dtF(u) = 0. Now, integrating the second derivative
of the entropy between 0 and +∞ leads to

F(u0)− lim
t→+∞

F(u) = F(u0 | v) ≤ −1

4

d

dt
F(u)

∣∣∣∣
t=0

. (4.8)

Equation (4.8) is a special case of an entropy - entropy production inequality, to which we will
come back later. It is quite obviously optimal, since equality happens for u0 = v.

We may now rewrite equation (4.8) with the explicit quantities (4.4) to prove the sharp
Sobolev inequality on Rd: since −H ′(v) = 1 + ‖x‖2,∫

Rd
H(u0)−H(v)− (u0 − v)H ′(v) ≤ 1

4

∫
Rd
u0‖∇H ′(u0) + 2x‖2. (4.9)

Expanding the right-hand side, we have to deal with three different terms. First, notice that

1

4

∫
Rd
u0‖∇H ′(u0)‖2 =

(d− 1)2(d− 2)2

16d2

∫
Rd

∥∥∥∇u1/2−1/d
0

∥∥∥2

Next, the other square is ∫
Rd
u0‖x‖2 =

∫
Rd
u0(−H ′(v)− 1),

which simplifies with the left-hand side. Finally, the double product can be integrated by parts
once we notice, once again by homogeneity, that u0∇H ′(u0) = − 1

d∇H(u0):∫
Rd
u0∇H ′(u0) · x = −1

d

∫
Rd
∇H(u0) · x =

∫
Rd
H(u0),

and this also simplifies with the left-hand side. Since
∫
u0 =

∫
v, the equation we are left with is

C ≤
∫
Rd

∥∥∥∇u1/2−1/d
0

∥∥∥2

for some explicit positive constant C. Replacing u0 with f = u
1/2−1/d
0 , we recover Sobolev’s

inequality.
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4.1.3 Statement of the results

In this subsection, we state the main results of this chapter. Let us start by listing the hypotheses.
Let H be a strictly convex function from R+ to R such that H(0) = 0, and such that it

is smooth on R∗+. On R∗+, define the functions ψ = H ′, U(x) = xH ′(x) − H(x) and U2(x) =
xU ′(x)− U(x). In everything that follows, we shall make the following hypothesis:

Hypothesis A. Assume that U2 + 1
dU ≥ 0.

Fix a closed convex set Ω ⊂ Rd, and choose a positive integrable function v ∈ C∞(Ω) such
that

Hypothesis B. −∇2ψ(v) ≥ CId for some constant C > 0.

Theorem 4.3. Let H be a strictly convex function from R+ to R, such that H is smooth on
R∗+ and H(0) = 0, and define ψ = H ′. Fix a closed convex set Ω ⊂ Rd, and a smooth positive
function v : Ω→ R∗+. Under hypotheses A and B, for any positive function u ∈ C∞(Ω) such that∫

Ω
u =

∫
Ω
v, the following inequality holds∫

Ω

H(u)−H(v)− (u− v)ψ(v) ≤ 1

2C

∫
Ω

u‖∇(ψ(u)− ψ(v))‖2. (4.10)

This result may be seen as an immediate corollary of the (slightly) more general theorem that
follows, where we allow v to take the value zero. However, we choose to present the two theorems
separate, since theorem 4.3 feels a bit more natural, it being easy to relate to a gradient flow,
as will be seen in section 4.2. To formulate this more general version, we first need to define the
generalized inverse of a function.

Definition 4.4. Let ψ : R∗+ → R be a continuous strictly increasing function. Its generalized
inverse ψ−1∗ is given for x ∈ R by

ψ−1∗(x) =


ψ−1(x) if x ∈ (ψ(0+), ψ(+∞))

0 if x ≤ ψ(0+)

+∞ if x ≥ ψ(+∞).

(4.11)

Instead of considering a smooth function v, we instead look at the generalized inverse of
some convex function V , or, in other words, v = ψ−1∗(−V ). Note that v may very well be not
differentiable, even if H and V are smooth. Also, since we do not want the function v to take
the value +∞, as nothing would be integrable anymore. We thus replace hypothesis B by the
following

Hypothesis C . −V < ψ(+∞), and ∇2V ≥ CId for some constant C > 0.

Theorem 4.5. Let H be a strictly convex function from R+ to R, such that H is smooth on
R∗+ and H(0) = 0, and define ψ = H ′. Fix a closed convex set Ω ⊂ Rd, and a smooth function
V : Ω → R. Define v = ψ−1∗(−V ), where ψ−1∗ stands for the generalised inverse of ψ, as
defined in (4.11).

Under hypotheses A and C, for any positive function u ∈ C∞(Ω) such that
∫

Ω
u =

∫
Ω
v, the

following inequality holds∫
Ω

H(u)−H(v) + (u− v)V ≤ 1

2C

∫
Ω

u‖∇ψ(u) +∇V ‖2. (4.12)
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Remark 4.6. In this whole chapter, we consider functions with compact support in a convex
domain Ω, but Ω will always be closed, which means that the functions are not necessarily equal
to zero on ∂Ω. This is of special importance, because we use theorems 4.3 and 4.5 to prove trace
inequalities.

The proof to theorems 4.3 and 4.5 is rather long, and so will be split into two sections:
section 4.2 contains the somewhat formal but accurate calculations, and section 4.3 addresses all
the technicalities required to make the calculations rigorous. Among various Sobolev inequalities
that may be proved using these results, two are, up to our knowledge, new and of particular
interest.

Corollary 4.7 (Trace logarithmic Sobolev inequality). For all h ∈ R, and for all positive
function u ∈ C∞(Rd+) such that

∫
Rd+
u = 1, the following inequality stands

∫
Rd+
u log u ≤ d

2
log

(
1

2πde

∫
Rd+

‖∇u‖
u

2
)
− log γ(Rd+he)− h

(∫
∂Rd+

u

)(
1

d

∫
Rd+

‖∇u‖
u

2
)
, (4.13)

where γ stands for the standard Gaussian probability measure. Furthermore, there is equality
when u = Ch exp

(
− ‖x+ he‖2

)
, where Ch is chosen such that

∫
Rd+
u = 1.

Note that for h = 0, this is the standard optimal logarithmic Sobolev inequality on the half
space. Interestingly, the parameter h can be chosen either positive or negative, allowing the trace
term to be used as an upper or a lower bound.

Corollary 4.8 (Concave GNS inequality). Let α > 1. For all functions f ∈ C∞(Rd+), the
following inequality stands

‖f‖2α/(2α−1) ≤ Cα‖∇f‖
θ
2‖f‖

1−θ
2/(2α−1), (4.14)

where

θ =

(
1− 1

d(α− 1) + 1

)(
1− 1

2α

)
.

Furthermore, there is equality when f =
(
1 − ‖x‖2

)1/(α−1)

+
, up to multiplication by a constant,

rescaling, and translation by a vector in Rd−1 × {0}.

This result is actually a special case of the more general trace inequality (4.29) that we will
prove in section 4.2.3.

4.2 Formal proof

4.2.1 Some words on Γ-calculus

As stated in the introduction, we choose in this chapter to stick to the Gamma calculus for-
malism (see [BGL14]) even though we do not study Markov semigroups. Let us very briefly
introduce some notions here, which, in this particular case, are tied to the standard Laplacian
∆ =

∑d
i=1

∂2

∂x2
i
, but may very well be used with other diffusion operators, such as the Laplace-

Beltrami operator on manifolds.
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Definition 4.9. The carré du champ operator is the symmetric bilinear map from C∞(Rd) ×
C∞(Rd) onto C∞(Rd) defined by

Γ(a, b) =
1

2
(∆(ab)− a∆b− b∆a) = ∇a · ∇b.

Its iterated version is defined by

Γ2(a, b) =
1

2
(∆(Γ(a, b))− Γ(a,∆b)− Γ(b,∆a))

= tr((∇2a)t∇2b).

Out of convenience, we will use the same notation for the bilinear maps and their respective
quadratic maps, i.e. Γ(a) = Γ(a, a) and Γ2(a) = Γ2(a, a).

With this formalism, the Hessian may be written in the following way: if f, g, h are smooth
functions, then

∇2f(∇g,∇h) =
1

2
(Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ(g, h))). (4.15)

A quick proof of this fact on manifolds can be found in [GZ19, Lemma 2.3].

Remark 4.10. The standard Laplacian on Rd satisfies a CD(0, d) condition, or in other words

Γ2(a) ≥ 1

d
(∆a)2 (4.16)

for all smooth functions a. This is nothing else than a Cauchy-Schwarz inequality, or a special
case of the Bochner-Lichnerowicz inequality [BGL14, Theorem C.3.3]

Remark 4.11. In this chapter, we will consider functions defined on a closed convex subset
Ω ⊂ Rd. The definition of Γ, Γ2 trivially generalizes to such subsets. The major downside of
using the Γ formalism is that the theory was not developped for functions taking nonzero values
on the boundary of the domain, so instead of the usual neat integration by parts formula, we
will have to use one adapted to our setting:∫

Ω

Γ(a, b) = −
∫

Ω

b∆a+

∫
∂Ω

b∂νa

= −
∫

Ω

a∆b+

∫
∂Ω

a∂νb,

where ∂ν stands for the derivative along the outer normal vector.

4.2.2 Setting of the flow

In this subsection, we assume that every function we manipulate is nice and smooth, and we
rigorously prove a generalized version of inequality (4.7), theorem 4.14, which is the key leading
to theorem 4.3. We refer to section 4.3 for the technical study of the flow.

Fix some closed convex set Ω ∈ Rd, and some strictly convex smooth function H : R∗+ → R,
and define ψ = H ′. Let v ∈ C∞(Ω,R∗+) be a function such that

−∇2ψ(v) ≥ CId (4.17)

for some positive constant C.
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Remark 4.12. Note carefully that we assume here v to be positive, which is only true in theo-
rem 4.3. The rigorous proof of theorem 4.5 will wait until section 4.3.
Remark 4.13. Again, since Ω is closed, v is allowed to be nonzero at the boundary ∂Ω. This is
important, since the typical example for function v is, just like in subsection 4.1.2, ψ−1(a−‖x‖2),
for some a ∈ R. Note that this inverse is not always well defined, and more generally, a positive
function satisfying (4.17) might not exist. We will come back to this in section 4.3, as it will be
of particular importance in the proof of theorem 4.5.

We consider the generalized entropy F defined by

F(u) =

∫
Ω

H(u)− uψ(v), (4.18)

for positive smooth functions u. Since H is convex, F(u) ≥ F(v) for any function u. The idea
in this section is to consider the entropy along the flow of this very entropy, namely

∂tu = −∇ · (u∇φ) in R∗+ × Ω (4.19a)
∂νφ = 0 in R∗+ × ∂Ω (4.19b)
u(0, .) = u0 in Ω. (4.19c)

where u0 ∈ C∞c (Ω) is some positive initial data such that
∫

Ω
u0 =

∫
Ω
v, and

φ = ψ(v)− ψ(u). (4.20)

Equation (4.19a) is a generalized Fokker-Planck equation: indeed, whenever ψ = log and v is
the standard Gaussian, it is exactly a rewriting of the standard Fokker-Planck equation. We
leave the technical study of this equation to section 4.3, and assume for now that the solution
to this problem not only exists at all times, is unique, but also that it is positive and smooth
(at least smooth enough to do the calculations we are about to do, say C1 with respect to time
and C3 with respect to space). As a first remark, we see that the L1 norm is preserved: using an
integration by parts,

∂t

∫
Ω

u = −
∫

Ω

∇ · (u∇φ)

= −
∫
∂Ω

u∂νφ = 0.

Now, consider the entropy along the flow, which we write for brievity Λ(t) = F(u(t, .)) for t ≥ 0.
Differentiating the entropy with respect to time, we find, using an integration by parts,

Λ′(t) =

∫
Ω

∂tu(ψ(u)− ψ(v))

=

∫
Ω

∇ · (u∇φ)φ = −
∫

Ω

uΓ(φ) =: −I(u),

the boundary term being zero due to the Neumann boundary condition. The reason behind
the choice of the flow should now appear more clearly: the derivative of the entropy is, up to
the sign, what is sometimes called the entropy creation (or the generalized Fischer information)
and written I(u). More importantly, this shows that Λ′ is nonpositive. Now, since the entropy
decreases along the flow, and since v is the only global minimum of F that has the same mass
as u0,it is reasonable to expect u to converge towards v in some sense as t goes to infinity, so we
also assume that limt→+∞ F(u) = F(v). In the good tradition of the Bakry-Émery method, we
may differentiate the entropy once more to find the following proposition.
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Proposition 4.14. The second derivative of the entropy along the flow of (4.19) is given by

Λ′′(t) = 2

∫
Ω

−∇2ψ(v)(∇φ,∇φ)u+ (∆φ)2U2(u) + Γ2(φ)U(u)−
∫
∂Ω

∂νΓ(φ)U(u), (4.21)

where the functions U and U2 are given by

U(x) = xH ′(x)−H(x), and U2(x) = xU ′(x)− U(x), x ∈ R∗+ (4.22)

Proof. Recall that Λ′(t) = −
∫

Ω
uΓ(φ). Let us differentiate this expression once more

Λ′′(t) = −
∫

Ω

(2uΓ(φ, ∂tφ) + ∂tuΓ(φ))

= −2

∫
Ω

Γ(φ, ∂tφ)u+

∫
Ω

∇ · (u∇φ)Γ(φ)

= −2

∫
Ω

Γ

(
φ, ∂tφ+

1

2
Γ(φ)

)
u+

∫
∂Ω

uΓ(φ)∂νφ.

The boundary term vanishes under the boundary condition (4.19b). Differentiating φ = ψ(v)−
ψ(u) with respect to time,

∂tφ+
1

2
Γ(φ) = ∇ · (u∇φ)ψ′(u) +

1

2
Γ(φ)

= Γ(ψ(u), φ) +
1

2
Γ(φ) + U ′(u)∆φ

= Γ(ψ(v), φ)− 1

2
Γ(φ) + U ′(u)∆φ.

Now, on the one hand, applying equation (4.15) with f = ψ(v), g = h = φ, we find

−2Γ

(
φ,Γ(ψ(v), φ)− 1

2
Γ(φ)

)
u = −2∇2ψ(v)(∇φ,∇φ)u− Γ

(
ψ(v),Γ(φ)

)
u+ Γ

(
φ,Γ(φ)

)
u

= −2∇2ψ(v)(∇φ,∇φ)u− Γ
(
U(u),Γ(φ)

)
,

On the other hand,

Γ(φ,U ′(u)∆φ)u = Γ(φ,∆φ)U ′(u)u+ ∆φΓ(φ,U ′(u))u

= Γ(φ,∆φ)U2(u)) + Γ(φ,∆φ)U(u) + ∆φΓ(φ,U2(u))

= Γ(φ,U2(u)∆φ) + Γ(φ,∆φ)U(u).

We may now use integration by parts to find that

Λ′′(t) = −2

∫
Ω

∇2ψ(v)(∇φ,∇φ)u+

∫
Ω

U(u)∆Γ(φ)−
∫
∂Ω

∂νΓ(φ)U(u)

+ 2

∫
Ω

(∆φ)2U2(u)− 2

∫
∂Ω

U2(u)∆φ∂νφ− 2

∫
Ω

Γ(φ,∆φ)U(u), (4.23)

which concludes the proof, because Γ2(φ) = 1
2∆Γ(φ)−Γ(φ,∆φ), and because the second bound-

ary term is zero.
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• Now, differentiating the boundary condition (4.19b), and multiplying by ∇φ, we find that

0 = ∇2φ(∇φ, ν) +∇ν(∇φ,∇φ) =
1

2
∂νΓ(φ) +∇ν(∇φ,∇φ), on ∂Ω

which, since Ω is convex, implies that ∂νΓ(φ) is nonpositive.
• By convexity, and since H(0) = 0, we know that U ≥ 0, so that the boundary term is

nonpositive.
• Next, we may use the fact that the Laplacian on Rd satisfies the CD(0, d) curvature-

dimension condition (4.16), which implies that

(∆φ)2U2(u) + Γ2(φ)U(u) ≥ (∆φ)2

(
U2(u) +

1

d
U(u)

)
.

Assume that this last term is nonnegative, and recall that we chose v so that −∇2ψ(v) ≥ CI, so
we may now claim that

Λ′′(t) ≥ 2C

∫
uΓ(φ) = −2CΛ′(t). (4.24)

With this inequality, we are now able to prove the following theorem:

Theorem 4.15. For all u0 ∈ C∞c (Ω) such that
∫

Ω
u0 =

∫
Ω
v, the following inequality stands:

F(u0)−F(v) ≤ 1

2C
I(u0). (4.25)

Proof. The work is essentially done with proposition 4.14, inequality (4.24) being the heart of
the now classical Bakry-Émery method. Integrating inequality (4.24) between 0 and t, we find
that

−Λ′(t) ≤ −Λ′(0)e−2Ct

and then once again, between t = 0 and t = +∞, yields

Λ(0)− lim
t→+∞

Λ(t) ≤ − 1

2C
Λ′(0).

Now, recall that Λ′(0) = −I(u0), and further assume that limt→+∞ F(u) = F(v) to conclude.

The assumption of convergence we made on the entropy will be rigorously proved in sec-
tion 4.3. Nevertheless, we insist that it is a behavior naturally expected: indeed, the derivative
of the entropy is strictly negative whenever ∇φ 6= 0, and u = v is the only function verifying
both ∇φ = 0 and

∫
u =

∫
v, so mass preservation must imply this convergence.

Remark 4.16. Even though we fixed the value of H at 0, theorem 4.15 is invariant under summa-
tion of H with a constant: if it is true for H, it remains true for H +C, where C ∈ R. However,
while ψ is invariant under this operation, U is not, and becomes U−C. This invariance property
is recovered in equation (4.21) with the help formula

2

(∫
Ω

Γ2(φ)− (∆φ)2

)
−
∫
∂Ω

∂νΓ(φ) = 0. (4.26)
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4.2.3 Equivalent formulations of the entropy inequality

As has already been seen in subsection 4.1.2, inequality (4.25) is completely equivalent to
Sobolev’s inequality when Ω = Rd, and with

H(x) = −x1−1/d, V (x) = 1 + ‖x‖2,

ψ(x) = H ′(x) = −d− 1

d
x−1/d, v(x) = ψ−1(−V ) =

(
d− 1

d

(
1 + ‖x‖2

))−d
.

The Sobolev inequality being a limit case of the GNS inequality, it turns out that just changing
the exponant in the definition of H leads to the whole family. Indeed, inequality (4.25) with
H(x) = −xα/α for some α ∈

(
1− 1

d , 1
)
readily implies the GNS inequality family mentioned in

[dPD02],with the help of proposition 4.1. The case H(x) = xα for α > 1 is also considered in
[dPD02], and may be proved just the same with theorem 4.5.

It is worth noting that the choice Ω = Rd+ = Rd−1 × R+ and V (x) = a + ‖x‖2 implies that
the normal derivative of V on ∂Ω is ∂νV (x) = 2x · ν = 0. This simple but important fact, as
will be made clearer in the proof of theorem 4.19, may then be used to prove sharp GNS or
logarithmic Sobolev inequalities on Rd+, following the exact same calculations as for the whole
Euclidean space case. See for instance [BCEF+17].

Following an idea in [Naz06], we may choose V to be V (x) = a + ‖x+ e‖2, where e is a
constant vector in Rd. Bruno Nazaret succesfully used this idea to recover the sharp Sobolev
inequality on the half space Rd+, and has later been used to prove trace GNS inequalities on
the half-space in [BCEF+17], and on convex domains in [Zug19]. Again, it proves fruitful here,
where theorem 4.3 leads to the same inequalities as those found in those articles in the p = 2
case. We will not prove them here, as the purpose of this chapter is not to be exhaustive, but
will instead focus on two new inequalities, which proofs can be adapted for other inequalities.

We first turn to the proof of the trace logarithmic Sobolev inequality.

Proof of corollary 4.7. Fix h ∈ R, Ω = Rd+, and let e be the dth unit vector, which is orthogonal
to ∂Rd+. Let

H(x) = x log(x)− x, V (x) =
1

2
‖x+ he‖2,

ψ = H ′ = log, v(x) = ψ−1(βh − V ) =
1

Ch
e−

1
2‖x+he‖2 ,

where Ch =: exp(βh) has been chosen so that
∫
Rd+
v = 1, or in other words, Ch = (2π)d/2γ(Rd+he),

with γ being the standard Gaussian measure. With those choices, U(x) = x, U2(x) = 0, so
that theorem 4.3 applies with constant C = 1. For any nonnegative u ∈ C∞c (Rd+) such that∫
u =

∫
v = 1, the following inequality stands∫

Rd+
H(u)−H(v)− (u− v)ψ(v) ≤ 1

2

∫
Rd+
u‖∇ψ(u) +∇V ‖2.

Notice first that vψ(v)−H(v) = U(v) = v, so that we are left with∫
Ω

u log u− u log(v) ≤ 1

2

∫
Ω

‖∇u‖
u

2

+
1

2

∫
Ω

u‖∇V ‖2 +

∫
Ω

∇V · ∇u.
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Now, noticing that 1
2‖∇V ‖

2
= V = − log(Chv), the respective second terms on the right and

left-hand side simplify. We integrate by parts the last term to find∫
Rd+
u log u ≤ 1

2

∫
Rd+

‖∇u‖
u

2

− log(Ch)

∫
Rd+
u−

∫
Rd+
udiv(x+ he) + h

∫
∂Rd+

u∂ν(x+ he)

= −d− log(Ch) +
1

2

∫
Rd+

‖∇u‖
u

2

− h
∫
∂Rd+

u.

(4.27)

The inequality we thus get is already a form of logarithmic Sobolev inequality, but we may go
a little bit further to find a version that is similar to the standard inequalities. To do this, we
rescale the function u and optimize with respect to the parameter. Indeed, inequality (4.27)
stays true when replacing u by uλ = λdu(λ .), so, for all λ > 0, we find that∫

Rd+
u log u ≤ −d− log(Ch)− d log(λ) +

λ2

2

∫
Rd+

‖∇u‖
u

2

− hλ
∫
∂Rd+

u. (4.28)

Now, we may choose for λ the value that minimizes the right-hand side of the inequality, but the
resulting inequality is not pretty. Instead, we choose the λ that we would choose if h = 0, or,
in other words, if there was no trace term and we were trying to prove the standard inequality.
Hence, for

λ =

(
1

d

∫
Rd+

‖∇u‖
u

2
)− 1

2

,

inequality (4.28) turns into inequality (4.13) and corollary 4.7 is proved. Note that for u = v all
the inequalities are, in fact, equalities, which proves optimality.

Remark 4.17. Another version of a trace logarithmic Sobolev inequality has been found indepen-
dantly in [BCEF+17] using optimal transport and an improved Borell-Brascamp-Lieb inequality.
Remark 4.18. Note that while we studied the case of Ω = Rd+, the proof can immediately be
extended to convex cones, much like in [Zug19]. Writing Ω as the epigraph of the convex function
ϕ, the trace term would then become

∫
Rd−1 u(x, ϕ(x))dx.

Instead of proving corollary 4.8, we instead showcase the method in a slightly more general
case. In particular, the result showcases, just like for the logarithmic Sobolev inequality, the ease
with which trace inequalities may be recovered.

Theorem 4.19. Let α > 1. For all h ∈ R, and for all positive u ∈ C∞(Rd+) such that
∫
Rd+
u = 1,

the following inequality stands∫
Rd+
uα ≤

(
ah

∥∥∥∇uα−1/2
∥∥∥
L2(Rd+)

− hbh
∫
Rd+
uα

)∥∥∥∇uα−1/2
∥∥∥−1/2δ

L2(Rd+)
, (4.29)

where δ = d(α − 1) + 1, and ah and bh are explicit positive constants. Furthermore, there is
equality when u(x) =

(
(α− 1)(βh − ‖x+ he‖2)

)1/(α−1)

+
, where βh is a normalizing constant.

Proof. Fix α > 1, h ∈ R, Ω = Rd+, let e be the dth unit vector. Then, consider

H(x) =
xα

α(α− 1)
, V (x) = ‖x+ he‖2,

ψ(x) = H ′(x) =
xα−1

α− 1
, v(x) = ψ−1∗(βh − V ) =

(
(α− 1)(βh − ‖x+ he‖2)

)1/(α−1)

+
,
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where, again, βh has been chosen so that
∫
Rd+
v = 1. In that case, U(x) = (α − 1)H(x) and

U2(x) = (α− 1)2H(x) ≥ 0, so that, again, theorem 4.5 applies: for all nonnegative u ∈ C∞(Rd+)
such that

∫
u = 1, ∫

Rd+
H(u)−H(v) + (u− v)V ≤ 1

4

∫
Rd+
u‖∇ψ(u) +∇V ‖2.

Expanding both sides, then doing an integration by parts and simplifying, yields

A

∫
Rd+
uα ≤ B − h

∫
∂Rd+

uα +D

∫
Rd+

∥∥∥∇uα−1/2
∥∥∥2

,

where A, B and D are positive constants given by

A =
1

(α− 1)
+ d, B =

∫
Rd+
v
(
vα−1 − αβh

)
, D =

α

(2α− 1)2
.

This inequality holding for any function of unit mass, we may, just like in the proof of theorem
4.7, rescale it with a certain parameter. Replacing u by uλ = λdu(λ .), we find that

A

∫
Rd+
uα ≤ Bλ−δ+1 − h

λ

∫
∂Rd+

uα +Dλδ+1

∫
Rd+

∥∥∥∇uα−1/2
∥∥∥2

,

where δ = d(α− 1) + 1. Taking the minimum of that expression with respect to λ > 0 does not
result in an expression very legible, so we instead evaluate it in the argument of the minimum
corresponding to the case h = 0, which is

λ =

(
B(δ − 1)

D(δ + 1)
∫ ∥∥∇uα−1/2

∥∥2

) 1
2δ

,

thus leading to theorem 4.19. Writing f = uα−1/2 and letting h = 0 proves corollary 4.8.

Remark 4.20. Interestingly, trace GNS inequalities in the convex case (i.e. when α ∈ (1− 1/d, 1))
admit a nicer formulation. This is made possible in the calculations because the constant B
changes sign, and can then be absorbed by the gradient term using Young’s inequality, which
just so happens to maintain optimality [BCEF+17].

4.3 Study of the degenerate parabolic PDE

In this section, we fix some convex domain Ω ∈ Rd. Our goal is to show that the calculations
we did in section 4.2 are valid. In this context, we are only interested in proving the entropy
inequality (4.25), allowing us to make use of solutions to an approximated problem rather than
the nontrivial system (4.19). We propose a quick and (almost) self-contained proof of the entropy
inequality (4.25). However, the study of solutions to the full problem is both relevant and delicate,
and many open questions remain. We refer for instance to the work of [CJM+01].

Equations (4.19a) and (4.19b) are not only nonlinear, but also degenerate. Equation (4.19a)
may be written

∂tu = ∆U(u) + l.o.t,

where the function U is given by U(x) = xψ(x) −H(x), as introduced in section 4.2. We want
to modify the function U in order to have both a lower and an upper bound on the parabolicity,
so that the system falls in the scope of standard parabolic theory.
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To that effect, for ε > 0, we choose an approximation of U , written Uε, that coincides with
U in the range [ε, 1/ε]. To regain parabolicity, we want Uε to be strictly increasing and affine
outside of that range, but we also want it smooth, so we impose that Uε is affine in the range
R\
[
ε/2, ε−1 + ε

]
instead, as pictured on figure 4.1.

ε ε−10 x

U(ε)

U(ε−1)

Uε

U

Figure 4.1: Uε, an approximation of U .

From this choice of Uε, and from the fact that U ′(x) = xψ′(x), we may also define ψε and Hε

on R∗+, by ψε(x) =
∫ x
ε
U ′ε(t)
t dt+ψ(ε), Hε(x) = xψε(x)−Uε(x), so that they coincide respectively

with ψ and H on the interval [ε, 1/ε]. With this definition, ψε is equivalent to a log on (0, ε/2);
for this reason, we use the function Uε in the formulation of the desingularized problem, because
it is well-defined and smooth on the whole of R, which is needed if we want to directly apply the
classical parabolic theory.

Thus, consider the problem (4.19) in which we replace U with Uε

∂tu = ∆Uε(u)−∇ · (u∇ψε(v)) in R∗+ × Ω, (4.30a)
− ∂νUε(u) + u∂νψε(v) = 0 in R∗+ × ∂Ω, (4.30b)
u(0, .) = u0 in Ω. (4.30c)

4.3.1 Study of the desingularized problem

Theorem 4.21. Assume that Ω is smooth and bounded, and that u0 and v are smooth functions
on Ω such that u0 verifies the compatibility condition (4.30b). Then system (4.30) admits a
unique smooth solution on Ω× R.

This is the only classical result we invoke, and we will not prove it. Its proof can be found
in [LSU68, Theorem 7.4, p. 491]. Even though there exists versions of comparison principles
in [LSU68], we formulate our own here. Let us first define subsolutions and supersolutions.

Definition 4.22. Let u1 (resp. u2) be a smooth function defined on R+ ×Ω. We say that u1 is
a subsolution (u2 is a supersolution) of (4.30) if for all time t ≥ 0,{
∂tu1 ≤ ∆Uε(u1)−∇ · (u1∇ψε(v)) in Ω

−∂νUε(u1) + u1∂νψε(v) ≥ 0 in ∂Ω,
and

{
∂tu2 ≥ ∆Uε(u2)−∇ · (u2∇ψε(v)) in Ω

−∂νUε(u2) + u2∂νψε(v) ≤ 0 in ∂Ω.

(4.31)
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Remark 4.23. This definition and the following proposition are more general than needed, since
we will only consider actual solutions of the system, but it doesn’t require any additional work,
so we might as well prove it.

Proposition 4.24 (Comparison principle). If u1 is a subsolution and u2 is a supersolution to
(4.30) such that u1 ≤ u2 at time t = 0, then u1 ≤ u2 for all times t ≥ 0.

Proof. Let u1 and u2 be as in (4.31). Their time derivatives ∂tu1, ∂tu2 are continuous functions
on a compact with respect to the space variable, and thus bounded at all times, hence, by
domination, the following quantities are well-defined and equal:

∂t

∫
Ω

(u1 − u2)+ =

∫
∂t(u1 − u2)+.

Next, for m ∈ N∗, choose ρm to be a (non decreasing) C1 function approximating χR∗+ . For
example, consider ρm(x) = ρ(mx), where

ρ(x) =


0 if x ≤ 0

−2x3 + 3x2 if x ∈ (0, 1)

1 if x ≥ 1,

so that ‖ρ′m‖∞ = 3
2m. Using this approximation, we may write that

∂t

∫
Ω

(u1 − u2)+ = lim
m→+∞

∫
Ω

∂t(u1 − u2)ρm(Z), (4.32)

where Z can be any function such that Z(x) > 0 ⇐⇒ u1(x) > u2(x). We fix Z = Uε(u1) −
Uε(u2). Since the function Uε is strictly increasing on R, such a Z constitutes a valid choice for
equation (4.32). Using (4.31) and integrating by parts, we find∫

Ω

∂t(u1 − u2)ρm(Z) ≤
∫

Ω

(
∆Uε(u1)−∇ · (u1∇ψε(v))−∆Uε(u2) +∇ · (u2∇ψε(v))

)
ρm(Z)

≤
∫

Ω

(−∇Uε(u1) +∇Uε(u2) + (u1 − u2)∇ψε(v)) · (ρ′m(Z)∇Z)

=

∫
Ω

((u1 − u2)∇Z · ∇ψε(v)− Γ(Z))ρ′m(Z)

≤ 3

2
m

∫
{0<Z<1/m}

|u1 − u2|‖∇Z‖‖∇ψε(v)‖,

since 0 ≤ ρ′m ≤ 3m/2, and Γ(Z) ≥ 0. Finally, the mean value theorem applied to Uε yields

|u1 − u2| ≤
∥∥∥∥ 1

U ′ε

∥∥∥∥
∞
|Uε(u1)− Uε(u2)|,

which, applied to x ∈ {Z < 1/m}, is enough to take the limit and conclude that

lim
m→+∞

∫
Ω

∂t(u1 − u2)ρm(Z) ≤ 0,

thereby concluding the proof.
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Let us now look into positive functions. If u > 0, we then write φε = ψε(v)− ψε(u), and the
equation (4.30a) takes the form

∂tu = −∇ · (u∇φε),
allowing us to determine the positive stationary solutions. It is clear that v is one of them, and,
more generally, all functions u such that φε = cst, are such solutions, and, as it turns out, they
are the only ones. Indeed, if u is such a solution, testing equation (4.30a) against φε, and then
integrating by parts and using (4.30b), we find

0 = −
∫

Ω

φε∇ · (u∇φε)

=

∫
Ω

uΓ(φε).

Furthermore, notice that, by definition, ψε(x) = a log(x) + b for all x ∈ (0, ε/2), and also for all
x > ε−1 + ε, but with different constants. Therefore, ψε is actually a bijection between R∗+ and
R, and we may define, for any α ∈ R, the positive stationary solution

vα = ψ−1
ε (ψε(v) + α). (4.33)

These functions, being solutions, are both super- and subsolutions; and for any constant C > 0,
we can find α1 < α2 such that 0 < vα1

< C < vα2
everywhere in Ω, thus giving a priori L∞

bounds on positive solutions, as well as L−∞ bounds, both uniform in time.

4.3.2 Proof of the entropy inequality

We will now prove the entropy inequality (4.25) for the approximated entropy Fε. To that
effect, owing to theorem 4.21 we now know that the system (4.19) has a smooth solution, so that
proposition 4.14 is valid for the desingularized entropy flow. From there, three facts remain to
be shown to conclude the proof of theorem 4.15: we will prove that

1. −∇2ψε(v) ≥ CI;

2. everywhere in Ω,

Uε,2(u) +
1

d
Uε(u) =

(
1

d
− 1

)
Uε(u) + uU ′ε(u) ≥ 0; (4.34)

3. the entropy Fε(u) converges to Fε(v) when t→ +∞.

For the first point, we may assume that ε has been chosen so that ε ≤ v ≤ ε−1 everywhere in Ω.
This implies that ψε(v) = ψ(v), and trivially, ∇2ψε(v) ≤ −CI.

The second point boils down to the construction of Uε. We have assumed that U2(u) +
1
dU(u) ≥ 0, so inequality (4.34) is of course satisfied whenever ε < u < ε−1. We also made it
so that for all r < ε/2, Uε(r) = ar for some a > 0. Then Uε,2(r) = 0, which directly implies
that inequality (4.34) is satisfied in that range, and the same argument works for the range
r > ε+ ε−1. It thus suffices to show that inequality (4.34) is satisfied in the ranges (ε/2, ε) and(
ε−1, ε−1 + ε

)
. It turns out that the choice of the smooth connections can be made so that it

is true: to convince oneself of this fact, notice that it suffices to choose a smooth nonnegative
connection for the quantity Uε,2(u) + 1

dUε(u) on the interval (ε/2, ε) (and also on the interval
(ε−1, ε−1 + ε)) and then use the following identity to recover Uε(

1

d
− 1

)
Uε(x) + xU ′ε(x) = x2−1/d

(
x−1+1/dUε(x)

)′
,



4.3. STUDY OF THE DEGENERATE PARABOLIC PDE 89

which also guarantees that U ′ε > 0. Finally, we prove the following lemma:

Lemma 4.25. If
∫

Ω
u0 =

∫
Ω
v, then u converges towards v almost everywhere, and

lim
t→+∞

Fε(u) = Fε(v).

Proof. The comparison principle 4.24 ensures that there exists constants 0 < m < M such that
m ≤ u ≤M for all (x, t) ∈ Ω× R+. Recall the proof of theorem 4.15, we showed that

0 ≤ Iε(u) ≤ e−2CtIε(u0),

so it is clear that limt→+∞ Iε(u) = 0, which readily implies that limt→+∞‖∇φε‖2 = 0, since
Iε(u) =

∫
Ω
uΓ(φε) ≥ m

∫
Ω

Γ(φε) = m‖∇φε‖22. The fact that u is uniformly bounded on Ω× R+

implies that φε is, too. Thus, φε is uniformly bounded in H1(Ω), and we may extract a sequence
of real numbers (tk)k∈N such that φε|t=tk ⇀ φ∗ weakly in H1(Ω). By weak lower semicontinuity,
‖∇φ∗‖2 ≤ lim infk→+∞‖φε|t=tk‖2 = 0, so that φ∗ is in fact a constant.

Now, since u is also, in fact, bounded in H1(Ω), we may, without loss of generality, assume
that u|t=tk converges almost everywhere to some function u∗. By uniqueness of the limit,

φ∗ = ψ(v)− ψ(u∗),

so that u∗ is actually one of the positive stationary solutions of (4.19) defined in equation (4.33).
But the fact that the flow is mass-preserving, combined with the dominated convergence theorem,
implies that ∫

Ω

u∗ =

∫
Ω

u0 =

∫
Ω

v,

but the only stationary solution that has the same mass as v is v itself, so that u∗ = v. Indeed,

d

dα
vα =

1

ψ′ε ◦ ψ−1
ε (ψε(v) + α)

> 0.

Finally, we may conclude that u converges almost everywhere to v as t → +∞, and invoking,
once again, dominated convergence, limt→+∞ Fε(u) = Fε(v).

At this stage, we have proved the following: there exists ε0 > 0, depending only on v and Ω,
such that for all ε ∈ (0, ε0),

Fε(u0)−Fε(v) ≤ 1

2C
Iε(u0) (4.35)

for all u0 ∈ C∞c (Ω), provided that
∫

Ω
u0 =

∫
Ω
v and that u0 satisfies the approximated compatibil-

ity condition (4.30b). Now, fix some positive smooth function u0 satisfying the regular compati-
bility condition (4.19b), and that has the same mass as v, then fix any 0 < ε < min(ε0,min(u0)).
By construction, the approximated entropy of u0 is then the same as the regular entropy of u0,
and the same goes for the entropy production, so inequality (4.35) is valid, and is identical to
inequality (4.25).

4.3.3 Extension to convex domains and generic smooth positive functions

We have now proved that the entropy inequality

F(u0)−F(v) ≤ 1

2C
I(u0) (4.36)
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holds true for smooth and positive functions u0 defined on a compact, convex and smooth set, as
long as they verify the compatibility condition (4.19b), and that they have the same mass as the
function v. Working on the inequality (4.36) rather than the partial differential equation (4.19),
we may generalize this result by lifting the constraints.

Let us first extend the class of functions for which inequality (4.36) holds true. Let Ω ⊂ Rd
be compact, convex and smooth, and let u be a positive and smooth function defined on Ω. We
want to construct ũ = u + g, an approximation of u that verifies the compatibility condition
(4.19b): on ∂Ω,

∂ν(ψ(v)− ψ(ũ)) = 0

⇐⇒ ∂ν(g + u)ψ′(g + u) = ∂νψ(v),

and it is thus sufficient to find a function g, small in some sense, such that, on ∂Ω,

g = 0, (4.37)

∂νg =
∂νψ(v)

ψ′(u)
− ∂νu =

∇(ψ(v)− ψ(u))

ψ′(u)
· ν. (4.38)

In dimension 1, the construction is somewhat straightforward. Assume just for now that Ω = R+.
The problem reduces to finding a reasonably small function that is zero on ∂R+ = {0}, and that
has an assigned slope at that same point. We thus construct a function that looks like a small
ridge: choose η, defined on R+, such that it is smooth, has compact support in [0, 3], and is equal
to identity on [0, 1], like pictured on figure 4.2. Then, the function x 7→ Cδη(x/δ), where C is
the desired slope at zero, satisfies everything we need: its L∞ norm tends towards zero when
δ → 0, the L∞ norm of its derivative is bounded, and its support is included in [0, 3δ].

x0 1 3

1

Figure 4.2: A ridge function η.

Let us now return to more general Ω, and extend this construction. Note that since Ω is
smooth, its boundary admits a neighbordhood verifying the unique nearest point property (for a
short reference, see for instance [Foo84]). In other words, there exists an open neighbordhood U
of ∂Ω and a smooth function P : U → ∂Ω such that for all x ∈ U , d(x, ∂Ω) = ‖x− P (x)‖. This
function P is called the projection onto ∂Ω, it is smooth, and its gradient at x is orthogonal to
the tangent space at P (x). Thus, for all δ ∈ (0, δ0), with δ0 sufficiently small, the function

g(x) = δη(d(x, ∂Ω)/δ)

(
∂νψ(v)

ψ′(u)
− ∂νu

)
(P (x))

is well-defined, smooth, and satisfies both assumptions (4.37) and (4.38). Furthermore, writing
Cg =

(∫
Ω
u
)(∫

Ω
u+ g

)−1 and invoking the dominated convergence theorem, it is quite clear
that limδ→0 F(Cg(u+ g)) = F(u), and limδ→0 I(Cg(u+ g)) = I(u), and thus the compatibility
condition is lifted. Next, we want to further extend the result to more general domains. Let Ω
be convex and compact and u ∈ C∞c (Ω). The domain Ω may be approximated from within by
smooth convex sets:
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Lemma 4.26. For each ε > 0, there exists Ωε ⊂ Ω such that Ωε is smooth and convex, and
|Ω\Ωε| < ε.

Using this fact, for any ε > 0, inequality (4.36) holds for the restriction of Cεu|Ωε , where Cε is
the normalisation constant Cε =

(∫
Ω
u
)(∫

Ωε
u
)−1

. The dominated convergence theorem allows
to take the limit when ε → 0, proving inequality (4.36) for compact domains. We may finally
extend the result for unbounded domains by considering Ω ∩B(0, R), where Ω is assumed to be
closed and convex. Again, dominated convergence allows to take the limit R→ +∞, whence we
proved theorem 4.3 in its full generality.

Proof of the lemma. Let Ω ⊂ Rd be compact and convex. Fix the distance function dΩ : x 7→
d(x,Ω), and choose some smoothing kernel ρ : Rd → R+, such that ρ ∈ C∞c (Rd), and satisfiying∫
ρ = 1 and B1 ⊂ supp(ρ) ⊂ B2. Define, for δ > 0, ρδ = δ−dρ(./δ). The function dΩ ∗ ρδ is

smooth, and also convex since ρ ≥ 0 and Ω is convex. Now, notice that

{x ∈ Ω, d(x, ∂Ω) > 2δ} ⊂ {dΩ ∗ ρδ = 0} ⊂ {x ∈ Ω, d(x, ∂Ω) > δ}.

We now claim that there exists t0 > 0 such that {dΩ ∗ρδ < t0} ⊂ Ω. This is due to the continuity
of dΩ ∗ ρδ, and also the fact that Ω is compact. Now, by Sard’s theorem, there exists a t ∈ (0, t0)
such that {dΩ ∗ ρδ < t} is smooth, and convex since it is a sublevel set of a convex function, and

{x ∈ Ω, d(x, ∂Ω) > 2δ} ⊂ {dΩ ∗ ρδ < t} ⊂ Ω.

Finally, notice that {x ∈ Ω, d(x, ∂Ω) > 2δ}+ B2δ = Ω̊, and thus, Brunn-Minkowski’s inequality
allows us to conclude that we may have chosen δ small enough so that |Ω\{dΩ ∗ ρδ < t}| < ε,
which concludes the proof.

4.3.4 Generalized inverse and concave inequalities

In this subsection, we prove theorem 4.5. As mentioned in remark 4.13, positive functions v
satisfying −∇2ψ(v) ≥ CId might not alway exist. The natural example of when this is a problem
is the flow related to the porous medium equation: when H(x) = xα

α(α−1) , with α > 1, then ψ is

a one to one map from R+ onto itself, and for any choice of a ∈ R, the function x 7→ a − ‖x‖2
takes negative values. We would like to still make sense of this computation in that case.

Instead of fixing the function v, choose a function V ∈ C∞(Ω,R) such that its Hessian is
bounded below, ∇2V ≥ CId. While ψ−1(−V ) might not be well defined, we may consider,
for ε > 0, the function vε = ψ−1

ε (−V ). Recall that ψε behaves like a natural logarithm on
a neighbourhood of zero, as well as towards infinity, so that vε is well defined for all ε > 0.
Furthermore, vε ∈ C∞(Ω,R∗+). As ε goes to 0, vε converges to the so-called generalized inverse
of ψ, applied to −V , which we will write ψ−1∗:

• if ψ(0+) < −V < ψ(+∞), then it is clear that limε→0 ψ
−1
ε (−V ) = ψ−1(−V );

• if −V ≤ ψ(0+), then, in particular, −V < ψε(ε), and so 0 < ψ−1
ε (−V ) < ε, so that

limε→0 ψ
−1
ε (−V ) = 0;

• finally, if −V ≥ ψ(+∞), ψ−1
ε (−V ) > 1/ε, proving that limε→0 ψ

−1
ε (−V ) = +∞.

Let v = ψ−1∗(−V ) = limε→0 vε. Note that the function v is, in general, not even differentiable.
For example, in the case where H(x) = x2/2 and V (x) = 1 − ‖x‖2, the generalized inverse of
ψ(x) = x and the limit function v are given by

ψ−1∗(x) = x+, v(x) =
(

1− ‖x‖2
)

+
.
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We do not really know how to make sense of the case where v is not finite, so we further assume
that −V < ψ(+∞) everywhere.

We may now fix an ε > 0 and return to the previous subsections, where we replace the
function v by the function vε. The study of the partial differential equation, subsection 4.3.1
remains unchanged, and the conclusions are the same. As far as subsection 4.3.2, points 2. and
3. are unchanged too, and point 1. is trivial: −∇2ψε(vε) = ∇2V ≥ CId by hypothesis, and the
conclusion is still valid. If Ω is compact, convex and smooth, for all smooth positive functions
u0 satisfying both

∫
Ω
u0 =

∫
Ω
vε and the compatibility condition (4.30b),

Fε(u0)−Fε(vε) ≤
1

2C
Iε(u0).

Again, following section 4.3.3 we may lift the compatibility condition, as well as the smoothness
condition for Ω. We will tackle the boundedness only later, out of convenience. Let us write the
entropy inequality fully.∫

Ω

Hε(u0)−Hε(vε)− (u− vε)ψε(vε) ≤
1

2C

∫
Ω

u0‖∇ψε(u0)−∇ψε(vε)‖2. (4.39)

By construction, ψε(vε) = −V . Furthermore, for a fixed positive u0 ∈ C∞(Ω), we may choose
ε0 > 0 so that ε0 < u0 < 1/ε0, and equation (4.39) rewrites∫

Ω

H(u0)−Hε(vε) + (u− vε)V ≤
1

2C

∫
Ω

u0‖∇ψ(u0) +∇V ‖2. (4.40)

for any 0 < ε < ε0. We just need to pass to the limit to prove theorem 4.5. By Fatou’s lemma,∫
Ω

H(u0)− lim inf
ε→0

Hε(vε) + (u− v)V ≤ lim inf
ε→0

(∫
Ω

H(u0)−Hε(vε) + (u− vε)V
)

≤ 1

2C

∫
Ω

u0‖∇ψ(u0) +∇V ‖2,

so it suffices to show that lim infε→0Hε(vε) ≤ H(v). Let x ∈ Ω, we are faced with two cases,
since we assumed that v is finite everywhere.

• If −V (x) ∈ (ψ(0+), ψ(+∞)), then 0 < v(x) < +∞ and, since Hε coincides with H on the
interval [ε, 1/ε], it is clear that limε→0Hε(vε(x)) = H(v(x)).

• If −V (x) ≤ ψ(0+), then vε(x)→ 0, and since Hε(0) = 0,

Hε(vε(x)) =

∫ vε(x)

0

ψε(t)dt ≤ vε(x)ψε(vε(x)) = −vε(x)V (x),

so limε→0Hε(vε(x)) ≤ 0 = H(v(x)).

This concludes the proof of theorem 4.5. Notice that while we proved it for C∞ functions, it
makes sense for the function u0 = v even though it is not necessarily differentiable. Indeed,
on the interior of supp(v), v is smooth and ∇ψ(v) = −V . On the other hand, on the interior
of Ω\ supp(v), ψ(v) is still well defined, because v can only be zero when −V ≤ ψ(0+), which
means that ψ(0+) ∈ R, and we may conclude that v‖∇ψ(v) + V ‖2 = 0 on that set. In this sense,
inequality (4.12) is optimal, because both sides are equal to 0 when u0 = v.
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Remark 4.27. In the particular case of H(x) = xα

α(α−1) , we use generalized inverses only when
α > 1. It just so happens that in that case, the function U(x) = xα

α is convex, and thus U2 ≥ 0.
This implies that to get inequality (4.24) and ultimately to the entropy inequality theorem 4.3,
we only need a CD(0,∞) assumption, and not any more the stronger CD(0, d) assumption. This
does not matter so much in our case because we are only considering Rd, but it might prove
useful on manifolds.





Notations

‖ . ‖, ‖ . ‖∗ norm, dual norm; (2.16)
‖u‖Lp(Ω), ‖u‖p norm of the Lebesgue space Lp(Ω)

C∞(Ω) smooth functions on Ω
C∞c (Ω) smooth functions with compact support in Ω
C∞b (Ω) smooth bounded functions on Ω
Ck,β space of the k times differentiable functions of which the kth derivative is

β-Hölder continuous
W 1,p(Ω) Sobolev space of Lp functions with Lp distributional gradient
Hs, | . | s-dimensional Hausdorff measure, Lebesgue measure
{u > t} (strict) superlevel set of the function u
P(Rd) probability measures on Rd
P2(Rd) probability measures with finite second order moment
Pac(Rd) absolutely continuous probability measures w.r.t the Lebesgue measure
2 infimal convolution; 2.5
epi, epis, dom epigraph, strict epigraph, essential domain; 2.6
supp(u) support of function u
B(x0, r) open ball of center x0 and radius r
W ∗ Legendre transform of W ; 2.9
Ω̊, Ω interior, closure of the set Ω
Γ, Γ2 Carré du champ operator, iterated Carré du champ operator; 3.1, 3.2
∇, ∇2, ∆ gradient, Hessian, Laplacian
Ric Ricci curvature
CD(ρ, n) curvature-dimension condition
( . )+ positive part
ψ−1∗ generalized inverse; 4.4
χA indicator function of the set A
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Inégalités de Sobolev optimales : approches dynamiques

Résumé. Dans cette thèse, on propose des outils dynamiques pour démontrer des inégalités
de type Sobolev. Dans un premier temps, dans le cadre de la théorie de Brunn-Minkowski, une
inégalité de Borell-Brascamp-Lieb étendue avec le transport optimal permet de retrouver non
seulement l’inégalité de Gagliardo-Nirenberg-Sobolev optimale sur Rd, mais aussi une version à
trace sur les épigraphes convexes. La clé est l’étude d’une convolution infimale donnant lieu à
des équations d’Hamilton-Jacobi.

Dans un deuxième temps, la méthode de Bakry-Émery est utilisée à plein dans des variétés
riemanniennes. Sous hypothèse de courbure-dimension CD(0, n), avec n > 0, on généralise une
inégalité de Poincaré à poids, et puis on étend aussi l’inégalité de Beckner aux variétés vérifiant
CD(ρ, n), cette fois pour ρ > 0 et n < 0. Finalement, on revisite les méthodes d’entropie dans
des domaines du plan euclidien pour démontrer des inégalités de Sobolev généralisées, menant
par exemple à une inégalité de Sobolev logarithmique à trace.

Mots-clés : Brunn-Minkowski, équation de Hamilton-Jacobi, inégalité de Sobolev, inégalité de
Poincaré, inégalité de Gagliardo-Nirenberg-Sobolev, condition de courbure-dimension, entropie,
flot gradient.

Dynamical approaches to sharp Sobolev inequalities

Abstract. In the present document, we propose dynamical tools to study Sobolev-type inequal-
ities. First, within the Brunn-Minkowski theory, an extended Borell-Brascamp-Lieb inequality,
proved with optimal transport, is used to recover not only the sharp Gagliardo-Nirenberg-Sobolev
inequality on the Euclidean space, but also prove a trace version of it on convex epigraphs. The
study of an infimal convolution is crucial, leading to Hamilton-Jacobi equations.
We then make use of the Barky-Émery method, both in manifolds and on Rd. Under curvature-
dimension hypothesis CD(0, n), with n > 0, we generalize previous work on a weighted Poincaré
inequality, and we also extend the Beckner inequality to manifolds satisfying CD(ρ, n), this time
with ρ > 0 and n < 0. Lastly, we revisit entropy methods and gradient flows in domains of
the Euclidean space to prove so-called generalized Sobolev inequalities, allowing us to prove, for
example, a sharp trace logarithmic Sobolev inequality.

Keywords: Brunn-Minkowski theory, Hamilton-Jacobi equation, Sobolev inequality, Poincaré
inequality, Gagliardo-Nirenberg-Sobolev inequality, curvature-dimension condition, entropy, gra-
dient flow.
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