SÉRIES DE FONCTIONS

Exercice 1

Pour x réel et n entier positif, on pose $f_n(x) = e^{-x\sqrt{n}}$.

- 1. Préciser le domaine, noté D, de convergence simple de la série $\sum f_n$. On note f la somme de cette série.
- 2. Étudier la convergence uniforme puis normale de la série $\sum f_n$ sur D.
- 3. Déterminer la limite de f(x) lorsque x tend vers $+\infty$.
- 4. Donner, à l'aide d'une comparaison série-intégrale, un équivalent de f(x) lorsque x tend vers 0^+ .

Exercice 2

Pour x réel positif et n entier supérieur à 2, on pose $f_n(x) = \frac{xe^{-nx}}{\ln n}$.

- 1. Montrer que la série $\sum f_n$ est simplement convergente sur \mathbf{R}_+ . On note f la somme de cette série.
- 2. Montrer que la convergence de la série $\sum f_n$ est normale sur tout intervalle $[a, +\infty[$ où a > 0. Y a-t-il convergence normale de la série $\sum f_n$ sur \mathbf{R}_+ ?
- 3. Montrer que la convergence de la série $\sum f_n$ est uniforme sur \mathbf{R}_+ . En déduire que f est continue sur \mathbf{R}_+ .
- 4. Montrer que f est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 5. Montrer que f n'est pas dérivable en 0.

Exercice 3

Pour x réel strictement supérieur à 1, on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ (fonction zéta de Riemann).

- 1. Montrer que ζ est de classe \mathscr{C}^{∞} sur $]1, +\infty[$.
- 2. Déterminer la limite de ζ en $+\infty$.
- 3. En étudiant la série de terme général $u_n(x) = \frac{1}{n^x} \int_n^{n+1} \frac{\mathrm{d}t}{t}$, obtenir le développement asymptotique :

$$\zeta(x) = \frac{1}{x-1} + \gamma + \mathrm{o}(1)$$

lorsque $x \to 1^+$ où $\gamma := \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right)$ est la constante d'Euler.

Exercice 4

Montrer que la fonction définie sur \mathbf{R}^2 par $f(x,y) = \sum_{n=1}^{+\infty} \frac{\exp(-n(x^2+y^2))}{n^2}$ est de classe \mathscr{C}^1 .

Exercice 5

Soit T un réel strictement positif. On munit l'espace $E = \mathscr{C}^0([0,T],\mathbf{R})$ de la norme $\|\cdot\|_{\infty}$ qui en fait un espace vectoriel normé complet. On définit l'endomorphisme P de E en posant

$$\forall x \in [0, T], \qquad P(f)(x) = \int_0^x f(t) dt.$$

1. (a) Établir, pour $n \in \mathbf{N}^*$, $x \in [0,T]$ et $f \in E$ la formule et la majoration :

$$P^{n}(f)(x) = \int_{0}^{x} \frac{(x-t)^{n}}{(n-1)!} f(t) dt \qquad \text{et} \qquad |P^{n}(f)(x)| \leqslant \frac{T^{n}}{n!} ||f||_{\infty}.$$

- (b) Montrer, pour $n \in \mathbb{N}^*$, que l'endomorphisme P^n est continu puis calculer sa norme subordonnée.
- 2. Pour $f \in E$, montrer que la série de terme général $P^n(f)$ est normalement convergente sur [0,T].
- 3. On note g la somme de la série précédente.
 - (a) Montrer que g est de classe \mathscr{C}^1 sur [0,T] et qu'elle est solution du problème de Cauchy

$$y' - y = f(t),$$
 $y(0) = 0.$

(b) En déduire que $g(x) = \int_0^x e^{x-t} f(t) dt$, pour tout $x \in [0, T]$.