Notions traitées : Calcul des sommes. Séries téléscopiques. Séries géométriques. Estimations du reste. Critères de convergence. Intégrales impropres absolument convergentes. Comparaison avec une intégrale. Développements asymptotiques des sommes. Le factoriel.

1 Quelques séries dont on sait calculer la somme

Exercice 1.1. Retrouver les sommes des séries suivantes :

1. Séries téléscopiques :

$$\sum_{n=10}^{\infty} \frac{1}{n(n+1)} = \frac{1}{10}, \qquad \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}, \qquad \sum_{n=2}^{\infty} (-1)^n \ln \frac{n+1}{n-1} = \ln 2.$$

2. Utilisations des séries géométriques :

$$\sum_{n=100}^{\infty} x^n, \quad \sum_{n=1}^{\infty} nx^n, \quad \sum_{n=1}^{\infty} \frac{x^n}{n}, \qquad |x| < 1.$$

3. Application de la formule de Taylor-Lagrange

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -\ln 2, \qquad \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \qquad \sum_{n=0}^{\infty} \frac{n^3}{n!} = 5e.$$

4. Application des séries de Fourier au calcul des sommes :

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^4}, \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)}, \qquad \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}.$$

2 Comparaison série-intégrale

On rappelle le critère classique :

Si $f: [n_0, \infty[\to \mathbb{R} \text{ est décroissante et positive, alors } \sum f(n) \text{ et } \int_{n_0}^{\infty} f(t) \text{ dt sont de même nature.}$ L'exercice suivant fournit un critère alternatif.

Exercice 2.1. Soit $f: [n_0 \to \infty[\to \mathbb{R}]$ une fonction de classe C^1 . On suppose que l'intégrale $\int_{n_0}^{\infty} |f'(t)| dt$ est convergente. On se propose de démontrer que $\sum f(n)$ et $\int_{n_0}^{\infty} f(x) dx$ sont de même nature.

1. On note [t] la partie entière du réelle t, et $\{t\} = t - [t]$ sa partie décimale. Démontrer l'identité

$$\sum_{n=n_0+1}^{N} f(n) = \int_{n_0}^{N} f(t) dt + \int_{n_0}^{N} \{t\} f'(t) dt.$$
 (*)

2. Conclure. (Indication: Si $\sum f(n)$ converge, on pourra montrer d'abord que $\exists \lim_{N\to\infty} \int_{n_0}^N f(t) dt$, et ensuite que $\forall 0 < x < 1$, $\lim_{N\to\infty} \int_N^{N+x} f(t) dt = 0$).

Exercice 2.2. Donner la nature des séries

$$\sum \frac{\cos(\ln n)}{n}$$
, et $\sum \frac{\sin(\sqrt{n})}{n}$.

3 Utilisation du théorème d'Abel

Exercice 3.1.

- 1. Quelle est la nature de la série de terme général $u_n = \ln(1 + (-1)^n/\sqrt{n})$?
- 2. Étudier la nature de la série de terme général

$$u_n = \frac{\cos n}{\sqrt{n} + \cos n}.$$

Exercice 3.2. On rappelle que si Re(s) > 1 alors la série $\sum \frac{1}{n^s}$ converge. On étudie ici le cas $s = 1 + i\theta$, où $\theta \in \mathbb{R}^*$:

- 1. Démontrer que $\sum 1/n^{1+i\theta}$ diverge. (*Indication*: appliquer l'exercice 2.1).
- 2. Démontrer que si (a_n) est une suite réelle décroissante de limite nulle, alors $\sum a_n/n^{1+i\theta}$ converge. (Indication: on pourra utiliser (*)).

4 Un critère de Gauss

Exercice 4.1. On se propose de démonter le critère de Gauss : si (a_n) est une suite de réels positifs tels que pour tout $n \in \mathbb{N}^*$

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + b_n, \quad avec \quad \sum |b_n| < \infty,$$

alors $\sum a_n$ converge si et seulement si $\alpha > 1$.

1. Démontrer que

$$\left(\frac{n+1}{n}\right)^{\alpha} = 1 + c_n, \quad \text{avec} \quad \sum |c_n| < \infty.$$

- 2. Démontrer que $p := \prod_{n=1}^{\infty} 1 + c_n$ converge.
- 3. Démontrer l'équivalent pour $N \to \infty, \, a_N \sim p a_1 N^{-\alpha}$ et conclure.

Exercice 4.2. Pour $k \in \mathbb{N}^*$, on note $(2k)!! = \prod_{i=1}^k (2i)$ et $(2k-1)!! = \prod_{i=1}^k (2i-1)$. Démontrer que la série $\sum \frac{(2n-1)!!}{(2n)!!}$ diverge.

5 Développements asymptotiques des sommes

Exercice 5.1. Soit $\alpha > 1$. Démontrer que le reste d'ordre n de la série de Riemann $\sum \frac{1}{n^{\alpha}}$ vérifie $R_n \sim_{n \to \infty} \frac{1}{(\alpha - 1)n^{\alpha - 1}}$.

Exercice 5.2. Soit $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

- 1. Démontrer que $H_n \ln n \to \gamma$, où γ est une constante réelle.
- 2. Démontrer que $H_n = \ln n + \gamma + \frac{1}{2n} + o(\frac{1}{n})$. (Indication: poser $t_n = u_n \gamma$ et trouver d'abord un équivalent pour $t_{n-1} t_n$ et appliquer l'exercice précédent).
- 3. En réiterant la même méthode, démontrer que $H_n = \ln n + \gamma + \frac{1}{2n} \frac{1}{12n^2} + o(\frac{1}{n^2})$.

Exercice 5.3. (Intégrales de Wallis). On pose $a_n = \int_0^{\pi/2} \sin^n(t) dt$.

- 1. Démontrer que $na_n = (n-1)a_{n-2}$ et en déduire que $na_n a_{n-1} = \pi/2$.
- 2. En déduire que $a_n \sim \sqrt{\frac{\pi}{2n}}$.

3. Démontrer que $a_{2n} = \frac{\binom{2n}{n}}{2^{2n}} \frac{\pi}{2}$.

Exercice 5.4. (Formule de Stirling).

- 1. Soit $x_n = \ln(n!) (n + \frac{1}{2})\ln(n) + n$. On pose $u_n = x_n x_{n-1}$. Démontrer que $u_n = O(\frac{1}{n^2})$ et en déduire que (x_n) converge.
- 2. En déduire qu'il existe $k \in \mathbb{R}$ tel que $n! \sim k n^{n+1/2} e^{-n}$.
- 3. En calculant de deux manières différentes un équivalent pour $\binom{2n}{n}$ (on pourra utiliser le résultat de l'exerice précédent), conclure que $n! \sim n^n e^{-n} \sqrt{2\pi n}$.