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Résumé : 

Dans cet exposé dédié à l’influence des logiciels et plus généralement des outils informatiques sur les contenus de l’enseignement des mathématiques, j’essaie d’abord de clarifier la question, en précisant comment j’entendrai le terme « influence » dans ce contexte précis. J’essaie ensuite de catégoriser ces influences en revenant sur l’historique des rapports entre logiciels et plus généralement outils informatiques et enseignement et apprentissage des mathématiques. Enfin, dans la dernière partie, j’aborde la question des rapports entre influences potentielles et influences effectives.

I. Introduction

Les organisateurs de ce séminaire m’ont demandé d’axer ma conférence d’ouverture sur l’influence des logiciels sur les contenus de l’enseignement des mathématiques. En préparant cette conférence, il m’a semblé nécessaire de coupler cette réflexion sur les contenus avec une réflexion sur les pratiques. Je m’expliquerai sur ce point dans un instant mais ceci explique le titre, élargi, de cet exposé. Je l’ai pensé comme un exposé de cadrage se situant à un niveau assez général, sachant qu’il serait suivi tout au long du séminaire d’ateliers qui contribueraient à lui donner chair. Donc, même si j’évoque au fil de mon discours divers exemples, je privilégierai la vision d’ensemble à une analyse détaillée mais nécessairement plus locale.

J’ai organisé cet exposé en trois parties. Dans la première, j’essaierai rapidement de clarifier la question : de quelles influences s’agit-il exactement ? Comment les évaluer ? Dans la seconde, j’essaierai de dresser un panorama des influences en faisant un rapide historique de l’évolution des perspectives dans ce domaine, et en montrant comment ont joué et jouent encore aujourd’hui dans cette évolution d’une part l’évolution technologique, d’autre part l’évolution des perspectives sur l’enseignement et l’apprentissage des mathématiques. Enfin dans la dernière partie, je m’interrogerai sur les rapports entre influences potentielles et influences effectives, et notamment entre les potentialités mises en évidence par l’analyse a priori des outils considérés ou les travaux expérimentaux les concernant et la réalité du terrain. 
Précisons que, même si le titre mentionne uniquement les logiciels, c’est aux diverses technologies informatiques utilisées dans l’enseignement des mathématiques que nous nous intéressons, qu’il s’agisse de produits conçus pour l’enseignement des mathématiques comme le sont par exemple les calculatrices et les logiciels de géométrie dynamique ou de produits conçus pour un usage professionnel et convertis en outils scolaires, comme les tableurs et les logiciels de calcul symbolique. Et quand nous parlerons de techniques instrumentées c’est de techniques instrumentées par ces outils qu’il s’agira, pour les distinguer des techniques papier-crayon, ce qui ne veut pas dire bien sûr que ces dernières ne soient pas instrumentées. Elles le sont par différents artefacts, papier et crayon bien sûr, mais aussi instruments géométriques, bouliers, abaques et matériels didactiques divers. 

II. De quelles influences est-il question et comment les évaluer ?
Il est banal d’assurer que les logiciels et plus généralement les artefacts numériques influencent l’enseignement des mathématiques. En préparant cet exposé, je me suis rapportée à la première étude sur ce thème lancée par la Commission internationale pour l’enseignement des mathématiques (ICMI). La conférence associée avait eu lieu en 1985 à Strasbourg et l’ouvrage qui en était issu a fait l’objet d’une réédition, sous l’égide de l’UNESCO en 1992, sous le titre justement : L’influence des ordinateurs et de l’informatique sur les mathématiques et leur enseignement (Cornu & Ralston, 1992). L’ouvrage approchait cette question d’influence selon trois dimensions : l’influence sur les pratiques mathématiques (sans qu’il soit ici question directement d’enseignement), l’influence sur les processus d’enseignement et d’apprentissage des mathématiques, l’influence sur les curricula et la formation des maîtres. Il était souligné que l’influence sur les mathématiques et les pratiques mathématiques n’était plus à prouver mais que la situation était bien moins claire en ce qui concerne l’enseignement. L’ouvrage, annonçait la préface, présentait de nombreuses propositions d’évolutions curriculaires visant à exploiter ces nouvelles manières de faire des mathématiques, donnait de nombreux exemples d’expérimentations réussies mais, selon les auteurs, il fallait reconnaître que « toutes ces suggestions restaient fondamentalement spéculatives en ce qui concerne leur mise en place à grande échelle, c’est-à-dire dans leur conversion en un curriculum bien développé et testé, et conçu pour des enseignants ordinaires et des élèves ordinaires
 » (p.3). Les auteurs ajoutaient que, pour dépasser ce stade, on avait besoin de développer la recherche et les expérimentations, notamment dans des contextes réalistes. 

Il me semble toujours d’actualité de distinguer entre des influences potentielles telles que l’on peut les inférer d’analyses a priori d’outils ou de pratiques professionnelles de mathématiciens, le mot étant ici à entendre au sens large, d’influences observées dans l’enseignement, en distinguant là encore des influences observées dans des environnements écologiquement protégés comme le sont les environnements expérimentaux et des influences observées à grande échelle et notamment au niveau curriculaire d’une région ou d’un pays. Et s’agissant du niveau curriculaire, il y a là encore à distinguer entre ce que l’on appelle le curriculum visé : celui des programmes, documents d’accompagnement et instructions officielles et le curriculum réel, celui qui vit dans les classes. Le décalage entre ces deux entités est, on le sait bien, souvent important.

 En décembre dernier, à Hanoi, s’est tenue la conférence associée à la seconde étude ICMI consacrée à ce thème et chargée de revisiter la première étude
. En 25 ans nos connaissances ont certainement beaucoup progressé mais pour ce qui est de la réussite de projets à très large échelle, il faut avouer que la situation n’a pas considérablement évolué. On observe certes des influences indéniables un peu partout dans le monde et, par exemple, l’une des tables rondes de la conférence d’Hanoi, le « Diversity Panel» a bien montré que cette influence ne se limitait pas aux pays dits développés. On voit aussi que se posent de plus en plus des questions qui étaient absentes de la première étude, par exemple celle du contrôle que peuvent avoir les institutions sur ces influences et celle du caractère bénéfique des influences observées. A travers la façon dont sont formulées ces interrogations, se profile la question fondamentale : Qu’attend-t-on aujourd’hui de l’enseignement des mathématiques ? Jusqu’à quel point ces attentes sont-elles modifiées par les technologies existantes ? Que considère-t-on comme un progrès ? Que considère-t-on comme une régression ? Un échec ?

Je n’ai pas la prétention de répondre à ces questions dans cet exposé mais j’aimerais que nous n’oublions pas que nos positions explicites et implicites dans ce domaine conditionnent notre perception des influences et notre évaluation de leurs effets. J’ajouterai enfin que trop souvent la vision dominante a été dans le passé que les logiciels et les calculatrices étaient de simples outils pédagogiques à mettre au service de mathématiques aux valeurs par essence universelles donc indépendantes d’eux, et que leur influence a été évaluée à la mesure de la capacité démontrée par l’institution de les mettre au service de ces valeurs. Il s’agit là, à mes yeux, d’un véritable obstacle culturel et, pour arriver à le surmonter, il me semble que, même si l’on s’intéresse plus particulièrement à l’influence de ces outils sur les contenus d’enseignement, analyser cette influence ne doit pas se faire indépendamment de celle sur les pratiques. Car notre rapport aux objets mathématiques, comme le souligne particulièrement bien Chevallard (Chevallard, 1992, 1999), et donc notre système de valeurs mathématiques, émergent de pratiques, et comprendre l’influence possible ou effective des logiciels sur l’enseignement des mathématiques ne peut se faire en séparant les contenus des pratiques dans lesquelles ces contenus sont engagés. J’ai fait référence à l’approche anthropologique de Chevallard mais j’aurais pu aussi évoquer, et je le ferai dans la suite, l’approche instrumentale au développement de laquelle nous sommes plusieurs participants à ce séminaire à avoir contribué ces dix dernières années (cf. (Artigue, 2002), (Guin & Trouche, 2002) pour des visions synthétiques) en  conjuguant une approche didactique et les travaux d’ergonomie cognitive de Rabardel et Vérillon (Rabardel, 1996). Un point essentiel dans cette approche est que ce que nous apprenons et non simplement la façon dont nous l’apprenons est étroitement dépendant des artefacts utilisés pour cet apprentissage (ici calculatrices et logiciels notamment). Contenus et pratiques sont donc deux entités en un sens indissociables.
Ces précisions étant apportées, je vais essayer, comme annoncé, de montrer comment les perspectives ont évolué dans ce domaine, influencées à la fois par l’évolution technologique et l’évolution des perspectives didactiques.
III.  Des influences multiformes portées par les évolutions technologiques et didactiques
III.1 L’influence algorithmique

La première dimension qu’il me semble devoir évoquer est la dimension algorithmique. Elle est présente très tôt car ses besoins technologiques sont faibles : un langage de programmation suffit. Les calculatrices scientifiques des années 80 en sont dotées et, si l’on considère les programmes des lycées, l’influence est évidente dans la réforme de 1982. La volonté qui y est clairement affichée par exemple de rééquilibrer le quantitatif et le qualitatif dans l’enseignement de l’analyse  suppose, pour sa viabilité, que l’on dispose de moyens de calcul approché, que l’on puisse programmer le calcul des valeurs successives d’une suite, la résolution approchée d’une équation ou le calcul approché d’une intégrale. L’importance qui est alors donnée à l’inégalité des accroissements finis et à son exploitation pour contrôler les résolutions approchées d’équations, attestée par les sujets de baccalauréat, participe du même mouvement. 

Cette influence peut être considérée comme une influence noble et, de ce point de vue, ne pose pas de problèmes en termes de valeurs. On la retrouve préconisée vingt ans plus tard dans le rapport de la CREM
 sur mathématiques et informatique, liée à l’ambition de dépasser la seule perspective d’une technologie outil. Après avoir clairement marqué la distinction :

« Il nous paraît important à ce stade de distinguer clairement l’utilisation des ordinateurs et calculatrices et des logiciels qui y sont implantés, d’une part et l’apprentissage des concepts de base de l’algorithmique et de la programmation, d’autre part » (Kahane, 2002) (p. 31), les auteurs du rapport plaident pour l’introduction des notions de base d’algorithmique et de programmation qui vont permettre en particulier de revisiter des notions fondamentales comme celles de nombre et d’opération, d’approcher les algorithmes fondamentaux du calcul numérique, d’introduire de façon motivée de nouvelles structures telles que listes, arbres, graphes, et de les exploiter pour la compréhension de certains mécanismes, tout en développant chez l’élève et l’enseignant « une attitude active et imaginative », leur évitant « de s’en remettre pieds et poings liés au fabricant de la machine ou à l’éditeur de logiciel » (ibidem, p.33).

Au-delà des cautions mathématique et informatique, sur le plan des apprentissages, cette influence est soutenue par les théories dites de la réification dérivées de l’épistémologie piagétienne (Tall, 1991). Selon ces théories, la conceptualisation mathématique obéit à des cycles ou plutôt des spirales organisées autour de la triade « action – processus – objet ». Un des exemples les plus connus est l’APOS théorie initiée par le mathématicien Dubinsky (Dubinsky, 1991), (Dubinsky & Mac Donald, 2001). La programmation dans un langage adapté y est vue comme le moyen de soutenir la transition d’actions opérées sur des objets vers des processus. Elle soutient ensuite l’encapsulation de processus en objets qui sont réinvestissables dans le nouveaux processus comme, par exemple, lorsque des programmes associés à des fonctions particulières sont utilisés dans des programmes plus généraux qui en testent certaines propriétés. Dubinsky a développé un langage (ISETL) spécifiquement adapté au langage mathématique pour soutenir ces abstractions successives. C’est un langage qui permet de manipuler des ensembles, d’effectuer des quantifications sur des ensembles finis avec une syntaxe proche de la syntaxe mathématique. Dans les diverses expérimentations menées, il a été utilisé notamment pour l’apprentissage des fonctions et des structures algébriques.

Mais il faut aussi avouer que cette influence est restée au cours des deux dernières décennies relativement marginale dans l’enseignement secondaire, comme souligné dans le rapport de la CREM déjà cité, et que l’évolution technologique elle-même a tendu à la limiter en donnant progressivement accès directement à des résultats qui n’étaient au départ accessibles que via la programmation, en particulier en analyse. Toutes les calculatrices scientifiques disposent ainsi aujourd’hui de commandes permettant la résolution approchée d’équations ou le calcul approchée d’intégrales, pour ne citer que ces deux exemples, déjà mentionnés.
Si les logiciels ont influencé les contenus et pratiques de l’enseignement des mathématiques, c’est en fait davantage jusqu’ici en tant qu’outils de visualisation, de réification et manipulation directe d’objets mathématiques, de calcul au sens large et de simulation. Ce sont donc ces influences que nous allons considérer maintenant. 
III.2 Visualisation, diversité sémiotique, manipulation directe et simulation
Un premier exemple : visualisation et enseignement des équations différentielles

Très vite pour moi, en tant qu’enseignante dans le supérieur, c’est à travers les possibilités de visualisation qu’offraient les interfaces graphiques qui se généralisaient, que les logiciels ont influé sur les contenus de mon enseignement. Ils m’ont permis en particulier avec des étudiants de première année de rompre avec un enseignement des équations différentielles qui ne prenait en compte que la résolution algébrique pour introduire une initiation à l’approche qualitative, de leur faire sentir comment la donnée d’un champ de tangentes conditionnait physiquement le tracé  et de leur faire sentir aussi en quoi la méthode d’Euler se différenciait des méthodes d’approximations de courbes par des lignes brisées qui leur étaient jusqu’alors familières (Artigue, 1989). A l’époque, nous avions du développer des logiciels ad hoc pour visualiser les champs de tangente, et obtenir le tracé de solutions approchées, des conditions initiales étant données. Aujourd’hui ces visualisations sont accessibles sur toutes les calculatrices symboliques (cf. figure 1). Dans ce domaine, comme pour tout ce qui concerne plus généralement les systèmes dynamiques, la technologie a rendu viable un enseignement qui soit  plus conforme à l’épistémologie actuelle du domaine. 
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Figure 1 : Champ de tangentes et solutions de y’=y2-x sur une calculatrice TI92
Jusqu’à quel point cela a-t-il influencé les programmes et les pratiques d’enseignement effectives ? Nos premières expériences étaient très locales et elles n’ont pas essaimé facilement. Dans beaucoup d’universités encore aujourd’hui, l’enseignement des équations différentielles en première année, même s’il a évolué, reste essentiellement algébrique. Nous avions analysé à l’époque ce qui rendait difficile l’évolution (Artigue, 1992). Un élément important était le statut nouveau qu’il fallait donner, si l’on voulait s’adresser à des étudiants débutants, au registre graphique comme support de raisonnement et de preuve au-delà de son statut usuel de représentation, et les conflits que cette évolution générait. En fait, la suite l’a prouvé en France mais peut-être plus encore à l’étranger, c’est dans les enseignements où la pression mathématique était la moins forte que ces approches pouvaient le plus facilement vivre, en particulier dans des enseignements de mathématiques pour des non spécialistes.
C’est aussi le cas dans le secondaire mais les équations différentielles n’y constituent qu’une petite part de l’enseignement, même en terminale S, et c’est plutôt au niveau de l’enseignement des fonctions plus généralement que l’on peut donc mesurer l’impact de la visualisation en analyse. Il se traduit pas une attention accrue portée dans les contenus et les pratiques aux interactions entre cadres et entre registres de représentation (Douady, 1986), (Duval, 1995), et c’est cette influence que nous allons discuter, à partir d’un exemple, dans le paragraphe suivant.  
Interactions entre cadres et registres de représentation sémiotique : le cas des fonctions  

Comme dans d’autres domaines mathématiques, dans l’enseignement des fonctions, calculatrices et logiciels ont été mis au service de démarches expérimentales dans lesquelles l’interaction entre les différents cadres : numérique, algébrique, géométrique, entre les différents registres de représentation : registre graphique, registre des tables de valeurs et registre symbolique, jouent un rôle essentiel. Ceci ne s’est pas nécessairement traduit par l’introduction de nouveaux contenus même s’il en existe (citons par exemple la méthode d’Euler introduite en première, pour faire un lien avec ce qui précède) mais, même sur des contenus classiques comme la notion de dérivée, les influences sont évidentes. Je voudrais ici prendre un exemple issu de la thèse de Maschietto (Maschietto, 2002) qui s’était elle-même inspirée des travaux que nous avions menés en première S avec des calculatrices symboliques (Artigue & al, 1998).  
Les possibilités de zooms offertes par les calculatrices et logiciels rendent très facilement visible le fait que, pour beaucoup de représentations graphiques de fonctions, si l’on centre progressivement le regard au voisinage d’un point, on finit par voir un segment de droite. Le processus qui conduit à la tangente à la courbe au point considéré est mathématiquement un processus infini, engageant un passage à la limite, mais les caractéristiques graphiques des écrans rendent le phénomène de linéarisation locale visible, « à distance finie ». C’est cette caractéristique de l’implémentation informatique qui a été, dès le début, exploitée par D. Tall et l’a conduit à la notion de tangente pratique (Tall, 1991). Ce sont les visualisations associées que l’on retrouve dans de nombreux ouvrages concernant l’utilisation de calculatrices graphiques dans l’enseignement de l’analyse et, maintenant, dans de nombreux manuels de lycée.  Elles nous sont devenues familières. 

Ce qui est moins souligné, ce sont les limites de cette visualisation. Très souvent, dans les exemples choisis, la tangente au point considéré a une équation simple avec des coefficients, en particulier le coefficient directeur, entiers, et les approximations numériques de la calculatrice ou du logiciel conduisent, pour un agrandissement suffisant ou un pas assez petit, à l’affichage d’une équation, pour la droite tracée, qui est celle de la tangente. Ceci permet de laisser planer l’ambiguïté sur la nature réelle de l’objet qui apparaît à l’écran et de le confondre avec la tangente. C’est sans doute une solution confortable pour l’enseignant et qui ne gêne en rien les élèves, d’autant plus que généralement, cette visualisation fonctionne juste comme une entrée en matière et que l’on s’engage très vite dans un travail plus classique sur les dérivées. Mais, dans une culture où l’image est aussi omniprésente et aussi valorisée, une telle attitude nous semble tout à fait dommageable. Il importe en effet d’apprendre à distinguer ce que l’on voudrait que les images nous montrent de ce qu’elles nous montrent réellement, et les mathématiques, dans ce domaine comme dans bien d’autres, ont un rôle important à jouer. Dans le cas qui nous intéresse ici, la visualisation nous montre la proximité locale avec une fonction affine, elle ne nous montre pas ce qui particularise la tangente, à savoir d’être la seule droite à offrir une proximité d’ordre 1.
La recherche de Maschietto s’attache justement à cette question en étudiant les possibilités offertes par le mouvement de zoom pour faire vivre, dès le début de l’enseignement de l’analyse, le jeu local-global au cœur de ce domaine. Le scénario didactique qui en résulte consiste à proposer dans un premier temps aux élèves d’explorer, par des zooms successifs, un certain nombre de fonctions, au voisinage de différents points et de représenter ce qu’ils obtiennent en précisant les fenêtres correspondantes (dans la fenêtre standard, après un zoom puis quand ils décident d’arrêter le processus). Les fonctions choisies privilégient les fonctions partout dérivables mais font rencontrer aussi points anguleux et situations plus complexes. L’expérimentation, répétée dans plusieurs classes, montre que le phénomène de linéarité locale est rapidement découvert par les élèves et alors anticipé lorsqu’ils explorent une nouvelle fonction. Pour les cas qui y échappent, ils reprennent les zooms, convaincus au départ de s’être sans doute trompés. On voit aussi, à travers le langage qu’ils utilisent et les gestes qui l’accompagnent, que, même si au bout de quelques zooms seulement le tracé devient droit, les élèves cherchent à maintenir la distance entre les deux types d’objets : l’objet courbe et l’objet droit qui, pour eux, ne relèvent pas des mêmes catégories. Dans le scénario, une fonction et un point particuliers sont ensuite choisis pour mathématiser l’invariant observé. Il s’agit de déterminer la droite vers laquelle  tend la courbe. Il est demandé à chaque élève de proposer une équation pour cette dernière. Comme les fenêtres sur lesquelles s’arrêtent les élèves n’ont pas de raison d’être identiques, comme les points choisis avec l’option trace pour déterminer l’équation de la droite n’ont pas de raison d’être identiques, les équations n’ont pas de raison de l’être non plus, surtout que les élèves n’hésitent pas à recopier les décimales des coefficients obtenus avec l’aide de la calculatrice (cf. figure 2).  Et c’est à travers la confrontation de ces équations, en cherchant ce qui les rapproche et en unifiant, via la symbolisation algébrique, les calculs sous-jacents que, dans une phase de discussion collective orchestrée par l’enseignant, s’organise le questionnement de la perception et qu’est mené le travail de mathématisation. Cette recherche, comme celle que nous avions menée, confirme bien l’accessibilité du point de vue local et du travail de mathématisation associé à des élèves débutant en analyse dans l’environnement technologique choisi. 
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Figure 2 : Exploration et mathématisation du phénomène de linéarité locale
Encore une fois, ces influences ont une légitimation cognitive bien mise en évidence par les recherches qui se sont développées au cours de la dernière décennie sur les registres de représentation et plus généralement les systèmes sémiotiques (en incluant dans ces derniers le langage oral et les gestes) et leur rôle dans les processus de conceptualisation en mathématiques (cf. par exemple (Sáenz-Ludlow & Presmeg, 2006) pour une synthèse des travaux du groupe international PME
 dans ce domaine). Les travaux de Duval dans ce domaine ont joué en France un rôle pionnier. Comme l’exprime le titre même de l’ouvrage déjà cité qu’il a publié en 1995, il n’y a pas de noesis donc de conceptualisation sans semiosis, c’est à dire sans élaboration de systèmes de représentation ; la représentation n’est pas l’aboutissement, le résultat de l’apprentissage, elle en est partie intégrante, et l’objet mathématique n’existe pas tant qu’il est attaché à un seul registre de représentation.
L’influence sur les contenus et les pratiques s’opère également via la possibilité qu’offre la technologie de réifier les objets mathématiques, certaines de leurs propriétés et des relations qui les lient et d’opérer sur ces réifications. C’est la philosophie des micromondes que nous allons envisager dans le paragraphe suivant.
Les micromondes : de Logo aux logiciels de géométrie dynamique

Le premier exemple en a été Logo. Largement diffusé en France Logo dans le cadre du plan « Informatique pour tous » de 1985, il n’y a cependant eu qu’une influence limitée sur l’enseignement des mathématiques et la France ne fait pas exception dans ce domaine. L’analyse qui en est souvent faite aujourd’hui au niveau international est que Logo était porteur d’une philosophie radicalement nouvelle de l’apprentissage : le constructionisme (Papert, 1980, 1991) mais que cette philosophie n’était pas soutenue par un ensemble de textes et de ressources pour les enseignants susceptibles de lui donner corps. En dépit de recherches et de développements très intéressants qui d’ailleurs se poursuivent toujours à l’étranger (Noss & Hoyles, 1996), (Di Sessa, 2000), les usages effectifs dans le cadre du plan Informatique pour tous se sont assez souvent réduits à des activités plutôt ludiques ne s’inscrivant pas dans un projet clair d’apprentissage et ils se sont assez rapidement effondrés. 
Dans le cas de Logo, la manipulation passe par un langage de programmation. Les logiciels de géométrie dynamique qui constituent aujourd’hui les micromondes qui ont le plus pénétré le monde de l’enseignement mathématique internationalement sont de plus en plus basés sur la manipulation directe. Il n’est pas évident que les logiciels de géométrie dynamique aient profondément changé les programmes de géométrie dans quelque pays que ce soit. En revanche, il est clair qu’ils ont changé profondément les pratiques géométriques de ceux qui les utilisent régulièrement.

Dans l’enseignement, on a mis souvent en avant le rôle de l’utilisation des logiciels de géométrie dynamique pour disqualifier des constructions faites sur la base de la seule perception et permettre la transition d’une appréhension perceptive des figures vers une appréhension géométrique. Je voudrais insister ici sur le fait qu’il s’agit là d’une vision très limitée de l’influence que peut avoir un logiciel de géométrie dynamique sur l’enseignement et l’apprentissage de la géométrie. En témoignent les distinctions qui ont été récemment introduites par les chercheurs (cf. par exemple (Hölzl, 1996), (Healy, 2000)) pour rendre compte des différents usages de la commande de déplacement des objets ou encore de la notion de construction molle : une construction qui est partiellement géométrique mais s’autorise des ajustements pour satisfaire simultanément plusieurs contraintes.
Par exemple, (Arzarello & al., 2002) décrit le cas d’élèves de début du collège cherchant à déterminer dans l’environnement Cabri-géomètre tous les triangles ABC pour lesquels il existe un point P du segment [BC] tel que les deux triangles APB et APC soient isocèles. Il existe plusieurs façons de réaliser cette condition mais les élèves commencent souvent par choisir P au milieu de [BC] et ensuite cherchent à avoir BP=AP=PC. Ils font afficher les mesures des segments et déplacent le sommet A du triangle dont ils sont partis jusqu’à réaliser l’égalité. Une fois cette égalité réalisée une ou plusieurs fois par tâtonnement, on les voit essayer de systématiser la recherche, par exemple en déplaçant le point A au voisinage d’une position gagnante de manière à conserver la propriété et, soit marquer des points, soit utiliser la commande trace pour visualiser la trajectoire qui semble se dessiner pour le point A (figure 3). Cette trajectoire hésitante car, pratiquement, la tâche n’a rien d’évident peut les conduire à conjecturer que la propriété restera satisfaite si A reste sur un cercle ou un arc de cercle et à essayer de déterminer ce dernier. 
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Figure 3 : Utilisation de la commande Trace pour visualiser des positions possibles de A
Une fois le cercle tracé, certains assujettissent A à se déplacer dessus pour tester la conjecture faite. D’autres ont repéré que dans les points A satisfaisant la condition et trouvés au hasard, l’angle de sommet A du triangle semblait un angle droit et c’est cette condition qu’ils cherchent à préserver dans le déplacement après avoir fait afficher la valeur de l’angle pour tester la conjecture associée. Dans cette exploration du problème, les constructions ont mêlé tracés géométriques et ajustements, les déplacements ont pris des formes et des fonctions diverses, de l’exploration tâtonnante à l’élaboration de conjectures puis à leur contrôle. L’auteur insiste par ailleurs sur la continuité que l’on observe dans les comportements des élèves entre exploration et preuve dans la résolution d’un tel problème, contrairement à l’affirmation fréquente selon laquelle l’utilisation de logiciels de géométrie dynamique ferait obstacle à la démonstration. Cette continuité se traduit par des mouvements ascendants et descendants, des processus de déduction et des processus d’abduction, et son existence n’est pas indépendante des caractéristiques de la tâche proposée. Il insiste aussi sur l’importance du rôle de l’enseignant pour développer une culture de géométrie dynamique qui rende une situation comme celle-ci cognitivement productive et pour la gérer de façon efficace, en laissant se développer la richesse des explorations et en soutenant la continuité entre exploration et preuve. 

Avant de passer aux points suivants, je voudrais souligner que réification et manipulation directe ne sont pas l’apanage de la géométrie. Depuis plus de quinze ans maintenant, des travaux de recherche sont développés pour donner accès via des commandes sensori-motrices aux notions de vitesse et d’accélération à de jeunes élèves qui ne peuvent accéder à ces notions à travers les outils usuels de l’algèbre et de l’analyse (Nemirovski & Borba, 2004). Des adaptations de ces dispositifs sont aujourd’hui implémentées dans les calculatrices via des systèmes de capteurs et elles commencent à influencer l’enseignement de ces notions en France, en particulier en lycée professionnel.

Simulation

L’influence technologique sur l’enseignement des mathématiques comme sur les mathématiques elles-mêmes passe de plus en plus par la simulation, une simulation qui permet d’explorer, de se familiariser avec des situations qui ne sont pas directement accessibles à une résolution exacte ou approchée, au moins au niveau d’enseignement considéré, de mettre en évidence des régularités et aujourd’hui, à travers des systèmes multi-agents, de montrer comment des structures collectives peuvent émerger de règles de comportement locales (Wilenski, 2003).
En France, c’est à travers les statistiques que la simulation a réellement fait son entrée dans l’enseignement secondaire, et là d’emblée à grande échelle, avec les nouveaux programmes du lycée en seconde. Les calculatrices et les tableurs ont été les deux technologies principalement utilisées pour cela. Et les documents d’accompagnement des nouveaux programmes ont essayé d’outiller les enseignants face à ce renouvellement profond de l’enseignement des statistiques. Nous en aurons des exemples au cours de ce séminaire dans les ateliers. Mais je voudrais souligner deux choses :

1) que l’influence technologique sur l’enseignement des statistiques d’une part dépasse la seule simulation. L’accès à des bases de données substantielles, intégré ou non à des logiciels éducatifs, fait peu à peu sortir l’enseignement des statistiques de la seule considération de populations de taille ridicule, attachées à un enseignement des statistiques sans technologie informatique ou avec un technologie limitée ;
2) que les statistiques sont peut-être le domaine où, internationalement, l’influence de la technologie sur l’enseignement des mathématiques a été la plus forte. C’est une des ambitions de l’étude ICMI en cours sur l’enseignement des statistiques d’étudier où l’on en est exactement dans ce domaine
.
III.3 L’influence sur le calcul : logiciels de calcul symbolique et tableurs

J’ai gardé le calcul pour la fin de ce panorama, non que je considère le calcul comme moins important que ce qui précède mais parce que se concentrer sur lui d’emblée aurait pu faire disparaître toutes les autres dimensions. Il ne fait pas de doute que si les technologies informatiques ont influencé l’enseignement des mathématiques, c’est d’abord à travers le calcul, et l’actualité récente nous a montré bien comment, encore aujourd’hui, cette influence est mal acceptée, combien il est difficile de s’interroger sans émoi sur ce que notre société attend des élèves en matière de calcul. Il n’est pas dans mon intention de rentrer dans ce type de débat aujourd’hui. Mais je voudrais utiliser ce thème pour soulever un certain nombre de questions qui assureront également la transition avec la dernière partie de mon exposé. J’ai associé ici logiciels de calcul symbolique ou CAS et tableurs. Ceci peut paraître a priori étrange, car ces deux technologies sont très différentes. Ce qui les rapproche, c’est qu’il s’agit dans les deux cas, contrairement à toutes les technologies évoquées jusqu’ici, de technologies professionnelles, non conçues pour l’enseignement primaire ou secondaire mais importées dans cet enseignement. Ce n’est pas un  hasard si c’est de recherches sur l’intégration des CAS qu’est née une sensibilité aux questions d’instrumentation qui traverse aujourd’hui l’ensemble des recherches dédiées à la technologie en didactique des mathématiques, comme l’a bien montré la conférence ICMI d’Hanoi déjà citée. C’est aussi que toutes les deux instrumentent bien que de façon différente directement le calcul et que la comparaison de la façon dont elles instrumentent respectivement ce calcul est tout à fait éclairante. 

Ces deux technologies sont différemment intégrées institutionnellement. Le tableur fait officiellement partie des programmes dès le collège. Il intervient non seulement en mathématiques mais aussi dans d’autres disciplines et notamment en technologie. Il occupe une place particulièrement  importante dans le programme de la série L mais est cité dans les programmes de toutes les séries. Les logiciels de calcul symbolique sont mentionnés dans les programmes mais de façon beaucoup plus discrète. Leur usage n’est en rien obligatoire et il est recommandé plus tard dans la scolarité. Leur influence est de ce fait nécessairement plus limitée même si leur usage au baccalauréat est autorisé.  Mais ce sur quoi je voudrais insister ici, c’est que ces deux technologies nourrissent des rapports très différents au calcul, ce qui nous renvoie à la question des valeurs que j’évoquais au début de cet exposé. Je prendrai pour cela l’exemple de l’algèbre. 

Comme l’ont bien montré les travaux de recherche, en France comme à l’étranger, le tableur nous propose un monde intermédiaire entre arithmétique et algèbre (cf. (Kieran & Yerushalmy, 2004) pour une vision synthétique). Il est algébrique par son langage, il est arithmétique dans sa manière d’organiser le travail mathématique, en allant du connu vers l’inconnu, en permettant le recours à la démarche arithmétique. Ce n’est pas un hasard si l’on utilise dans divers pays le tableur pour réconcilier avec l’algèbre des élèves qui semblent définitivement fâchés avec ce domaine, et si c’est en série L que le tableur a été si lourdement introduit. On peut voir dans le tableur un outil permettant de limiter les besoins algébriques dans la résolution de problèmes qui traditionnellement relèvent de l’algèbre.

Les logiciels de calcul formel n’ont rien à voir avec ce monde. Le monde algébrique qu’ils nous proposent est un monde puissant mais aussi exigeant. Comprendre suffisamment comment sont représentés les nombres et expressions pour pouvoir piloter les calculs qui les engagent nécessite des apprentissages spécifiques, et la diversité des formes automatiquement produites par le logiciel fait facilement sortir de l’espace des formes conventionnellement rencontrées au niveau du lycée (Guin & Trouche, 2002). Une genèse instrumentale s’impose, différente de celle nécessitée par le tableur, et mathématiquement plus exigeante. Décider d’intégrer les CAS à large échelle, au-delà des environnements expérimentaux où l’on a montré que ceci était possible et réellement profitable aux apprentissages, suppose que cette genèse instrumentale soit institutionnellement prise en charge et que les enseignants, après y avoir été sensibilisés, disposent de ressources adéquates pour la piloter. Il ne semble pas que nous en soyons là actuellement. 

Ceci m’amène à la dernière partie de mon exposé où je souhaiterais aborder la question du passage d’influences potentielles au sens large  à des influences effectives dans le quotidien des classes. 
IV. Des influences potentielles aux influences effectives

Entre influences potentielles, identifiées par des analyses a priori ou à travers expérimentations et innovations, et influences effectives le décalage est, on le sait, important, dans ce domaine comme dans bien d’autres. L’inscription dans les programmes de l’obligation d’utiliser telle ou telle technologie, dans tel et tel contexte notamment et avec telle et telle ambition, ne suffit pas à produire des influences effectives et à les contrôler. Et il faut souligner que l’incitation, l’obligation, ne donnent pas en elles-mêmes les moyens d’usages pertinents. Elles ne résolvent pas des conflits de valeurs qui souvent restent non explicités. Et les ressources qui sont fournies aux enseignants, pour riches et intéressantes qu’elles soient, sont souvent des ressources ponctuelles, isolées, qui ne suffisent pas à organiser dans la durée l’articulation cohérente d’une progression mathématique et instrumentale. Haspekian, qui a analysé dans sa thèse (Haspekian, 2005) les ressources tableur du site Educnet pour la scolarité obligatoire, l’a bien mis en évidence pour cette technologie. De façon comparable, dans une thèse soutenue très récemment, Tapan (Tapan, 2006) a montré que la façon dont les textes officiels présentaient l’intégration de logiciels de géométrie dynamique au collège s’en tenait à un discours très général. La compréhension de ce que met en jeu le déplacement des objets présentant un ou deux degrés de liberté, fondamentale dans l’utilisation de ces logiciels, y semble aller de soi, or divers travaux de recherche nous montrent aujourd’hui que ce n’est nullement le cas pour des élèves de début de collège (Soury-Lavergne, 2006). Comprendre ce que le déplacement permet de contrôler est déjà une conquête géométrique et instrumentale.

De nombreux travaux, en France comme à l’étranger, montrent par ailleurs que les usages qui semblent les premiers accessibles aux enseignants ne sont pas ceux qui tirent le mieux parti des potentialités pour l’apprentissage des technologies considérées (Laborde, 2001), (Monaghan, 2004). Proposant d’une part à des enseignants débutants, d’autre part à des formateurs des situations utilisant le tableur volontairement contrastées quant à leur intérêt pour l’apprentissage, Haspekian dans sa thèse déjà citée a par exemple montré, que systématiquement les choix des premiers, tout en étant argumentés, étaient opposés aux choix des seconds qui, eux, correspondaient à ceux que sa recherche la conduisait elle-même à effectuer. L’influence sur les contenus et les pratiques, même quand elle est réelle, est donc loin d’être systématiquement celle attendue et souhaitée. La tendance observée et bien compréhensible consiste à utiliser les outils technologiques juste pour leur valeur pragmatique : produire rapidement et facilement des résultats dans des tâches qui se différencient peu de celles traditionnellement pensées pour l’environnement papier/crayon, au détriment de leur valeur épistémique : aider à comprendre les objets mathématiques mis en jeu (Artigue, 2002). Comme les recherches concourent à le montrer, une telle attitude ne permet pas de tirer le meilleur parti de la technologie pour l’apprentissage des mathématiques ; elle ne permet pas que s’exprime dans l’enseignement des mathématiques la puissance épistémique des techniques instrumentées car celle-ci passe souvent par la construction de tâches qui n’ont pas d’analogue direct dans l’environnement papier/crayon et, pour les tâches qui sont a priori envisageables dans cet environnement, par une véritable reconstruction des scénarios didactiques associés. La pente naturelle des usages nous semble, de ce fait, contribuer fortement aux décalages observés entre attentes et réalisations effectives.

Arriver à surmonter ces obstacles demande de penser les usages de la technologie dans la durée, la progression dans le temps des connaissances instrumentales et mathématiques ainsi que les institutionnalisations associées, les rapports à construire et à faire évoluer entre techniques papier-crayon et techniques instrumentées. Il impose de mettre en place une formation des enseignants qui prenne en charge ces difficultés et propose des dynamiques d’évolution raisonnables. Il impose de développer des ressources moins ponctuelles que celles qui dominent aujourd’hui et suffisamment explicites. Ceci, tout en sachant qu’il nous faudra rouvrir régulièrement la réflexion sur ce que nous attendons exactement de l’enseignement des mathématiques et que les réponses que nous pouvons apporter aujourd’hui ne peuvent avoir qu’une durée de vie limitée. Nous mesurons mieux aujourd’hui la tâche à accomplir et nous sommes certainement bien mieux armés pour y faire face que nous ne l’étions il y a dix ans, mais le travail à accomplir pour parvenir à une intégration des technologies informatiques qui serve efficacement la cause de l’enseignement et l’apprentissage des mathématiques reste énorme.
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� Traduction de l’auteur.


� Le texte de discussion associé à cette étude est accessible sur le site de l’ICMI : www.mathunion.org/ICMI/ 


� CREM : Commission de réflexion sur l’enseignement des mathématiques créée en 1999 et présidée successivement par Jean-Pierre Kahane et Jean-Christophe Yoccoz.


� PME : Psychology of Mathematics Education.


� Le document de discussion associé à cette étude est lui aussi accessible sur le site d’ICMI.





PAGE  
14

[image: image1]