Notions traitées: Distances. Continuité sur les espaces métriques. Espaces compacts. Espaces séparables. Espaces complets. Propriété de Baire. Théorème des contrations. Applications.

1 Distances

Exercice 1.1. Soit (X,d) un espace métrique, $A \subset X$. Donner une condition nécessaire et suffisante sur A pour que la fonction caractéristique $\mathbf{1}_A \colon X \to \mathbb{R}$, définie par $\mathbf{1}_A(x) = 1$ si $x \in A$ et $\mathbf{1}_A(x) = 0$ si $x \notin A$, soit continue.

Exercice 1.2. Soit (X, d) un espace métrique. Pour $x \in X$ et $A \subset X$, avec $A \neq \emptyset$, on pose

$$d(x,A) := \inf\{d(x,y) : y \in A\}.$$

a) Montrer que la fonction

$$\begin{array}{ccc} X & \longrightarrow & \mathbb{R} \\ x & \longmapsto & d(x,A) \end{array}$$

est 1-lipschitzienne (c'-à-d qu'elle vérifie

$$|d(x,A) - d(y,A)| \le d(x,y), \quad \forall x, y \in X$$
.

- b) Soient $A, B \in \mathcal{P}(X)$. Montrer que l'ensemble $\{x \in X : d(x, A) < d(x, B)\}$ est ouvert.
- c) En déduire que si F et G sont deux fermés disjoints de X, il existe deux ouverts U et V tels que

$$F \subset U, \ G \subset V, \ U \cap V = \emptyset.$$

2 Utilisation de la compacité

Exercice 2.1.

- 1. Démontrer que si (X, d) est un espace métrique compact et $f: (X, d) \to (Y, d')$ est une application bijective et continue, alors f est un homéomorphisme.
- 2. (Un contrexemple classique à la propriété précédente). Soit $f: [0, 2\pi[\to \{z \in \mathbb{C} : |z| = 1\}$ l'application définie par $f(t) = e^{it}$. Démontrer que f est bijective et continue, mais f n'est pas un homéomorphisme.

Exercice 2.2. (Utilisation de la compacité)

- 1. Soit $A \subset \mathbb{R}^n$ un ensemble fermé non vide. Démontrer que $\forall x_0 \in \mathbb{R}^n$, il existe dans A un point de meilleure approximation pour $x_0 : \exists a_0 \in A$ tel que $d(x_0, a_0) = \inf_{a \in A} d(x_0, a)$.
- 2. (Un contrexemple à la propriété précédente, dans un espace de dimension infinie). Soit $X=C([0,1],\mathbb{R})$, muni de la distance du sup : $d(f,g)=\|f-g\|_{\infty}$. Vérifier que l'ensemble $A=\{f\in X\colon \int_0^{1/2}f-\int_{1/2}^1f=1\}$ est fermé. Calculer d(0,A) et montrer qu'il n'y a pas de fonction $f\in A$ telle que d(0,f)=d(0,A).

Exercice 2.3. (Un théorème de point fixe) Soient (K, d) un espace métrique compact et $f: K \to K$ une fonction telle que d(f(x), f(y)) < d(x, y) si $x, y \in K$ et $x \neq y$.

- 1. Montrer que f a au plus un point fixe.
- 2. Montrer qu'il existe un élément $a \in K$ tel que $d(a, f(a)) \le d(x, f(x))$ pour tout $x \in K$.
- 3. Montrer que a est le point fixe de f.
- 4. Pour $x_0 \in X$, on définit $(x_n)_{n\geq 0}$ par $x_{n+1} = f(x_n), n \in \mathbb{N}$. Montrer que $(d(x_n, a))_{n\geq 0}$ converge vers une limite l > 0.
- 5. Montrer que l = 0. Conclusion?

3 Séparabilité

Exercice 3.1. Démontrer que tout espace m'etrique compact est séparable.

Exercice 3.2.

1. Soit (X, d) un espace métrique. Supposons qu'il existe $\varepsilon > 0$, un ensemble I infini non dénombrable et $(x_i)_{i \in I} \subset X$ tels que

$$d(x_i, x_j) \ge \varepsilon, \quad \forall i, j \in I, i \ne j.$$

Montrer que (X, d) n'est pas séparable.

2. Soit ℓ^{∞} l'espace des suites réelles bornées, muni de la norme $\|\cdot\|_{\infty}$. Démontrer que ℓ^{∞} n'est pas séparable.

Exercice 3.3.

- 1. Soit c_0 l'espace des suites réelles convergentes vers 0, muni de la norme $\|\cdot\|_{\infty}$. Démontrer que c_0 est séparable.
- 2. Soit $1 \leq p < \infty$. Démontrer que l'espace $(\ell^p, \|\cdot\|_p)$ est séparable.

4 Exemples d'espaces complets

Exercice 4.1. On considère sur $X =]0, +\infty[$ la distance euclidienne $d_e(x, y) = |x - y|$ et la distance d définie par $d(x, y) = |\ln x - \ln y|$.

- 1. Les distances d et d_e sont-elles métriquement équivalentes? Sont-elles topologiquement équivalentes?
- 2. L'espace (X, d_e) est-il complet? Et l'espace (X, d)?

Exercice 4.2. Soient (X, d_X) et (Y, d_Y) deux espaces métriques. Démontrer que si Y est complet, alors l'espace $C_b(X, Y)$ de toutes les fonctions continues et bornées de X dans Y est complet pour la distance $d(f, g) = \sup_{x \in X} d_Y(f(x), g(x))$.

Retrouver que si a < b, alors l'espace $C([a,b],\mathbb{R})$, muni de la norme du sup, est un espace de Banach.

5 Applications du théorème de Baire

Exercice 5.1. (Théorème de Baire) Soit (X, d) un espace métrique complet.

- 1. (Théorème de Baire). Démontrer que l'intersection dénombrable d'ouverts denses est dense dans X.
- 2. Montrer que toute réunion dénombrable de fermés d'intérieurs vides est d'intérieur vide dans X.
- 3. Soit $(F_n)_{n\geq 1}$ une suite de fermés de X telle que $\bigcup_{n\geq 1} F_n = X$. Montrer que $\bigcup_{n\geq 1} \overset{\circ}{F_n}$ est un ouvert dense dans X.

Soient X un espace métrique complet, et A une partie de X. On dit que A est **Baire**négligeable (ou "maigre") si elle est contenue dans une réunion dénombrable de fermés de X d'intérieurs vides. Si une propriété est satisfaite en tout point de X sauf éventuellement dans un ensemble Baire-négligeable, on dit qu'elle est valable **Baire-presque partout**. **Exercice 5.2.** On considère une suite $(f_n)_{n\geq 0}$ d'applications continues de \mathbb{R} dans \mathbb{R} , convergeant simplement vers une application $f:\mathbb{R}\to\mathbb{R}$.

- 1. Montrer sur des exemples qu'en général f n'est pas continue.
- 2. Pour tout $\varepsilon > 0$, pour tout $n \in \mathbb{N}$, on pose

$$F_{n,\varepsilon} = \{x \in \mathbb{R} : \forall p \ge n, |f_n(x) - f_p(x)| \le \varepsilon\}.$$

Montrer que $\Omega_{\varepsilon} = \bigcup_{n \in \mathbb{N}} \stackrel{\circ}{F_{n,\varepsilon}}$ est un ouvert dense dans \mathbb{R} (on pourra utiliser l'exercice précédent) et que

$$\forall x_0 \in \Omega_{\varepsilon}, \exists V \text{ voisinage de } x_0 \text{ tel que } |f(x_0) - f(x)| \leq 3\varepsilon \text{ dans } V.$$

- 3. Démontrer que f est continue Baire-presque partout.
- 4. Soit $f : \mathbb{R} \to \mathbb{R}$ une application dérivable sur \mathbb{R} . Que peut-on dire de l'ensemble des points de continuité de la fonction dérivée f'?

6 Applications contractantes

Exercice 6.1. Soient (X, d) un espace métrique complet, $f: X \to X$ et $k \in \mathbb{N}$. On suppose que $f^k = f \circ \cdots \circ f$ (k fois) est contractante. Montrer que f a exactement un point fixe.

Exercice 6.2. Pour $x_0 \in \mathbb{R}$, on définit la suite $(x_n)_{n\geq 0}: x_{n+1} = x_n^2 - 100 + \sin n, \ n \geq 0$. On veut montrer le résultat suivant : il existe un unique choix de $x_0 \in \mathbb{R}$ tel que $(x_n) \subset [10, 11]$

- 1. Montrer que $Y = \{(y_n) \in \ell^{\infty} : (y_n) \subset [10,11]\}$, muni de la distance $d((y_n), (y'_n)) = \sup_n |y_n y'_n|$ est complet.
- 2. Soit $F((y_n)) = (z_n)$, où $z_n = \sqrt{100 + y_{n+1} \sin n}$. Montrer que $F: Y \to Y$ est bien définie et contractante.
- 3. Conclure.