Intégration sur un segment

1

1. Soit $f:[a,b]\to \mathbf{C}$ une fonction continue par morceaux. Pour tout réel λ on pose :

$$I_{\lambda}(f) = \int_{a}^{b} f(t) e^{i\lambda t} dt.$$

- (a) On suppose f de classe \mathscr{C}^1 sur [a,b]. Montrer que $I_{\lambda}(f)$ tend vers 0 lorsque λ tend vers $+\infty$.
- (b) Montrer que le résultat est vrai est en général. (*Indication : établir le résultat pour une fonction en escalier, puis passer au cas général par approximation*).
- 2. Pour $n \in \mathbb{N}$, On pose : $I_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{\sin t} dt$.
 - (a) Montrer que $I_n = \frac{\pi}{2}$.
 - (b) Montrer que la fonction $f: t \mapsto \frac{1}{\sin t} \frac{1}{t}$ peut être prolongée en une fonction de classe \mathscr{C}^1 sur $\left[0, \frac{\pi}{2}\right]$. En déduire que $\lim_{n \to +\infty} \int_0^{\pi/2} f(t) \sin(2n+1)t \, dt = 0$.
 - (c) Montrer, à l'aide des questions précédentes, que : $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.
- **2** Soit $f:[a,b] \to \mathbf{R}$ continue. Montrer que $\int_a^b |f| = \left| \int_a^b f \right|$ si et seulement si f est de signe constant sur [a,b].
- 3 Soit $\alpha > 0$. Déterminer un équivalent de $u_n = \sum_{k=1}^n k^{\alpha}$ lorsque $n \to +\infty$. (Penser aux sommes de Riemann)

 $\overline{4}$

1. Soient f et g deux fonctions continues sur [a,b] à valeurs réelles, g étant positive sur [a,b]. Montrer qu'il existe $\xi \in [a,b]$ tel que :

$$\int_a^b f(t)g(t) \ \mathrm{d}t = f(\xi) \int_a^b g(t) \ \mathrm{d}t$$

- 2. Soit $f:[0,1]\to \mathbf{R}$ une fonction de classe \mathscr{C}^1 .
 - (a) Vérifier que $\int_0^1 f(t) \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) dt = \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \left(f(t) f\left(\frac{k}{n}\right)\right) dt.$
 - (b) Soit, pour tout $k \in [0, n-1]$, c_k un élément de $\left\lceil \frac{k}{n}, \frac{k+1}{n} \right\rceil$.

Quelle est la limite de $\frac{1}{n} \sum_{k=0}^{n-1} f'(c_k)$ lorsque n tend vers $+\infty$?

(c) A l'aide d'une intégration par parties montrer que :

$$\int_0^1 f(t) dt = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) + \frac{1}{2n} (f(1) + f(0)) + o\left(\frac{1}{n}\right).$$

Intégration sur un intervalle quelconque

- (5) Montrer que la fonction $t \mapsto \frac{\sin t}{t}$ n'est pas intégrable sur \mathbf{R}_{+}^{*} .
- **6** Soit f la fonction définie par $f(t) = \frac{1}{t} \operatorname{E}\left(\frac{1}{t}\right)$
 - 1. Montrer que f est intégrable sur [0,1].
 - 2. Calculer, pour tout entier k > 0, l'intégrale $\int_{-\frac{1}{L}}^{\frac{1}{k}} f(t) dt$ puis en déduire la valeur de $\int_{0}^{1} f(t) dt$. (On rappelle que : $1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \gamma + o(1)$).
- 7 Pour x > 0, on pose $f(x) = \int_0^{+\infty} \frac{\sin t}{e^{tx} 1} dt$.
 - 1. Justifier l'existence de f.
 - 2. Vérifier, pour x > 0 et t > 0, la relation $\frac{\sin t}{e^{tx} 1} = \sin t \sum_{n=1}^{\infty} e^{-ntx}$ puis montrer que :

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x^2}.$$

3. À l'aide d'une comparaison série-intégrale, montrer que $f(x) \sim \frac{\pi}{2x}$.

Fonctions définies par une intégrale

8 Pour x > 0, on pose $f(x) = \int_0^x e^{-t^2} dt$.

À l'aide d'une intégration par parties, montrer que l'on a, lorsque $x\to +\infty$, $f(x)=\frac{\sqrt{\pi}}{2}-\frac{\mathrm{e}^{-x^2}}{2x}+\mathrm{o}\left(\frac{\mathrm{e}^{-x^2}}{2x}\right).$

$$f(x) = \frac{\sqrt{\pi}}{2} - \frac{e^{-x^2}}{2x} + o\left(\frac{e^{-x^2}}{2x}\right).$$

(On rappelle que :
$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
).

- **9** On considère la fonction $g: x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{t^2 + 1} dt$.
 - 1. Montrer que g est continue sur \mathbf{R}_+ , de classe \mathscr{C}^2 sur \mathbf{R}_+^* et qu'elle vérifie, sur \mathbf{R}_+^* , l'équation différentielle :

$$(E) g'' + g = \frac{1}{x}$$

- 2. Soit la fonction $\varphi: x \mapsto \cos x \int_{x}^{+\infty} \frac{\sin t}{t} dt \sin x \int_{x}^{+\infty} \frac{\cos t}{t} dt$.
 - (a) Montrer que φ vérifie, sur \mathbb{R}_{+}^{*} , l'équation différentielle (E). En déduire qu'il existe deux réels A et B tels que:

$$\forall x \in \mathbf{R}_{+}^{*}, \quad g(x) - \varphi(x) = A\cos x + B\sin x.$$

- (b) Montrer que $g = \varphi$ sur \mathbf{R}_{+}^{*} .
- 3. Déduire de ce qui précède la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$. (Indication : on pourra remarquer que, pour $0 < x < 1, \left| \sin x \int_{-\tau}^{1} \frac{\cos t}{t} dt \right| \leqslant x |\ln x|.$

2

 $\overline{\mathbf{10}}$

- 1. (a) Soit $g:[a,b] \to \mathbf{R}$ une fonction continue et (P_n) une suite de polynômes convergeant uniformément vers g sur [a,b]. Montrer que la suite $\left(\int_a^b P_n(t)g(t)\,\mathrm{d}t\right)$ converge vers $\int_a^b g^2(t)\,\mathrm{d}t$.
 - (b) Soit f une fonction continue du segment [a,b] dans \mathbf{C} , telle que $\int_a^b f(t) \, t^n \, \mathrm{d}t = 0$ pour tout $n \in \mathbf{N}$. Montrer, en utilisant théorème de Weierstrass que f est nulle.
- 2. Dans cette question, f est une fonction continue de \mathbf{R}_+ dans \mathbf{C} . Lorsque s est dans \mathbf{R} , on pose, si l'intégrale existe,

$$\mathcal{L}(f)(s) = \int_0^{+\infty} f(t)e^{-st} dt.$$

- (a) On suppose que $\int_0^{+\infty} |f(t)| dt$ existe. Montrer que $\mathcal{L}(f)(s)$ existe pour tout réel $s \ge 0$ et que $\mathcal{L}(f)$ est une fonction continue sur \mathbf{R}_+ .
- (b) On suppose que $\mathcal{L}(f)(0) = \int_0^{+\infty} f(t) dt$ existe. Montrer que $\mathcal{L}(f)(s)$ existe pour tout réel $s \ge 0$. (Indication: introduire la fonction $F(x) = \int_0^x f(t) dt$ puis intégrer par parties.)
- (c) On suppose que $\mathscr{L}(f)(0)=\int_0^{+\infty}f(t)\;\mathrm{d}t$ existe et que $\mathscr{L}(f)(s)=0$ pour tout réel $s\geqslant 0.$
 - i. Montrer que $\int_0^{+\infty} F(t)e^{-st} dt = 0$ pour tout réel s > 0.
 - ii. En utilisant le changement de variable $u=\mathrm{e}^{-t}$ et le résultat de la question 1.b, montrer que f est nulle.