Précision de l'affichage, affichage fractionnaire

Touche MODE.	District Sci ing \$(15/7) Flott 0183456789 1.46
Deuxième ligne : nombre de décimales souhaité (pour retrouver un affichage normal sélectionner Flott)	A(15/7) FCI PAR POL Suit Relie (ronzente Sesuente) Simul Reel a+bi refei Plein Horiz G-T
Un résultat rationnel peut être affiché sous forme d'une fraction irréductible. Touche MATH et choix 1: > Frac après le calcul approché ou bien juste après l'écriture d'une fraction.	SETCLOCK(007283/1588937) SETCLOCK(007283/1588937) THE NUM CPX PRB THE Frac 5.865671642 2: ▶ Dec 3: 3 4: \$J(5: *J 6: xfMin(7* xfMax(

Rééditer un calcul

L'instruction ENTRY (touches 2ND puis ENTER) permet de rééditer et éventuellement de modifier avec le curseur des calculs précédemment saisis.	7*8² 448 18∕3 6 √(172) 13.11487705	7*82 18∕3 6 √(172) √(172) √(172)∎	7*8² 448 18∕3 6 √(172) 13.11487705 18∕3
Utiliser plusieurs fois l'instruction pour remonter plusieurs lignes.	3 calculs saisis	une fois ENTRY	une autre fois ENTRY

Dérivation - Intégration

Touche MATH et 8: nbreDérivé(NUM CPX PRB nbreDérivé(X2,X, 4本乳(3)
Syntaxe de l'instruction :	Sixi SixfMin(hbreDérivé(Yi(X)
nbreDérivé(expression, variable, valeur).	(:xtMax) 88nbreDérivé(6 9:fonctIntégr(6
Pour une approche graphique, voir compléments.	0:Solveur
Touche MATH et 9: fonct Intégr (Inne NUM CPX PRB fonctIntégr(X2,X) A本語()
Syntaxe de l'instruction :	is:×î` 9 is:×f∑in(foncţInţ¢9r(Yı(X
fonct Intégr(expression, variable, borne inf, borne sup).	/:xfMax()/,X,0,3) 8:nbreDérivé() 2:PfonctIntégr()
	Ø:Solveur

<u>Suites</u>

Touche MODE . Sélectionner Suit sur la quatrième ligne Touche Y = pour saisir la suite : ici, $u_0 = 0$ et la relation de récurrence est $u_{n+1} = 0,4$ $u_n + 6$. Attention, il faut définir $u(n)$ en fonction de $u(n - 1)$.	MUB/ME SCI In3 Graph1 Graph2 Graph3 Fact 0123456789 >
Utiliser la touche $[x, t, 0, n]$ pour <i>n</i> et pour <i>u</i> l'instruction $[u_n]$ (2ND et 7). Table et représentation graphique avec les menus habituels. <i>Pour plus de détails voir les fiches 320 et 330.</i>	n u(n) 0 0 1 6 2 8.4 3 9.36 9.8976 9.959 n=6

Matrices

On donne $A = \begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$. Calculer 5A A^{3} et A^{-1} . Menu MATRIX (2ND x^{-1}) puis EDIT 1: [A].	NOMS MATH I ⊒DO 101 (A) 2: [B] 3: [C] 4: [D] 5: [E] 6: [F] 7↓[G]	MATRICE[A] 2 ×2∎ [8]	MATRICE[A] 2 ×2 [12]] 2,2=3
Definir le format, ici, 2x2. Saisir les éléments de la matrice et valider par ENTER . Dans l'écran de calcul, on saisit $5x[A]$ puis [A]^3 et la séquence : [A] r^2 .	5*(A) (15 15) (10 15)) (A)^3 (31 57) (38 69))	[A]-1 [[-1]1 [.66666666667 [A]-1 1 333333333333]]	-1 [.66666666673 Rep⊁Frac [-1 1 [2/3] -1/3]
On obtient [A] avec MATRIX NOMS et choix 1: [A]. Pour A^{-1} , les curseurs permettent de lire la deuxième colonne.			

Loi Normale :

1°) Probabilité de l'événement "3 < X < 4" Menu DISTRIB (touches 2ND VARS) Sélectionner à l'aide des curseurs 2 : normalFRép(et ENTER puis renseigner : (valeur inférieure, valeur supérieure, moyenne, écart type) <i>Séquence :</i> 3 , 4 , 3.35 , $\sqrt{0.1089}$) buis ENTER <u>Syntaxe de l'instruction :</u> normalFrep(Valeur inf, Valeur sup, moyenne, écart type) Attention, le paramètre utilisé en terminale est la variance et non pas l'écart type. <u>2°) Probabilité des événements "X<3" et "X>4"</u> Pour calculer <i>P</i> (X<3) on peut saisir comme borne inférieure une valeur très petite par exemple -10 ⁹⁹ .	MSHINE DESSIN 1:normalFdp(3:FracNormale(4:invT(5:studentFdp(6:studentFRép(7↓X²Fdp(7↓X²Fdp(.35,√(0,1089)) .8311290034
Utiliser l'instruction : normalFrep(-10^99, Valeur sup, moyenne, écart type) Menu DISTRIB (touches 2ND VARS) Sélectionner à l'aide des curseurs 2 : normalFRép(et ENTER . Puis séquence : -10^99 , 3 , 3.35 , $\sqrt{0.1089}$) puis ENTER Pour calculer $P(X > 4)$ on peut saisir comme borne supérieure une valeur très grande par exemple 10 ⁹⁹ . Utiliser l'instruction : normalFrep(Valeur inf, 10^99, moyenne, écart type) Menu DISTRIB (touches 2ND VARS) Sélectionner à l'aide des curseurs 2 : normalFRép(et ENTER . Puis séquence : 4 , 10^99 , 3.35 , $\sqrt{0.1089}$) puis ENTER	normalFRép(-10^9 9,3,3.35,J(0.108 9)) .1444345115 normalFRép(4,10^ 99,3.35,J(0.1089)) .0244364851
<u>3°) Déterminer m_1 tel que $P(X < m_1) = 0.95$</u> Utiliser l'instruction : FracNormale(probabilité, moyenne, écart type) Menu DISTRIB (touches 2ND VARS) Sélectionner à l'aide des curseurs .3 : FracNormale(et ENTER . Puis séquence : 0.95 , 3.35 , $\sqrt{0.1089}$) puis ENTER	OfSticks DESSIN 1:normalFdp(2:normalFRép(SH FracNormale(4:invT(5:studentFdp(6:studentFRép(74X ² Fdp(74X ² Fdp(,3.35,√(0.1089)) 3.892801697

Loi binomiale

Probabilité de l'événement « N = 5 » Instruction DISTR (touches 2ND VARS). A l'aide du curseur sélectionner A : binomFdp(et ENTER . Renseigner : (nombre d'essais, probabilité de succès, valeur désirée pour la proba) Séquence : 2ND VARS A 10 , 0.25 , 5) puis ENTER .	05134 5 DESSIN 61studentFRép(7:X2Fdp(8:X2FRép(9:FFdp(0:FFRép(10:FFRép(10:FFRép(
Probabilité de l'événement « N ≤ 4 »	
Instruction DISTR (touches 2ND VARS) A l'aide du curseur sélectionner B : binomFRép(et ENTER . Renseigner : (nombre d'essais, probabilité de succès, valeur désirée pour la proba) <i>Séquence :</i> 10 , 0.25 , 4) puis ENTER \rightarrow <i>Pour obtenir P</i> (<i>N</i> > 4), <i>il suffit de calculer</i> 1– <i>P</i> (<i>N</i> ≤4).	OISTRUE DESSIN ØfFFRép(A:binomFdp(B:binomFRép(C:poissonFdp(D:poissonFRép(E:9éomtFdp(F:9éomtFRép(5,4) .9218730926

⇒ Compléments

Nombre dérivé à partir de l'écran graphique

