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Poisson Sigma Models — T. Strobl∗
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SUMMARY

Overall description of the program

Mathematical Physics, as a discipline within mathematics, has two main pillars: First, a de-
velopment and/or application of mathematical tools so as to describe physical systems in a
mathematically correct way. Second, it is the invention of mathematics as inspired by ideas
coming from physics. There is one more important branch of Mathematical Physics where "toy
models" of physical theories are studied: for example, reducing the dimension of spacetime
often permits one to obtain a mathematical analogue of a physical theory that is accessible to a
much more profound mathematical study—while keeping some of the characteristic features of
the original system. The proposed program reflects all these aspects.

In one of three courses in the autumn semester, the axioms of Quantum Mechanics are intro-
duced. Mathematically this requires tools from Hilbert space theory and Functional Analysis,
some of the basics of which is reviewed/presented in a preparational course. Subsequently we
turn to Quantum Information Theory , the physical relevance of which being underlined by the
2022 Nobel prize in physics.

The other two courses in the autumn semester deal with non-quantum, i.e. classical, systems:
Symplectic Geometry and, more generally, Poisson geometry, is used in the Hamiltonian de-
scription of classical systems. Riemannian geometry and pseudo-Riemannian geometry is the
basis of General Relativity. Essential for a mathematical description of fundamental interac-
tions, moreover, are Fiber bundles: sections of particular vector bundles correspond to matter
fields or particles, connections in principal bundles to interaction fields and forces between the
particles. Since symmetries play an important role in many instances of physics, Lie groups,
Lie group actions—and their joint generalization to Lie groupoids, of increasing importance in
mathematics and physics—are introduced as well, together with their relation to Lie algebras
and Lie algebroids. As a preparation to these two courses, there is a two-weeks’ course on the
basics of differential geometry.

In the spring semester the journey continues in the following way: Topological Insulators and,
more generally, Topological Phases of Matter are among the exciting and fast developing new
subjects in Mathematical Physics: Hand in hand with new experimental observations, in part
sophisticated analysis is used for a quantum mechanical description of materials. In the corre-
sponding course, after an introduction to the general ideas, a toy model of this in one spatial
dimension is studied in detail.

Yang-Mills theories, introduced in one of the basic courses, are—except for electrodynamics—
useful for describing nature only in their quantized version. This makes a course on Quantum
Field Theories (QFTs) indispensable for an introduction to Mathematical Physics. Renormal-
ization thechniques, invented by physicists to cure originally divergent integrals, were found to
carry an interesting Hopf algebraic structure, as unraveled by A. Connes and D. Kreimer. The
course introduces to the basics of perturbative QFT and renormalization techniques.
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The remaining two courses, on Seiberg-Witten Invariants and Poisson Sigma Models, are good
examples for mathematics that was invented by inspiration coming from methods used in physics:
Studying particular Yang-Mills type gauge theories led Seiberg and Witten to discover ways of
calculating topological and differential invariants for 4-manifolds, that became an interesting
subject in Differential Geometry by itself. The perturbative quantization of the Poisson Sigma
Model, a topological string theory using Poisson manifolds as target spaces, was used by Kont-
sevich to find a solution to a longstanding algebro-differential deformation problem. The Pois-
son sigma model also provides a toy model for coupled Gravity-Yang-Mills theories, namely
when they are reduced to two spacetime dimensions. A study of the global causal structure
found in this context then permits to introduce to some of the basic properties of black holes.

Short description of the seven main courses

Quantum Mechanics and Quantum Information Theory (by Guillaume Aubrun)
We present an axiomatic formulation of non-relativistic quantum mechanics and turn subse-
quently to quantum information theory.

Fiber Bundles in Differential Geometry and Gauge Theories (by Eveline Legendre)
We introduce the basics of (pseudo-)Riemannian geometry, of fiber bundles with connections,
and of jet bundles. Their application to defining General Relativity and Yang-Mills-Higgs gauge
theories is also part of the program.

Symplectic Geometry and Lie Groupoids (by Leonid Ryvkin)
In this course we investigate symplectic manifolds, as well as their generalizations to presym-
plectic and Poisson manifolds. We introduce the theory of Lie groupoids and Lie algebroids as
generalized symmetries on smooth manifolds.

Topological Phases of Matter (by Johannes Kellendonk)
We consider topological phases of spin systems. These are defined by means of gapped short
range entangled ground states. The aim of the course is to provide the necessary mathematical
background to explain the classification of symmetry protected topological phases in one spatial
dimension.

Quantum Field Theory and Renormalization (by Alessandra Frabetti)
This an introduction to perturbative Quantum Field Theory, the theory which describes inter-
acting elementary particles like electrons with photons or self-interacting particles. We present
standard tools such as Feynman graphs and path integrals, and we explain renormalization both
in physical and mathematical terms.
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Seiberg-Witten Invariants (by Klaus Niederkrüger)
The course is an introduction to a class of powerful invariants for smooth 4-manifolds. These
invariants were obtained by the physicists Seiberg and Witten when studying the equations that
describe the coupling of a certain spin particle with an electromagnetic field. Seiberg-Witten
invariants simplified significantly the tools used previously in 4-dimensional topology.

Poisson Sigma Models (by Thomas Strobl)
We present the Poisson Sigma Model and study its basic features. We discuss two-dimensional
gravity theories as a special case of the model, developing tools for understanding the global
causal structure of the obtained spacetime manifolds. Finally, we discuss one of two possible
applications: the Kontsevich formula for the deformation quantization of Poisson manifolds or
the construction used in the integration of Lie algebroids to Lie groupoids.

DETAILED DESCRIPTION OF THE COURSES

1 Two weeks of preparations

1.1 Fundamentals of Hilbert spaces
(10 hours, by Johannes Kellendonk)

• Hilbert space theory.

• Operators on Hilbert spaces, spectral theory.

• Elementary notions of operators algebras on Hilbert spaces
(various topologies, C*-algebras and von Neumann algebras).

• Representations of symmetries on Hilbert spaces.

1.2 Calculus on manifolds
(20 hours, by Eveline Legendre and Klaus Niederkrüger)

• Manifolds, tangent spaces, vector fields (flow and brackets). Frobenius Theorem.
Tensor fields and their Lie derivatives.

• Differential forms, exterior derivative, Cartan calculus, de Rham cohomology.

3



2 Basic courses

2.1 Quantum Mechanics and Quantum Information Theory
(24 hours by Guillaume Aubrun)

In the (shorter) first part of the course we first introduce the axioms of quantum mechanics:
states, measurements, dynamics via Schrödinger’s equation, and composite systems via tensor
products. We describe the equivalence between open and closed quantum sytems via the con-
cepts of a partial trace, completely positive operators, and we present the theorems of Choi,
Kraus, Stinespring as well as of Naimark.

In the (longer) second part of the course, we focus on several topics relevant to the mathematical
aspects of quantum information theory.

1. Quantum entanglement : entanglement criteria (positive partial transpose) and the quan-
tum de Finetti theorem.

2. Nonlocality of quantum mechanics: Bell inequalities and their experimental violation,
Grothendieck inequality.

3. Quantum information theory à la Shannon: quantum entropy, classical capacity of quan-
tum channels, and quantum capacity of quantum channels.

4. Representation theory and quantum information: Schur-Weyl duality, spectrum estimates.

References:

• JM Landsberg, Quantum Computation and Quantum Information: a Mathematical Perspec-
tive (forthcoming book, should be published soon)

• Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information

• G. Aubrun and S.J. Szarek, Alice and Bob meet Banach: The Interface of Asymptotic Geo-
metric Analysis and Quantum Information Theory

2.2 Fiber Bundles in Differential Geometry and Gauge Theories
(24 hours by Eveline Legendre)

Fiber bundles are natural objects to consider over manifolds. They play a central role in every
parts of contemporary Differential Geometry and lie at the heart of a good part of Mathematical
Physics. Therefore, a course introducing the basic and fundamental notions used to study fiber
bundles (including connections, their curvature, caracteristic classes, . . .) have become an es-
sential ingredient for any modern graduate program in these fields. To introduce these notions is
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the main purpose of this course, where the presentation will be enhanced by motivations coming
from Theoretical Physics.

Here is the plan of the lectures:

1. Fiber bundles and connections

2. Basics of Riemannian geometry

3. Jet bundles

4. Fundamentals about

• General Relativity,

• Electrodynamics,

• Yang-Mills-Higgs gauge theories,

• General gauge theories.

References:

• S.B Sontz, Principal Bundles (The Classical Case), Springer Universitext, (2015).

• S. Kobayashi; K. Nomizu. Foundations of Differential Geometry. Wiley Classics Library.
Vol 1 (1963) and Vol 2 (1969)

• L. Fatibene, M. Francaviglia, Natural and Gauge Natural Formalism for Classical Field The-
ories, Springer, Dordrecht (2003)

• S. Gallot, D. Hulin, J. Lafontaine. Riemannian Geometry, Springer Universitext, (2004).

2.3 Symplectic Geometry and Lie Groupoids
(24 hours by Leonid Ryvkin)

In the first part of the course, we introduce symplectic manifolds as the correct geometric setting
to do classical mechanics from a Hamiltonian viewpoint. Investigating subsequently symme-
tries and conservation laws of physical theories, one discovers that not all symmetries can be
described by the classical theory of Lie groups and Lie algebras.

The appropriate objects for this purpose, Lie groupoids and Lie algebroids, are of huge mathe-
matical interest in themselves and investigating them constitutes the second part of the course.
We discuss interesting examples, the structure theory, and the utility of these objects.

Finally, we turn to applications of Lie groupoids and Lie algebroids to symplectic geometry. In
this context, we also take a look at Poisson structures, singular foliations, and Dirac structures.
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References:

• Symplectic Geometry and Analytical Mechanics, by Libermann and Marle

• Poisson Structures by Camille Laurent-Gengoux, Anne Pichereau, Pol Vanhaecke

• Lie Groupoids and Lie algebroids, lecture notes by Eckhard Meinrenken,
(https://www.math.toronto.edu/mein/teaching/MAT1341_LieGroupoids/Groupoids.pdf)

3 Advanced courses

3.1 Topological phases of matter
(18 hours by Johannes Kellendonk)

The notion of a topological phase in physics is relatively new. The general principle is that
distinct physical systems are considered to be in the same topological phase if they are in some
sense homotopic. There are different contexts and approaches in which such a notion can be
made precise. In this course, we consider topological phases of spin systems. These are defined
by means of gapped short range entangled ground states. The aim of the course is to provide the
necessary mathematical background to explain the classification of symmetry protected topo-
logical phases in one dimension. The corresponding question in higher dimensions is a very
active area of current research.

The mathematical background taught in this course includes the basic notions and properties of
C*- and von Neumann algebras and how symmetries are represented on them. Here we follow
some of the material of the two books by Bratteli and Robinson “Operator algebras and quantum
statistical mechanics; vol. 1 and 2”. This is complemented by the current research literature.
Below two such articles, with overlapping content that may serve as a source for the relevant
material for the course. Besides operator algebra techniques, group cohomology also plays a
central role.

References:

• Bratteli, Ola, and Derek William Robinson. Operator algebras and quantum statistical me-
chanics: Volumes 1 and 2. Springer.

• Kapustin, Anton, Nikita Sopenko, and Bowen Yang. "A classification of invertible phases of
bosonic quantum lattice systems in one dimension." Journal of Mathematical Physics 62, no.
8 (2021): 081901.

• Ogata, Yoshiko. "A classification of pure states on quantum spin chains satisfying the split
property with on-site finite group symmetries." Transactions of the American Mathematical
Society, Series B 8, no. 2 (2021): 39-65.
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3.2 Quantum Field Theory and Renormalization
(18 hours by Alessandra Frabetti)

The aim of the lectures is twofold. First we present the essential tools of (perturbative) quantum
field theory: free propagators, Feynman graphs, correlation functions for interacting theories,
Dyson-Schwinger equations, divergencies, counterterms and renormalization formulas. Then
we present some algebraic and combinatorical tools which simplify the presentation of renor-
malization formulas (namely proalgebraic groups and Hopf algebras).

The lectures include a brief introduction to field theory, examples and exercices on the Klein-
Gordon, Dirac, Maxwell and Yang-Mills theories as well as on some basic algebraic and proal-
gebraic groups with relative Hopf algebras.

The topics presented in these lectures can be further developped in applications to physics (in
renormalization theory) and in algebraic topics (proalgebraic loops, combinatorial Hopf alge-
bras, operads).

References:

• E. Abe. Hopf Algebras. Cambridge University Press 1980.

• J.C. Collins. Renormalization. Cambridge University Press 1984.

• A. Connes and D. Kreimer. Renormalization in quantum field theory and the Riemann-
Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Commun.
Math. Phys., 210 (2000) 249–273.

• A. Connes and D. Kreimer. Renormalization in quantum field theory and the Riemann-
Hilbert problem II: the beta function, diffeomorphisms and the renormalization group. Com-
mun. Math. Phys., 216 (2001) 215-241.

• W.N. Cottingham end D.A. Greenwood. An Introduction to the Standard Model of Particle
Physics. Cambridge University Press 1998.

• A. Frabetti. Renormalization Hopf algebras and combinatorial groups. In "Geometric and
Topological Methods for Quantum Field Theory", Cambridge University Press 2010.

• A. Frabetti and D. Manchon. Five interpretations of Faà di Bruno’s formula. In "Dyson-
Schwinger Equations and Faà di Bruno Hopf Algebras in Physics and Combinatorics", IRMA
Lectures in Mathematics and Theoretical Physics Vol. 21, European Mathematical Society,
2015.

• C. Itzykson and J.-B. Zuber. Quantum Field Theory. McGaw-Hill Ed., 1980.

• M.E. Peskin and D.V. Schroeder. An Introduction to Quantum Field Theory. Perseus Books
Pub. L.L.C. 1995.

• M.E. Sweedler. Hopf algebras. Mathematics Lecture Note Series, W. A. Benjamin Inc. 1969.
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3.3 Seiberg-Witten Invariants
(18 hours by Klaus Niederkrüger)

Most classical topological invariants like homology and the fundamental group do not detect
much more than the homotopy type of the considered space. Donaldson, Floer, Gromov,
Seiberg, Witten, and many others developed, in the eighties and nineties of the last century,
a new class of much finer invariants that can, for example, distinguish different smooth struc-
tures on a given manifold.

While each of these theories is very different, and easily allows a large part of a researcher’s life
to be spent on its details, the underlying idea is always similar: choose some type of "natural"
partial differential equation and study its solutions. Setting up such a PDE requires several
auxiliary choices to be made (for example the choice of a Riemannian metric). An important
step of this strategy requires then to extract the information that is independent of any of the
auxiliary choices from the solution space of the PDE.

Obviously, a random PDE does not yield any meaningful theory. In practice, even if we are
only interested in the mathematical aspects of geometry, the most successful strategy has been
to use equations from physics. In this course, we want to give an introduction to Seiberg-Witten
invariants, which are used in the study of smooth 4-manifolds.

Named after its creators, two physicists, this theory yields most of the results of Donaldson
theory, but takes away much of the technical complications of the latter one. The considered
equations are those of a massless spin particle that is coupled to an electromagnetic field: The
field is specified by a connection of a principal bundle, the particle is a section in a spinor
bundle. In the first part of the course, we introduce the necessary mathematical notions needed
to setup the Seiberg-Witten equations, like for example spinor bundles and Dirac operators.
Here some of the underlying physical intution is commented upon.

In the second part of the course, we review the analytical basics needed to describe the properties
of the solution space.

In the last part, we study examples where we are able to determine the invariants: Finding the
solutions of a given PDE explicitly is of course in general not possible. It is thus interesting to
see how one can determine, in certain cases, such solutions and how to understand the type of
information that we can extract from them.

The underlying motivation for this course is to show how modern theoretical physics interacts
with mathematics. In the specific case of Seiberg-Witten invariants, it is hard to imagine that
anybody without the necessary physical intuition would have been able to propose such a theory.
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References:

• E. Witten, "Monopoles and four-manifolds.", Mathematical Research Letters, 1 (6): 769-796.

• J.D. Moore, "Lectures on Seiberg-Witten invariants", Lecture Notes in Mathematics, vol.
1629, Springer.

• J. Morgan, "The Seiberg-Witten equations and applications to the topology of smooth four-
manifolds", Mathematical Notes, vol. 44, Princeton University Press.

3.4 Poisson Sigma Models
(18 hours by Thomas Strobl)

We introduce Yang-Mills and gravitational theories like R2-gravity on 2-dimensional space-
times. We show that such models of physical theories—and in fact a much larger class of them
called generalized dilaton gravities coupled to Yang-Mills theories—can be reformulated as
particular Poisson sigma models (PSM)s.

In general, a PSM is given in terms of a canonical functional SPSM defined on the vector bundle
morphisms ψ from T N to T ∗M, where N is an orientable 2-manifold and M a Poisson man-
ifold. We study the first basic properties of these models: we show that the Euler-Lagrange
equations of SPSM restrict ψ to be a morphism of Lie algebroids and that gauge transformations
of such solutions are given by Lie algebroid homotopies. In this context, Z-graded geometry is
introduced, since it simplifies the definition of such morphisms and homotopies significantly.

Using the Weinstein splitting theorem, proven in the basic course by Ryvkin, we construct all
local solutions of the initially mentioned coupled gravity-Yang-Mills theories, which can be
obtained in closed form in two dimensions. We subsequently construct all maximally extended,
universal coverings of such spacetime solutions, using the technique of Penrose diagrams—the
global causal structures encountered contain various black hole scenarios, as one finds. Time
permitting, we also provide an explicit presentation of the isometry group G for each of such
a spacetime solution. Studying appropriate subgroups of G, one arrives at a description of
the moduli space of classical solutions up to diffeomorphisms for arbitrary topologies of the
2-manifold N.

In a final part of this course, we provide insight into one of the following two subjects, the
choice depending on the wishes of participants. Each of these is a construction, suggested by
the PSM, that led to a solution of a longstanding and important problem in mathematics:

1. The integration problem of Lie algebroids to Lie groupoids, solved by Crainic and Fer-
nandes.

2. An explicit construction, given by Kontsevich, of all formal associative deformations of
the product of functions on a manifold or, equivariantly, the deformation quantization of
arbitrary Poisson manifolds.
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For 1, the construction, discovered by Cattaneo and Felder, results from a coisotropic reduction
of the Hamiltonian formulation of the PSM. Albeit defined in infinite dimensions, the reduc-
tion, if smooth, gives a finite-dimensional symplectic manifold which carries the structure of
a Lie groupoid. This Lie groupoid is the one integrating the Lie algebroid T ∗M associated to
the Poisson manifold M in the sigma model. Crainic and Fernandes used a straightforward
generalization of this construction to arbitrary Lie algebroids, which simultaneously general-
izes the integration of Lie algebras to Lie groups using homotopy classes of paths, encountered
already in the basic course by Ryvkin. Identifying the necessary and sufficient conditions for
smoothness, gives their celebrated integration result.

For 2, one studies the perturbative quantization of the PSM. Due to the gauge invariance, this
requires the use of (infinite dimensional) graded geometry within the BV or AKSZ formal-
ism, which we briefly outline. The Feynman diagrams of the PSM then become what are now
called the Kontsevich graphs. The deformed, non-commutative product of functions on M is
obtained from correlation functions of the quantum PSM. That it is associative is suggested by
the topological nature of the PSM, but then proven by Kontsevich in purely mathematical terms.
As for Seiberg-Witten theory, also the construction of Kontsevich is unimaginable without the
inspiration and the tools coming from physics.

References:

• A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula,
Commun. Math. Phys. 212 (2000) 591-611.

• A. Cattaneo and G. Felder, Poisson sigma models and symplectic groupoids, Progress in
Mathematics 198, 61-93 (Birkhäuser, 2001).

• M. Crainic and R. Fernandes, Integrability of Lie brackets, Ann. of Math., Vol. 157 (2003),
no. 2, 575–620.

• T. Klösch and T. Strobl, Classical and Quantum Gravity in 1+ 1 Dimensions, Part II: The
Universal Coverings, Class. Quantum Grav. 13 (1996) 2395-2421.

• T. Klösch and T. Strobl, Classical and Quantum Gravity in 1+1 Dimensions, Part III: Solu-
tions of Arbitrary Topology in 1+1 Gravity, Class. Quantum Grav. 14 (1997), 1689-1723.

• M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003),
157-216.
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