Outils pour utilisateurs

Outils du site


programmes_ue_l3:topologie-mesure:2022_23

Ceci est une ancienne révision du document !


avancement_cm_math_eco_2022-23.pdf

Topologie et théorie de la mesure. Automne 2022

Automne 2022

Avancement du cours

avancement_cm_math-eco_2022-23.pdf

Feuilles de TD et corrections

feuille1-matheco_2022-2023.pdf

feuille1-matheco_2022-2023_correction.pdf

feuille2-matheco_2022-2023.pdf

feuille2-matheco_2022-2023_correction.pdf

feuille3-matheco_2022-2023.pdf

feuille3-matheco_2022-2023correction.pdf

feuille4-matheco_2022-2023.pdf

feuille4-matheco_2022-2023_correction_2_.pdf

feuille5-matheco_2022-2023.pdf

feuille5-matheco_2022-2023correction.pdf

Examen partiel:

  • L'examen partiel: le mardi 15 novembre 2022 dans la salle prévue pour le CM de 14H00 à 15H30. Programme des exercices sur tous les TD jusqu'au 8 novembre 2021 (y compris) et programme des questions du cours dans les deux listes suivantes:
  • Définitions à réviser:

1.1 (dénombrable), 1.5 (limite supérieure et limite inférieure), 2.1 (distance), 2.4(espace normé), 2.7 (boule ouverte, boule fermée), 2.16 (normes équivalentes), 2.18 (distances équivalentes), 2.26 (ouverts), 2.35 (espace topologique), 2.37 et 2.39 (intérieur et adhérence d’un ensemble), 3.18 (convergence uniforme), 4.2 (compacité), 4.18 (homéomorphisme), 5.2 (clan), 5.5(tribu), 5.11(classe monotone), 5.12 (mesure), 5.20 (tribu produit), 5.24 (tribu borélienne), 5.25 (base d'un espace topologique), 5.32 (application mesurable/borélienne), 5.48 (fonction étagée), 5.62 (ensemble négligeable), 5.63 (mesure image), 6.1 (intégrale d'une fonction étagée positive), 6.3 (intégrale d'une fonction borélienne positive). 5.48 (fonction étagée), 6.1 (intégrale d’une fonction étagée, positive et borélienne), 6.3 (intégrale d’une fonction borélienne et positive), 6.20 (fonction \mu-intégrable et son intégrale), 6.26 (la mesure image), 7.2 (intégrale dépendant de paramètre), 7.9 (mesure \sigma-finie), 7.10 (la tribu produit), 7.27 (la matrice jacobienne), 8.2 (ensemble convexe), 8.6 (le cône tangent et le cône normal),8.8 (fonction convexe).

  • Propositions, théorèmes, corollaires à réviser:

2.19 (suites par rapport aux distances équivalentes), 2.30 (critère pour qu’un ensemble d’un espace métrique soit ouvert), 2.33 (unions/intersections des ouvert/fermés), 3.9 et 3.10 (fonctions continues), 4.3 (critère de compacité), 4.5 (produit direct des espaces métriques compacts), 4.7 (sous-ensemble compact d’un espace métrique), 4.8 (sous-ensemble fermé d’un espace métrique compact), 4.9 (fonctions continues sur un espace métrique compact), 4.11 (les compacts de \R^n), 4.13 (théorème de Heine), 4.14 (équivalence de normes sur un espace vectoriel de dimension finie sur les réels), 5.13 (propriétés de base des mesures), 5.15(Thm définissant la tribu engendrée), 5.21 (générateurs d'une tribu produit), 5.28 (famille génératrice usuelle des boréliens de \R^n), 5.36 (mesurabilité en terme de famille génératrice), 5.42 et 5.47 (en pair, relation de la mesurabilité aux limites), 5.49 (fonctions boréliennes et fonctions étagées), 5.53 (Thm de classe monotone), 5.54 (corollaire du Thm de classe monotone sur les mesures), 5.56 (Thm de prolongement pour les mesures), 5.58 (Thm définissant la mesure de Lebesgue). 6.6 (inégalité de Markov), 6.12 (Thm de convergence monotone de Levi), 6.18 (Lemme de Fatou), 6.24 (relation de l'intégrabilité aux limites), 6.25 (Thm de convergence dominée de Lebesgue), 6.27 (Thm de transfert), 6.30 (Thm sur la relation entre l'intégrale de Riemann et l'intégrale de Lebesgue), 7.3 (théorème de continuité avec condition de domination), 7.7 (théorème de dérivabilité avec condition de domination), 7.12 (théorème définissant la mesure produit), 7.13 (théorème de Fubini-Tonelli), 7.15 (théorème de Fubini), 7.31 (le théorème de changement de variables)

Archives

Années précédentes :

Automne 2021.

Automne 2020.

Automne 2019.

Automne 2018.

programmes_ue_l3/topologie-mesure/2022_23.1668711451.txt.gz · Dernière modification: 2022/11/17 19:57 par tomanov