Tr(A+B)=9r(A)+TrB)

Pour $\varphi \in \mathcal{L}(E)$ un endomorphisme, on définit la trace de φ comme la trace de la matrice de φ respectivement à une base arbitraire de E. Par le résultat précédent, cette trace ne dépend pas du choix de cette base.

1.3 Déterminant

1.3.1 Définition par récurrence

Soit $A = (a_{i,j}) \in M_n(\mathbb{K})$. Pour $i, j \in \{1, ..., n\}$, on dénote par $A_{i,j}$ la matrice de $M_{n-1}(\mathbb{K})$ obtenue en supprimant la ligne i et la colonne j.

Exemple. On pose

On a alors par exemple

$$A = \begin{pmatrix} 5 & 0 & -1 \\ 3 & 2 & 1 \\ \hline 0 & -2 & 1 \end{pmatrix}.$$

 $(0 -2) \qquad \text{ligne}$ $(1), (A_{2,1}) = \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}, (A_{3,3}) = \begin{pmatrix} 5 & 0 \\ 2 & 2 \end{pmatrix}$

On définit par récurrence la fonction déterminant det : $M_n(\mathbb{K}) \to \mathbb{K}$ par

•
$$\det A = a_{1,1} \text{ pour } n = 1,$$

der A = an

nakics

(Myn)

$$\det A = \sum_{j=1}^{n} (-1)^{j+1} a_{1,j} \det A_{1,j} \text{ pour } n \ge 2.$$
On utilise aussi la notation suivante pour le déterminant :
$$\det \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \end{pmatrix} = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \end{vmatrix}.$$

$$\det\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{vmatrix}.$$
Exemples. On a

$$\begin{vmatrix}
 a & b \\
 c & d
\end{vmatrix} = \mathbf{m} \mathbf{m} \mathbf{a} \quad \mathbf{a} \mathbf{d} - \mathbf{b} \mathbf{c}$$

$$\begin{vmatrix}
 a_{1,1} & a_{1,2} & a_{1,3} \\
 a_{1,3} & a_{1,4} & a_{1,4}
\end{vmatrix}$$

$$\begin{vmatrix} a_{1,1} & a_{1,2} \end{vmatrix}$$

$$+\ a_{1,2}a_{2,3}a_{3,1}+a_{1,3}a_{2,1}a_{3,2}-a_{1,3}a_{2,2}a_{3,1}$$
 on 1.14. Supposons que $A\in M_n(\mathbb{K})$ est une matrice diagonal

est le produit de ses termes diagonaux.

Proposition 1.14. Supposons que $A \in M_n(\mathbb{K})$ est une matrice diagonale ou une matrice triangulaire supérieure ou une matrice triangulaire inférieure. Alors le déterminant de A En particulier, le déterminant de la matrice identité \mathbf{I}_n est 1. $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix} = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}$

$$\begin{array}{c}
\text{une matrice} \\
\text{ninant de } A
\end{array}$$

detA = a11 det A11 - a12 det A2 + a13 det A13 + ...

+ (-1) NAI am det A 12

Démonstration. On montre le résultat dans le cas triangulaire inférieur (ce qui implique le cas diagonal). Le cas triangulaire supérieur est similaire (on suit de la formule $\det(A) = \det({}^tA)$ donnée plus tard). On procède par récurrence. Pour n=1, le résultat est direct. Supposons que $n \geq 1$ est tel que le résultat est vrai pour toutes les matrices triangulaires inférieures de type n-1. Soit $A=(a_{i,j})$ un matrice triangulaire inférieure de type n+1, on a donc $a_{i,j}=0$ si i < j. On a

$$\det A = \sum_{j=1}^{n+1} (-1)^{j+1} a_{1,j} \det A_{1,j} = a_{1,1} \det A_{1,1}.$$

Mais $A_{1,1}=(a_{i+1,j+1})$ est une matrice triangulaire inférieur et donc det $A_{1,1}=a_{2,2}\cdots a_{n+1,n+1}$ par récurrence. Ainsi, on a bien

$$\det A = a_{1,1} \cdots a_{n+1,n+1}$$

et le résultat est démontré.

1.3.2 Premières propriétés du déterminant

Soit v_1, \ldots, v_n des vecteurs de \mathbb{K}^n , on dénote par $(v_1|\cdots|v_n)$ la matrice dont les colonnes sont les vecteurs v_1, \ldots, v_n . On appelle **déterminant** de la famille (v_1, \ldots, v_n) le déterminant de la matrice $(v_1|\cdots|v_n)$.

notation a

Proposition 1.15. Le déterminant d'une matrice est une application linéaire par rapport

à chacune de ses colonnes, c'est-à-dire pour $v_1, \ldots, v_n(\mathbb{K})$ et pour $k \in \{1, \ldots, n\}$, on a

1. Pour tout
$$u \in \mathbb{K}^n$$
 Clorpe

$$\det(v_1|\cdots|v_k+u|\cdots|v_n) = \det(v_1|\cdots|v_k|\cdots|v_n) + \det(v_1|\cdots|u|\cdots|v_n),$$

2.
$$Si \lambda \in \mathbb{K}$$
,

2. Si
$$\lambda \in \mathbb{K}$$
,
$$\det(v_1|\cdots|\lambda v_k|\cdots|v_n) = \lambda \det(v_1|\cdots|v_k|\cdots|v_n).$$
monstration. On demontre le résultat pour 2. La démonstration pour 1 est similaire

Démonstration. On démontre le résultat pour 2. La démonstration pour $\overline{1}$ est similaire. On montre le résultat par récurrence sur n. C'est évident pour n=1. Supposons que $n\geq 1$ est tel que le résultat est vrai pour toutes les matrices de type n, c'est-à-dire quand on multiplie une colonne par λ alors le déterminant est aussi multiplié par λ . Soit $A=(a_{i,j})$ une matrice de type n+1 et soit $A'=(a'_{i,j})$ avec $a'_{i,j}=a_{i,j}$ si $j\neq k$ et $a'_{i,k}=\lambda a_{i,k}$ (donc la colonne j est multipliée par λ . On calcule

$$\det A' = \sum_{j=1}^{n+1} (-1)^{j+1} a'_{1,j} \det A'_{1,j}$$

$$= \sum_{\substack{j=1\\j\neq k}}^{n+1} (-1)^{j+1} a_{1,j} \det A'_{1,j} + (-1)^{k+1} \lambda a_{1,k} \det A'_{1,k}.$$

La matrice $A'_{1,j}$ est une matrice de type n égale à la matrice $A_{1,j}$ avec une colonne multipliée par λ , on a donc par récurrence det $A'_{1,j} = \lambda \det A_{1,j}$. Puisque la matrice $A'_{1,k}$ ne contient

2 2 6 1 pas la colonne k, elle est égale à A_{1k} . On a donc $\det A' = \sum_{n=1}^{n+1} (-1)^{j+1} a_{1,j} \lambda \det A_{1,j} + (-1)^{k+1} \lambda a_{1,k} \det A_{1,k}$ $= \lambda \left(\sum_{\substack{j=1\\j\neq k}}^{n+1} (-1)^{j+1} a_{1,j} \det A_{1,j} + (-1)^{k+1} a_{1,k} \det A_{1,k} \right)$ $= \lambda \det A.$ Proposition 1.16. Le déterminant d'une matrice est alterné par rapport à ses colonnes, c'est-à-dire si $v_1, \ldots, v_n \in \mathbb{K}^n$ et $j, k \in \{1, \ldots, n\}$ avec j < k, on a $\det(v_1|\cdots|v_j|\cdots|v_k|\cdots|v_n) = -\det(v_1|\cdots|v_k|\cdots|v_j|\cdots|v_n).$ En particulier, si deux colonnes d'une matrice sont égales alors son déterminant est nul. Démonstration. On démontre uniquement le deuxième point (le premier point se prouve par récurrence comme ci-dessus). Supposons que $v_i = v_k$, alors on a $\det(v_1|\cdots|v_i|\cdots|v_k|\cdots|v_n) = -\det(v_1|\cdots|v_k|\cdots|v_i|\cdots|v_n)$ $=-\det(v_1|\cdots|v_i|\cdots|v_k|\cdots|v_n)$ et donc $\det(v_1|\cdots|v_i|\cdots|v_k|\cdots|v_n)=0.$

$$=-\beta\left(\mathcal{S}_{1},\ldots,\mathcal{S}_{k},\ldots,\mathcal{S}_{\tilde{s}},\ldots,\tilde{s}_{n}\right)$$

Les résultats sur les colonnes sont aussi vrais pour les lignes grâce au résultat suivant.

Proposition 1.17. Soit $A \in M_n(\mathbb{K})$, on $a \det(A) = \det(^t A)$. En particulier, on a

- le déterminant d'une matrice est une application linéaire par rapport à chaque ligne,
- le déterminant d'une matrice dont deux lignes sont égales est nul,
- le déterminant change de signe quand on échange deux lignes d'une matrice,

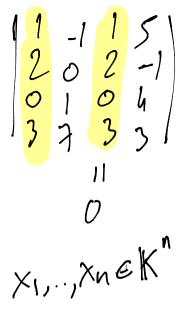
1.3.3 Déterminants et bases

Théorème 1.18. Soit v_1, \ldots, v_n des vecteurs de \mathbb{K}^n . Alors, la famille (v_1, \ldots, v_n) est une base de \mathbb{K}^n si et seulement si le déterminant de la matrice $(v_1|\cdots|v_n)$ est non nul.

Plus généralement, soit E un K-espace vectoriel de dimension n. Soit B une base de E. Soit x_1, \ldots, x_n des vecteurs de E et soient X_1, \ldots, X_n les vecteurs représentant respectivement x_1, \ldots, x_n sur la base B. Alors, la famille (x_1, \ldots, x_n) est une base de E si et seulement si le déterminant de la matrice $(X_1 | \cdots | X_n)$ est non nul.

Démonstration. On démontre le premier résultat. Supposons pour que la famille (v_1, \ldots, v_n) n'est pas une base. On montre que $\det(v_1|\cdots|v_n)=0$. Puisque la famille maximale (v_1,\ldots,v_n) n'est pas une base, elle est liée. Donc il existe une relation, disons par exemple

$$v_1 = \sum_{j=2}^n \lambda_j v_j.$$



Jenith Kr

On a

$$\det(v_1|\cdots|v_n) = \det\left(\sum_{j=2}^n \lambda_j v_j |v_2|\cdots|v_n\right)$$

$$= \sum_{j=2}^n \lambda_j \det(v_j|v_2|\cdots|v_n) = 0$$

puisque les déterminants sont tous nuls car il y a toujours au moins deux vecteurs égaux dans chaque déterminant de cette somme.

Maintenant, supposons que (v_1, \ldots, v_n) est une base. On montre par l'absurde que $\det(v_1|\cdots|v_n) \neq 0$. Supposons le contraire : $\det(v_1|\cdots|v_n) = 0$. Soit (u_1, \ldots, u_n) une famille quelconque de vecteurs de \mathbb{K}^n . Alors, on peut écrire les vecteurs u_i sur la base (v_1, \ldots, v_n) , disons

On calcule
$$\underbrace{\det(u_1|\cdots|u_n)}_{\text{det}(u_1|\cdots|u_n)} = \det\left(\sum_{i=1}^n \lambda_{i,1}v_i|\cdots|\sum_{i=1}^n \lambda_{i,n}v_i\right)$$

$$= \sum_{i=1}^n \sum_{i_2=1}^n \cdots \sum_{i_n=1}^n \lambda_{i_1,1}\lambda_{i_2,2}\cdots\lambda_{i_n}, \det(v_{i_1}|v_{i_2}|\cdots|v_{i_n}|)$$

Maintenant, considérons un des déterminants $\det(v_{i_1}|v_{i_2}|\cdots|v_{i_n})$ de cette dernière somme. Ou bien il existe $k \neq \ell$ avec $i_k = i_\ell$ et donc ce déterminant est nul; ou bien tous les

(W, , , , h)

James ush mis sol

+ del Wii - pau indices sont différents et donc, en réarrangeant les colonnes, ce déterminant est égal au signe près à $\det(v_1|\cdots|v_n)=0$. Amsi, on trouve que, pour toute famille (u_1,\ldots,u_n) , on a $\det(u_1|\cdots|u_n)=0$. Mais ceci est absurde car si on prend pour (u_1,\ldots,u_n) la base canonique,

on obtient la matrice identité I_n et son déterminant est égal à 1. Pour le deuxième point, on procède de la même facon si ce n'est qu'on prend pour la famille (u_1, \ldots, u_n) la base \mathcal{B} . On obtient alors la matrice des vecteurs représentant la famille (u_1,\ldots,u_n) sur la base (u_1,\ldots,u_n) qui est aussi la matrice identité.

1.3.4 Déterminant d'un produit de matrices

Le résultat principal est le suivant

Théorème 1.19. Soient A et B deux matrices dans $M_n(\mathbb{K})$. On a

$$\det(AB) = \det(A)\det(B).$$

Corollaire 1.20. Un matrice A dans $M_n(\mathbb{K})$ est inversible si et seulement si $\det(A) \neq 0$. On a alors $\det(A^{-1}) = \det(A)^{-1}$.

Démonstration. Supposons que A est inversible, alors il existe une matrice A^{-1} telle que $AA^{-1} = \mathbf{I}_n$. On a alors $\det(AA^{-1}) = \det(\mathbf{I}_n) = 1$. Puisque $\det(AA^{-1}) = \det(A)\det(A^{-1})$, on en déduit que $\det(A) \neq 0$ et $\det(A^{-1}) = 1/\det(A)$.

deux matrice/ sendades

Supposons à présent que $\det(A) \neq 0$. On montre que A est inversible. Supposons que $A = (v_1 | \cdots | v_n)$. Alors, on sait que la famille (v_1, \ldots, v_n) est une base de \mathbb{K}^n et donc A est la matrice de passage de la base canonique à la base (v_1, \ldots, v_n) ; elle est donc inversible. \square

1.3.5 Calculs du déterminant

i et la colonne j. On a

Soit $A = (a_{i,j}) \in M_n(\mathbb{K})$. Pour chaque coefficient $a_{i,j}$ de A, on appelle **cofacteur** de $a_{i,j}$ la quantité

$$\cot(a_{i,j}) = \underbrace{(-1)^{i+j} \det(A_{i,j})}_{\text{où, comme précédemment, } A_{i,j} \text{ est la matrice de type } n-1 \text{ obtenue en supprimant la ligne}$$

Proposition 1.21. Pour tout $i \in \{1, ..., n\}$, on a le développement du déterminant de A suivant la i-ième ligne

$$\det(A) = \sum_{j=1}^{n} a_{i,j} \operatorname{cofact}(a_{i,j}).$$

De même, pour tout $j \in \{1, ..., n\}$, on a le développement du déterminant de A suivant la j-ième colonne

$$\det(A) = \sum_{i=1}^{n} a_{i,j} \operatorname{cofact}(a_{i,j}).$$

Pour $A \in M_n(\mathbb{K})$, on définit la comatrice de A par

$$Comat(A) = (c_{i,j})$$
 avec $c_{i,j} = cofact(a_{i,j})$.

Corollaire 1.22. Soit $A \in M_n(\mathbb{K})$, on a

$$A^{t}\operatorname{Comat}(A) = {}^{t}\operatorname{Comat}(A) A = \det(A) \mathbf{I}_{n}.$$

En particulier, si $A \in GL_n(\mathbb{K})$, on a

$$A^{-1} = \frac{1}{\det(A)}^{t} \operatorname{Comat}(A).$$

Soit $n \geq 1$ un entier. Une bijection $\sigma: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ est appelé une **permutation** sur n lettres. L'ensemble des permutations sur n lettres est dénoté S_n ; c'est un groupe pour la composition.

Proposition 1.23. Il existe une unique fonction surjective sign $S_n \to \{-1, +1\}$ telle que, pour tous $\sigma, \pi \in S_n$, on a

$$\operatorname{sign}(\sigma \circ \pi) = \operatorname{sign}(\sigma)\operatorname{sign}(\pi)$$

On appelle cette fonction la ${\it signature}.$

Théorème 1.24. Soit $A = (a_{i,j})$ une matrice carrée de type n. Alors, on a

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}.$$

([x])([-e)

Gln(K) = { matrices hversibles }

12 X 12 X 32

Proposition 1.25. Soient A, B et C trois matrices dans $M_n(\mathbb{K})$ et soient $M \in M_{2n}(\mathbb{K})$ telles que

$$M = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right).$$

Alors, on $a \det(M) = \det(A) \det(C)$.

1.3.6 Déterminant d'un endomorphisme

Soit $\varphi \in \mathcal{L}(E)$ avec E un \mathbb{K} -espace vectoriel de dimension finie. Soit \mathcal{B} une base de E et soit A la matrice de φ respectivement à la base \mathcal{B} . On définit le **déterminant** de φ par $\det(\varphi) = \det(A)$.

Proposition 1.26. Le déterminant de φ ne dépend pas du choix de base \mathcal{B} . De plus, les assertions suivantes sont équivalentes

- 1. $\det(\varphi) \neq 0$,
- 2. φ est injective,
- 3. φ est surjective,
- 4. φ est bijective,
- 5. $\operatorname{Ker}(\varphi) = \{0\},\$
- 6. $\operatorname{Im}(\varphi) = E$,

