1.4.4 Polyndéme minimal et théoreme de Cayley-Hamilton

Soit f(T) = A"T™ + --- + MT + A\ € K[T'] un polynéme a coefficients dans K et soit

A € M, (K) une matrice carrée. On définit (
' f(A) = A A"+ NMA+ NI, € M,L(K)

Proposition 1.38. Soient f et g deux polynomes dans K[T| et soit A € M,(K), on a

1 (f+9)(A) = f(A) + g(A),

2. (f9)(A) = f(A)g(A) = g(A) f(A).

Soit A € M, ( appelle polynéome annulateur de A tout polynéme mnon nul
f € K[T] vérifiant f(A) = ¢ (matrice nulle).

Exemple. Soit A € M(K). Le polynéme caractéristique de A est
CA(T) =T? — Tr(A)T + det(A).
On montre que Cy(T") est un polynome annulateur de A.

Proposition 1.39. Toute matrice carrée possede un polynome annulateur.

Démonstration. Soit A € M, (K). Posons m = dim(M,(K)) = n% On considere la famille
de matrices (I, A, A%, --- , A™) Cette famille possede m + 1 et donc elle est liée. Ainsi, il

existe Ay, ..., A, € K, non tous nuls, tels que

Aol + -+ A, A™ = 0.



I1 suit que le polynéme A, 7™ + - - - + Xy est un polynéme annulateur de A. |

Soit A € M,,(K). On appelle polynéme minimal de A, le polyném@ ma(T)
annulateur de A et de plus petit degré.

—%
Proposition 1.40. Soit A € M, (K). Le polynome minimal ma(T") de A e et divise

—

tout polynéome annulateur de A.

Démonstration. On montre pour commencer la deuxieéme assertion. Soit f(7') un polynéme

annulateur de A. Par division euclidienne, on peut écrire
F(T) = ma(T)q(T) +r(T)

avec 7(T) = 0 ou deg(r) < deg(m4). Supposons que r # 0. Puisque f(A) = m4(A) =0, on
en déduit que 7(A) = 0 et donc r est un polynome annulateur de A avec deg(r) < deg(ma).
Ceci est une contradiction car le degré de my4 est minimal. Ainsi, on a r = 0 et ma(7T)
divise f(T).

Maintenant, supposons que mq(7T) € K[T] est un autre polynoéme unitaire annulateur de
A avec deg(ma) = deg(myg). Alors, on a que my(7T') divise mo(7"). Comme ils sont de méme
degré, il suit qu’il existe A € K tel que mo(T) = Ama(T). Mais, comme les polynémes
mo(T) et ma(T) sont unitaires, on trouve que A = 1 et donc my(T) = ma(T). Donc le

polynome minimal est bien unique. [

Le résultat fondamental sur les polynomes annulateurs est le suivant.
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Théoréme 1.41 (Cayley-Hamilton). Le polyndme caractéristique d’une matrice carrée est

un polynome annulateur de cette matrice. En d’autres termes, pour A € M,(K), on a

m
Corollaire 1.42. Soit A € M,(K). Soit f(T) est un polynéme annulateur de A, alors les

valeurs propres de A sont parmi les racines de f. En particulier, un scalaire X\ € K est une

valeur propre de A si et seulement si \ est une racine de ma(T).

m Démonstration. Soit A € K une valeur propre de A. Alors, il existe un vecteur non nul x tel

que Az = Az. On pose f(T) = a,T" + --- + ag et on calcule

] v
M!L«( %(A)x =a, A"t + -+ a1 Az + apr = apN'x + -+ g x4 agr = f(N)2. s = 0
— T =

D’un autre coté, on a f(A) = 0 puisque f est un polynéme annulateur de A et donc on a

f(A) = 0]puisque x # 0. On a bien montré que A est une racine de f.

—

Taintenant, le polynéme minimal m 4 divise le polyndéme caractéristique puisque le po-
lynéme caractéristique est un polynome annulateur par le théoreme de Cayley-Hamilton.

u Donc les racines de my sont parmi les valeurs propres de A. En combinant avec le premier

point, on en déduit que les racines de m 4 sont exactement les valeurs propres de A. [

1.4.5 Valeurs propres d’un endomorphisme

Soit E un K-espace vectoriel de dimension n. Soit ¢ € L£(FE) un endomorphisme de E.

Un scalaire A € K est un valeur propre de \ si 'une des conditions équivalentes suivantes



est vérifiée :

1. Il existe un vecteur v € E, v # 0, tel que ¢(v) = v, (/) A (r z O

C) 2, Ker(u—)\.id) £{0}, A C%/(l li_} (}f) Y,

3. det(u — Aid) = 0,

4. Soit B une base de E et soit A la matrice de ¢ sur cette base, alors A est valeur
propre de A.

Comme précédemment, dans ce cas, on appelle vecteur propre associé a A, tout vecteur

v non nul tel que ¢(v) = Av.

Le polynéme caractéristique de ¢ est le polynome caractéristique de la matrice de
A dans une base de E. Comme vu précédemment, ce polynome ne dépend pas du choix de

la base et on le note C,(T).

Proposition 1.43. L’ensemble des valeurs propres de p, appelé le spectre de p, est égal

a Uensemble des racines dans K du polynome caractéristique Cy,(T).

1.5 ! Diagonalisation \

1.5.1 Probleme de la diagonalisation

Soit A € M,(K). On dit que A est diagonalisable si A est semblable & une matrice

diagonale, c’est-a-dire §'il existe une matrice P € GL,(K) et une matrice diagonale D de

N .
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>/ A=PDP! l
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Supposons A diagonalisable, diagonaliser A consiste & calculer des matrices P et D Q
vérifiant cette relation. (En général, les matrices P et D ne sont pas uniques.) Lf U-
Ve Y[ |Un
Théoreme 1.44. Soit A € M, (K). Alors, la matrice A est diagonalisable si et seulement

st il existe une base de K" formée de vecteurs propres de A.

Démonstration. Supposons que la base (vi,---,v,) de E est formée de vecteurs propres A A\/‘ A[/
associées respectivement aux valeurs propres Ay, ..., A,. On posd P = - \On calcule \ 2|

A0 0
AP = (Avy|---|Av,) = (Ao1] -+ - | Antn) = P 0 Ao 0 . (P\'t ),\
0 -~ 0 A\, A P bt O '.‘ O
et donc A est diagonalisable. A n
Récipro nt, supposons A diagonalisable. Soient P € GL,(K) et D diagonale telles

qud A = PDP~! Wlors, on vérifie comme ci-dessus que les colonnes de P forment une base

de K" composée de vecteurs propres de A. O

Corollaire 1.45. Supposons A est diagonalisable. Soit (vy, ..., v,) une base de K" telle que,

pour i = 1,...,n, le vecteur v; est vecteur propre de A associée a la valeur propre \;. On
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pose

Alors, on a A= PDP~. m}y\.é\.(’ ﬂé
Corollaire 1.46. Soit A € M,(K). Supposons que A posséde n valeurs propres distinctes. \/Z’&Mf) w J
. e - = == )’) pe

Alors, A est diagonalisable.

n

Démonstration. Soient A1,...,\, les valeurs propres de A et soit vy,...,v, des vecteurs ~
propres associés. Alors, on a les sous-espaces vectoriels Kuy, . . ., Kv, sont en somme directe K\/ 6 K k{
et donc (vy,...,v,) est une base de K" formée de vecteurs propres. 1 \ c 9 h
N/
Attention : il peut exister des matrices dans M, (K) avec strictement moins de valeurs %.hf‘ \\,K”
propres que n qui sont pourtant diagonalisables. ' VI

1.5.2 Caractérisation des matrices diagonalisables

Soit A € M,,(K). On rappelle que, pour A une valeur propre de A, on dénote par FE) le

sous-espace propre associé a A, ¢’est-a-dire

E) =Ker(A — \I,). A;M E‘\ Z i



Proposition 1.47. Soit A une valeur propre de A et soit m la multiplicité de X comme /

racine du polynéme caractéristique C4(T) de A. Alors, on a m

(zwmaen) Gl = (-2 ) g7)

On en déduit la caractérisation des matrices diagonalisables.

e fldZo
Théoréme 1.48. Soit A € M,,(K) et soient Ay, ..., \s les valeurs propres de A. Les asser- 5 #

tions suivantes sont équivalentes : %A}\‘M(A})

Tl n
1. A est d%agonalzsable, / ﬂ,‘m EA": éME .gv‘ 5&%0(&
(4

2.0naK"=E\, & - ®E),

3. Pouri=1,...,s, on a dim E,\ = m; ou m; est la multiplicité de \; comme racine /
de CA(T) et w’ & 2 oy% C b‘ %’
i R o
4% fonde
Corollaire 1.49. Supposons que le polynome caractéristique Cy(T) de A n’est pas scindé
sur K. Alors, A n’est pas diagonalisable.
Ce corollaire ne s’applique que quand K # C car tout les polynéme sont scindés sur C.
De fait, il existe des exemples de matrices carrées réelles qui ne sont pas diagonalisables A ?D @

sur R, mais sont diagonalisables sur C.

e (1)
d (A-h) < - (A-3) TDe My (@)



:(J)M v /Ar/\'j)

1.5.3 Meéthode de diagonalisation

Soit A € M, (K). La méthode pour déterminer si la matrice A est diagonalisable et la

diagonaliser si c¢’est possible est la suivante :
1. Calculer le polynéme caractéristique Cy(7T) de A. ZU‘: Alfz(lu‘
2. Calculer les racines Aq, ..., As de C4(T') dans K et leur multiplicité my, . .., ms.

3. Simy+---+ms <nalors Cy(T) n'est pas scindé et A n’est pas diagonalisable et le ‘//'

processus s’arréte.

4. Pouri=1,...,s, faire n"l*-~'4’/"‘}.¢” Q&@(?A"‘M}
(a) Calculer la dimension d de E),.
(b) Sid < m;, alors A n’est pas diagonalisable et le processus s’arréte.

/ /
(c) Calculer une base (v;1, ..., v;m,) de E,. p - \/&&M/) VY»K’IL) ng

5. La matrice A est diagonalisable. On pose

Cod e M
P:(?)1,1|"'|U1,m1|"'|U&1|'”|U‘9’m-‘) et D= O )\1 0 O V\’\L L)
N V2
D U VA | '

la matrice P est obtenue en réunissant les bases calculées en 4.(c) et la matrice D

est la matrice diagonale avec sur la diagonale les valeurs propres Ay, ..., \s répétées ,V\ J D



avec leur multiplicité. Alors, on a

A=PDP.

&k[’\’) z/‘;/A’TSA)

Exemple. On cherche a diagonaliser la matrice

oo s
2 7
- Naf=8)"_ bkt

1. On calcule C4(T) = T® — 5T% + 8T — 4. <&
2. La racine A\; = 1 est évidente. On divise C4(T)/(T — 1) =T? — 4T + 4 = (T — 2)%.

Donc on a m; = 1 et 'autre racine est Ay = 2 de multiplicité mo = 2.

3. Puisque( my +mg =3, 9 n'y a pas d’obstacle (pour l'instant) a dlagonahser A.

4 i=1:A=letm=1 A
(a) Le vecteur v ='(z,y, 2) € Ey ssi Av = v ssi U

-4 2 / (q )2 (//]>/7:Z)L

@Z% [//[‘@
M cv(;(t A

(iwn wlle) g2t

2r—y+z==x z—y+2=0
y+z=y ssi z=0 ssi

2z =2z 2=0

(b-c) Donc Ej est de dimension 3 — 2 = 1 avec poutf base (*(1,1,0)).

édkmé\\( | = gAmf, <)



4.7 =2:A=2¢etm=2.

(a) Le vecteur v ='(z,y, z) € Es ssifAv = 2v)si

248 — ) =5 2= 27 —y+2=0

(
—y+§71? ssl lm O

y+z=2y ssi

2 =247%3

5. La matrice A est diagonalisablef On pose 0
\
( 0 101
\ 0\ P=|110

00\ — 010

pe—
et on 1 A= PDP‘I.' t Y

1.5.4 Applications de la diagonalisation des matrices

Proposition 1.50. Supposons que A est diagonalisable et que les valeurs propres de A sont

A,y ..o, Ag de multiplicité my, . .., mg. Alors, on a t '/ ﬂ&
TrA=mA+---+mAs et det A= A" A%, I WPU ONCL n '6”

1 s dy mlno proprts> Arte M/Lc&’



Démonstration. Soient P € GL,(K) et D la matrice diagonale dont la diagonale est ‘D z

(Ala"'u/\lv"'7)\-5‘7"'7)\-5') O%
)

de telle sorte que A = PDP~!. Alors, on a A
Tr(A) = Te(PDP™1) = Tr(D) = mqdy + - - + my)s, >
det(A) = det(P) det(D) det(P~") = det(D) = A" .. X, O s (&

Remarque. Pour K = C, le résultat est aussi vrai si la matrice A n’est pas diagonalisable. )

Notons que diagonaliser une matrice n’est pas une méthode efficace pour calculer le

déterminant d’une matrice en général. De fait, pour cela, il est déja nécessaire de calculer

le polynome caractéristique C'4(T') de A est O( (q) - M
T
B

C4(0) = det(A).
Proposition 1.51. Soit A € M, (K). Soient P € GL,(K) et B € M, (K) telles que (}D)
A=PBP™, CQ’ 4

Alors, pour tout k > 1, on a
A¥ = pBFpPL.
Si, de plus, B est inversible alors A est inversible et, pour tout k > 1, on a

A" =pPBFP"



Démonstration. Soit k > 1, on a '& \')
A = (PBEAEBEA) . (pBP )
4 k fois

= PB(P'P)B(P'P)--- (P 'P)BP!

=] 71: kp-1
—PBH‘BP PB"P™.

Dans le cas ou B est inversible, on a
APB'P"Y=PBP'PB'P=PBB'P' = PP =1,

et donc A™' = PB7'P~!. Le reste de la démonstration se fait de maniere similaire au cas e

précédent. G( \ (7
Soit D la matrice diagonale dont la diagonale est D - @ ‘. )g'
N

(A1, )
avec A1, ..., A\, € K. Alors, pour tout k > 1, la matrice D* est diagonale et sa diagonale est \ \/ &7\ \) CD
O, ). Vv - !

Si, de plus, A;---\, # 0, alors D est inversible et, pour tout k > 1, la matrice D% est
diagonale et sa diagonale est \ [}\\



En combinant la proposition et cette remarque, on peut en déduire des formules pour

les puissances de matrices diagonalisables. g

Exemple. Considérons la matrice (1] Vg A
cwdt ¥

A:(f ;).

Les valeurs propres sont 1 et 3 et on trouve la diagonalisation

-1 1 10
A=PDP!avec P= et D= .
1 1 0 3
Notons que
(—1 1) @ 5{’/
On en déduit que, pour tout k € Z, on a f.\ - ?,D

DI ) g ool
&b /



e ! | & 670
Une autre application de la diagonalisation est pour le calcul de I'exponentielle de

matrice. Pour A € M, (K), on pose 2 - \¥'Ik ‘Yf
. 2(K), ﬂo ) {y\

1 1 1, -
e =exp(A) =L+ A+ A+ A o=y A i\ [2;)

k>0 z

L’exponentielle de matrices joue un role important notamment dans la résoluti

des

systemes d’équations différentielles linéaires.

Remarque. La fonction classique exponentielle est donnée, pour z € C, par

k
ezzz%.

k>0

Théoréme 1.52. Pour tout A € M,(K), la matrice e? existe et vérifie les propriétés sui-
vantes :

1. La matrice e* est inversible et son inverse est e 4,

2. Soient A, B € M,(K) deuz matrices qui commutent, c’est-a-dire AB = BA, alors
-d

3. Soit P € GL,(K), une matrice inversible, on a
/;>

; ¢
AP = petpl,



Démonstration. La preuve de 2. est similaire & la preuve de la formule classiquq e®*? = e®e”

pf'?)‘—P\ (ot

donc e est inversible et son inverse est e ce qui prouve 1. Finalement, pour la preuve de

3, 0on a
1 1 1////,/—__~\ g%l L)
PAP-! _ —1\k _ kp-1 _ E\p-1_ p Ap-1 —
e = E —k!(PAP )= E _k:!PA P —P<E _k!A )P = Pe” P, O

k>0 k>0 k>0

pour «, 8 € C. Maintenant, on a

efeT =e =e =1,

Comme dans le cas des puissancestde matrices, le fait essentiel est que I’exponentielle
d’une matrice diagonale est facile ?Kf calculer. Plus précisément, soit la matrice diagonale

D dont la diagonale est (A1,...,\,), alors la matrice e? est diagonale avec pour diagonale 201

P
SIS

Exemple. Considérons la matrice

A_(j )

Les valeurs propres sont 1 et 3 et on trouve la diagonalisation

-1 1 10
A= PDP !avec P = et D= .
1 1 03
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Algebre bilinéaire . %W}ﬂ bt Oﬁ(x de

2.1 Formes bilinéaires

2.1.1 Définitions

Soit. £ un K-espace vectoriel. Une forme bilinéaire est un application ® de £ x FE

dans K linéaire par rapport a chaque argument. C’est-a-dire, pour x,2’,y,y' € F et A € K,
on a : E'):é}/é""g*{

Oz +2y) = P(x,y)+ 2(2,y), @ llls -
Oz, y+y) = 2(x,y) + 2(x,y), o P y
O(Az,y) = D(z, \y) = AD(z,y).



,{K

Les formes bilinéaires constituent un K-espace vectoriel, noté Ly(E). Nous déterminerons
la structure de cet espace dans la prochaine section. / y f

Exemples. (b ( g 1447 ) 6

1. E=R, &(x,y) = xy.

AQ.E:Cf“[O,l]) = [ Ft)g(1 —t)dt. H'ff[‘w

Dorénavant, on suppose E de dimension finie n. Soit B = (ey, ..., e,) une base de F, on

écrit les décompositions : d % [ l{‘) x}c
n -

')(%b m o= ZA,;&:,

yzgum- ), 5 ‘o'.Z' "\
Par la linéarité de ®, on trouve alors que : I [11 ’ J Z»\ ie/ ! Ol/\ 0%

ZZ)‘Z“J 6L,e] F/ &

7
On pose a;; = ®(e;, ;) et on introduit la matrice A = (a;;) € M,(K). On appelle A la

matrice représentant ® sur la base 5. On note X (resp. Y) le vecteur représentant x

resp. y) sur la base B. L’expression matricielle de ® est donnée par : M (}
< oy ¥
'7 O(z,y) ='X A Y]

é)‘ mnvv\ W\M/W% \/ J\ W il ) @



N

‘ Remarque. La réciproque est aussi vraie, toute application de F x E dans K qui peut

s’écrire sous cette forme est une forme bilinéaire.
=

Théoréme 2.1. L’application de Lo(K) dans M, (K) définit par ® — A ou A est la matrice
de ® relativement a une base firée de K, est un isomorphisme. En particulier, Lo(K) est de

dimension n2. OJ

Pour conclure cette section, on étudie la transformation de la matrice A quand on change
la base B. Ainsi, soit B’ = (e}, ..., ¢€],) une autre base de E. Posons X’ (resp. Y’) le vecteur
exprimant x (resp. y) sur 5'. On note P la matrice de changement de base de la base B a
la base B’. (Rappel : c’est la matrice dont les colonnes sont les expressions des vecteurs e,

sur la base B.) On a ainsi :
X =PX e Y=PY,

d'ol :
O(z,y) ='XAY ='X'"PAPY’

et la matrice A’ représentant ® sur la base B’ est :

A ="'PAP.



