
1.4.4 Polynôme minimal et théorème de Cayley-Hamilton

Soit f(T ) = �mTm + · · · + �1T + �0 2 K[T ] un polynôme à coe�cients dans K et soit

A 2 Mn(K) une matrice carrée. On définit

f(A) = �mA
m + · · ·+ �1A+ �0In 2 Mn(K).

Proposition 1.38. Soient f et g deux polynômes dans K[T ] et soit A 2 Mn(K), on a

1. (f + g)(A) = f(A) + g(A),

2. (fg)(A) = f(A)g(A) = g(A)f(A).

Soit A 2 Mn(K). On appelle polynôme annulateur de A tout polynôme non nul

f 2 K[T ] vérifiant f(A) = 0 (matrice nulle).

Exemple. Soit A 2 M2(K). Le polynôme caractéristique de A est

CA(T ) = T 2 � Tr(A)T + det(A).

On montre que CA(T ) est un polynôme annulateur de A.

Proposition 1.39. Toute matrice carrée possède un polynôme annulateur.

Démonstration. Soit A 2 Mn(K). Posons m = dim(Mn(K)) = n2. On considère la famille

de matrices (In, A,A2, · · · , Am) Cette famille possède m + 1 et donc elle est liée. Ainsi, il

existe �0, . . . ,�m 2 K, non tous nuls, tels que

�0In + · · ·+ �mA
m = 0.
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Il suit que le polynôme �mTm + · · ·+ �0 est un polynôme annulateur de A.

Soit A 2 Mn(K). On appelle polynôme minimal de A, le polynôme unitaire mA(T )

annulateur de A et de plus petit degré.

Proposition 1.40. Soit A 2 Mn(K). Le polynôme minimal mA(T ) de A est unique et divise

tout polynôme annulateur de A.

Démonstration. On montre pour commencer la deuxième assertion. Soit f(T ) un polynôme

annulateur de A. Par division euclidienne, on peut écrire

f(T ) = mA(T )q(T ) + r(T )

avec r(T ) = 0 ou deg(r) < deg(mA). Supposons que r 6= 0. Puisque f(A) = mA(A) = 0, on

en déduit que r(A) = 0 et donc r est un polynôme annulateur de A avec deg(r) < deg(mA).

Ceci est une contradiction car le degré de mA est minimal. Ainsi, on a r = 0 et mA(T )

divise f(T ).

Maintenant, supposons que m0(T ) 2 K[T ] est un autre polynôme unitaire annulateur de

A avec deg(mA) = deg(m0). Alors, on a que mA(T ) divise m0(T ). Comme ils sont de même

degré, il suit qu’il existe � 2 K tel que m0(T ) = �mA(T ). Mais, comme les polynômes

m0(T ) et mA(T ) sont unitaires, on trouve que � = 1 et donc m0(T ) = mA(T ). Donc le

polynôme minimal est bien unique.

Le résultat fondamental sur les polynômes annulateurs est le suivant.
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Théorème 1.41 (Cayley-Hamilton). Le polynôme caractéristique d’une matrice carrée est

un polynôme annulateur de cette matrice. En d’autres termes, pour A 2 Mn(K), on a

CA(A) = 0.

Corollaire 1.42. Soit A 2 Mn(K). Soit f(T ) est un polynôme annulateur de A, alors les

valeurs propres de A sont parmi les racines de f . En particulier, un scalaire � 2 K est une

valeur propre de A si et seulement si � est une racine de mA(T ).

Démonstration. Soit � 2 K une valeur propre de A. Alors, il existe un vecteur non nul x tel

que Ax = �x. On pose f(T ) = anT n + · · ·+ a0 et on calcule

f(A)x = anA
nx+ · · ·+ a1Ax+ a0x = an�

nx+ · · ·+ a1�x+ a0x = f(�)x.

D’un autre côté, on a f(A) = 0 puisque f est un polynôme annulateur de A et donc on a

f(�) = 0 puisque x 6= 0. On a bien montré que � est une racine de f .

Maintenant, le polynôme minimal mA divise le polynôme caractéristique puisque le po-

lynôme caractéristique est un polynôme annulateur par le théorème de Cayley-Hamilton.

Donc les racines de mA sont parmi les valeurs propres de A. En combinant avec le premier

point, on en déduit que les racines de mA sont exactement les valeurs propres de A.

1.4.5 Valeurs propres d’un endomorphisme

Soit E un K-espace vectoriel de dimension n. Soit ' 2 L(E) un endomorphisme de E.

Un scalaire � 2 K est un valeur propre de � si l’une des conditions équivalentes suivantes
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est vérifiée :

1. Il existe un vecteur v 2 E, v 6= 0, tel que '(v) = �v,

2. Ker(u� �id) 6= {0},

3. det(u� �id) = 0,

4. Soit B une base de E et soit A la matrice de ' sur cette base, alors � est valeur

propre de A.

Comme précédemment, dans ce cas, on appelle vecteur propre associé à �, tout vecteur

v non nul tel que '(v) = �v.

Le polynôme caractéristique de ' est le polynôme caractéristique de la matrice de

A dans une base de E. Comme vu précédemment, ce polynôme ne dépend pas du choix de

la base et on le note C'(T ).

Proposition 1.43. L’ensemble des valeurs propres de ', appelé le spectre de ', est égal

à l’ensemble des racines dans K du polynôme caractéristique C'(T ).

1.5 Diagonalisation

1.5.1 Problème de la diagonalisation

Soit A 2 Mn(K). On dit que A est diagonalisable si A est semblable à une matrice

diagonale, c’est-à-dire s’il existe une matrice P 2 GLn(K) et une matrice diagonale D de
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type n telles que

A = PDP�1.

Supposons A diagonalisable, diagonaliser A consiste à calculer des matrices P et D

vérifiant cette relation. (En général, les matrices P et D ne sont pas uniques.)

Théorème 1.44. Soit A 2 Mn(K). Alors, la matrice A est diagonalisable si et seulement

si il existe une base de Kn
formée de vecteurs propres de A.

Démonstration. Supposons que la base (v1, · · · , vn) de E est formée de vecteurs propres

associées respectivement aux valeurs propres �1, . . . ,�n. On pose P = (v1| · · · |vn). On calcule

AP = (Av1| · · · |Avn) = (�1v1| · · · |�nvn) = P

0

BBBB@

�1 0 · · · 0

0 �2 · · · 0
... · · · · · · ...

0 · · · 0 �n

1

CCCCA
.

et donc A est diagonalisable.

Réciproquement, supposons A diagonalisable. Soient P 2 GLn(K) et D diagonale telles

que A = PDP�1. Alors, on vérifie comme ci-dessus que les colonnes de P forment une base

de Kn composée de vecteurs propres de A.

Corollaire 1.45. Supposons A est diagonalisable. Soit (v1, . . . , vn) une base de Kn
telle que,

pour i = 1, . . . , n, le vecteur vi est vecteur propre de A associée à la valeur propre �i. On

Dorm
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pose

P = (v1| · · · |vn) et D =

0

BBBB@

�1 0 · · · 0

0 �2 · · · 0
... · · · · · · ...

0 · · · 0 �n

1

CCCCA
.

Alors, on a A = PDP�1
.

Corollaire 1.46. Soit A 2 Mn(K). Supposons que A possède n valeurs propres distinctes.

Alors, A est diagonalisable.

Démonstration. Soient �1, . . . ,�n les valeurs propres de A et soit v1, . . . , vn des vecteurs

propres associés. Alors, on a les sous-espaces vectoriels Kv1, . . . ,Kvn sont en somme directe

et donc (v1, . . . , vn) est une base de Kn formée de vecteurs propres.

Attention : il peut exister des matrices dans Mn(K) avec strictement moins de valeurs

propres que n qui sont pourtant diagonalisables.

1.5.2 Caractérisation des matrices diagonalisables

Soit A 2 Mn(K). On rappelle que, pour � une valeur propre de A, on dénote par E� le

sous-espace propre associé à �, c’est-à-dire

E� = Ker(A� �In).
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Proposition 1.47. Soit � une valeur propre de A et soit m la multiplicité de � comme

racine du polynôme caractéristique CA(T ) de A. Alors, on a

1  dimE�  m.

On en déduit la caractérisation des matrices diagonalisables.

Théorème 1.48. Soit A 2 Mn(K) et soient �1, . . . ,�s les valeurs propres de A. Les asser-

tions suivantes sont équivalentes :

1. A est diagonalisable,

2. On a Kn = E�1 � · · ·� E�s,

3. Pour i = 1, . . . , s, on a dimE�i = mi où mi est la multiplicité de �i comme racine

de CA(T ) et

m1 + · · ·+ms = n.

Corollaire 1.49. Supposons que le polynôme caractéristique CA(T ) de A n’est pas scindé

sur K. Alors, A n’est pas diagonalisable.

Ce corollaire ne s’applique que quand K 6= C car tout les polynôme sont scindés sur C.
De fait, il existe des exemples de matrices carrées réelles qui ne sont pas diagonalisables

sur R, mais sont diagonalisables sur C.
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1.5.3 Méthode de diagonalisation

Soit A 2 Mn(K). La méthode pour déterminer si la matrice A est diagonalisable et la

diagonaliser si c’est possible est la suivante :

1. Calculer le polynôme caractéristique CA(T ) de A.

2. Calculer les racines �1, . . . ,�s de CA(T ) dans K et leur multiplicité m1, . . . ,ms.

3. Si m1 + · · ·+ms < n alors CA(T ) n’est pas scindé et A n’est pas diagonalisable et le

processus s’arrête.

4. Pour i = 1, . . . , s, faire

(a) Calculer la dimension d de E�i.

(b) Si d < mi, alors A n’est pas diagonalisable et le processus s’arrête.

(c) Calculer une base (vi,1, . . . , vi,mi) de E�i.

5. La matrice A est diagonalisable. On pose

P = (v1,1| · · · |v1,m1| · · · |vs,1| · · · |vs,ms) et D =

0

BBBB@

�1 0 · · · 0 0

0 �1 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 0 �s

1

CCCCA

la matrice P est obtenue en réunissant les bases calculées en 4.(c) et la matrice D

est la matrice diagonale avec sur la diagonale les valeurs propres �1, . . . ,�s répétées
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avec leur multiplicité. Alors, on a

A = PDP�1.

Exemple. On cherche à diagonaliser la matrice

A =

0

BB@

2 �1 1

0 1 1

0 0 2

1

CCA .

1. On calcule CA(T ) = T 3 � 5T 2 + 8T � 4.

2. La racine �1 = 1 est évidente. On divise CA(T )/(T � 1) = T 2 � 4T + 4 = (T � 2)2.

Donc on a m1 = 1 et l’autre racine est �2 = 2 de multiplicité m2 = 2.

3. Puisque m1 +m2 = 3, il n’y a pas d’obstacle (pour l’instant) à diagonaliser A.

4. i = 1 : � = 1 et m = 1.

(a) Le vecteur v = t(x, y, z) 2 E1 ssi Av = v ssi
8
>><

>>:

2x� y + z = x

y + z = y

2z = z

ssi

8
>><

>>:

x� y + z = 0

z = 0

z = 0

ssi

(
x� y = 0

z = 0

(b-c) Donc E1 est de dimension 3� 2 = 1 avec pour base (t(1, 1, 0)).
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4. i = 2 : � = 2 et m = 2.

(a) Le vecteur v = t(x, y, z) 2 E2 ssi Av = 2v ssi
8
>><

>>:

2x� y + z = 2x

y + z = 2y

2z = 2z

ssi

8
>><

>>:

�y + z = 0

�y + z = 0

0 = 0

ssi � y + z = 0

(b-c) Donc E2 est de dimension 3� 1 = 2 avec pour base (t(0, 1, 1), t(1, 0, 0)).

5. La matrice A est diagonalisable. On pose

P =

0

BB@

1 0 1

1 1 0

0 1 0

1

CCA et D =

0

BB@

1 0 0

0 2 0

0 0 2

1

CCA

et on a A = PDP�1.

1.5.4 Applications de la diagonalisation des matrices

Proposition 1.50. Supposons que A est diagonalisable et que les valeurs propres de A sont

�1, . . . ,�s de multiplicité m1, . . . ,ms. Alors, on a

TrA = m1�1 + · · ·+ms�s et detA = �m1
1 · · ·�ms

s .
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Démonstration. Soient P 2 GLn(K) et D la matrice diagonale dont la diagonale est

(�1, . . . ,�1| {z }
m1

, · · · ,�s, . . . ,�s| {z }
ms

)

de telle sorte que A = PDP�1. Alors, on a

Tr(A) = Tr(PDP�1) = Tr(D) = m1�1 + · · ·+ms�s,

det(A) = det(P ) det(D) det(P�1) = det(D) = �m1
1 · · ·�ms

s .

Remarque. Pour K = C, le résultat est aussi vrai si la matrice A n’est pas diagonalisable.

Notons que diagonaliser une matrice n’est pas une méthode e�cace pour calculer le

déterminant d’une matrice en général. De fait, pour cela, il est déjà nécessaire de calculer

le polynôme caractéristique CA(T ) de A est

CA(0) = det(A).

Proposition 1.51. Soit A 2 Mn(K). Soient P 2 GLn(K) et B 2 Mn(K) telles que

A = PBP�1.

Alors, pour tout k � 1, on a

Ak = PBkP�1.

Si, de plus, B est inversible alors A est inversible et, pour tout k � 1, on a

A�k = PB�kP�1.
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Démonstration. Soit k � 1, on a

Ak = (PBP�1)(PBP�1) · · · (PBP�1)| {z }
k fois

= PB(P�1P )B(P�1P ) · · · (P�1P )BP�1

= P B · · ·B| {z }
k fois

P�1 = PBkP�1.

Dans le cas où B est inversible, on a

A(PB�1P�1) = PBP�1PB�1P = PBB�1P�1 = PP�1 = In

et donc A�1 = PB�1P�1. Le reste de la démonstration se fait de manière similaire au cas

précédent.

Soit D la matrice diagonale dont la diagonale est

(�1, . . . ,�n)

avec �1, . . . ,�n 2 K. Alors, pour tout k � 1, la matrice Dk est diagonale et sa diagonale est

(�k
1, . . . ,�

k
n).

Si, de plus, �1 · · ·�n 6= 0, alors D est inversible et, pour tout k � 1, la matrice D�k est

diagonale et sa diagonale est

(��k
1 , . . . ,��k

n ).
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En combinant la proposition et cette remarque, on peut en déduire des formules pour

les puissances de matrices diagonalisables.

Exemple. Considérons la matrice

A =

 
2 1

1 2

!
.

Les valeurs propres sont 1 et 3 et on trouve la diagonalisation

A = PDP�1 avec P =

 
�1 1

1 1

!
et D =

 
1 0

0 3

!
.

Notons que

P�1 =
1

2

 
�1 1

1 1

!
.

On en déduit que, pour tout k 2 Z, on a

Ak =

 
�1 1

1 1

! 
1k 0

0 3k

!
1

2

 
�1 1

1 1

!

=
1

2

 
3k + 1 3k � 1

3k � 1 3k + 1

!
.
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Une autre application de la diagonalisation est pour le calcul de l’exponentielle de

matrice. Pour A 2 Mn(K), on pose

eA = exp(A) = In + A+
1

2!
A2 +

1

3!
A3 + · · · =

X

k�0

1

k!
Ak.

L’exponentielle de matrices joue un rôle important notamment dans la résolution des

systèmes d’équations di↵érentielles linéaires.

Remarque. La fonction classique exponentielle est donnée, pour z 2 C, par

ez =
X

k�0

zk

k!
.

Théorème 1.52. Pour tout A 2 Mn(K), la matrice eA existe et vérifie les propriétés sui-

vantes :

1. La matrice eA est inversible et son inverse est e�A
,

2. Soient A,B 2 Mn(K) deux matrices qui commutent, c’est-à-dire AB = BA, alors

eA+B = eA eB.

3. Soit P 2 GLn(K), une matrice inversible, on a

ePAP�1

= PeAP�1.
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Démonstration. La preuve de 2. est similaire à la preuve de la formule classique e↵+� = e↵e�

pour ↵, � 2 C. Maintenant, on a

eAe�A = eA�A = e0 = In

donc eA est inversible et son inverse est e�A ce qui prouve 1. Finalement, pour la preuve de

3, on a

ePAP�1

=
X

k�0

1

k!
(PAP�1)k =

X

k�0

1

k!
PAkP�1 = P

 
X

k�0

1

k!
Ak

!
P�1 = PeAP�1.

Comme dans le cas des puissances de matrices, le fait essentiel est que l’exponentielle

d’une matrice diagonale est facile est calculer. Plus précisément, soit la matrice diagonale

D dont la diagonale est (�1, . . . ,�n), alors la matrice eD est diagonale avec pour diagonale

(e�1, . . . , e�n).

Exemple. Considérons la matrice

A =

 
2 1

1 2

!
.

Les valeurs propres sont 1 et 3 et on trouve la diagonalisation

A = PDP�1 avec P =

 
�1 1

1 1

!
et D =

 
1 0

0 3

!
.
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Notons que

P�1 =
1

2

 
�1 1

1 1

!
.

On en déduit que

eA =

 
�1 1

1 1

! 
e1 0

0 e3

!
1

2

 
�1 1

1 1

!

=
1

2

 
e+ e3 �e+ e3

�e+ e3 e+ e3

!
.
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Chapitre 2

Algèbre bilinéaire

2.1 Formes bilinéaires

2.1.1 Définitions

Soit E un K-espace vectoriel. Une forme bilinéaire est un application � de E ⇥ E

dans K linéaire par rapport à chaque argument. C’est-à-dire, pour x, x0, y, y0 2 E et � 2 K,

on a :

�(x+ x0, y) = �(x, y) + �(x0, y),

�(x, y + y0) = �(x, y) + �(x, y0),

�(�x, y) = �(x,�y) = ��(x, y).
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Les formes bilinéaires constituent un K-espace vectoriel, noté L2(E). Nous déterminerons

la structure de cet espace dans la prochaine section.

Exemples.

1. E = R, �(x, y) = xy.

2. E = C1[0, 1], �(f, g) =
R 1
0 f(t)g(1� t) dt.

Dorénavant, on suppose E de dimension finie n. Soit B = (e1, . . . , en) une base de E, on

écrit les décompositions :

x =
nX

i=1

�i ei,

y =
nX

i=1

µi ei.

Par la linéarité de �, on trouve alors que :

�(x, y) =
nX

i=1

nX

j=1

�iµj �(ei, ej).

On pose ai,j = �(ei, ej) et on introduit la matrice A = (ai,j) 2 Mn(K). On appelle A la

matrice représentant � sur la base B. On note X (resp. Y ) le vecteur représentant x

(resp. y) sur la base B. L’expression matricielle de � est donnée par :

�(x, y) = tX AY.

r
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Remarque. La réciproque est aussi vraie, toute application de E ⇥ E dans K qui peut

s’écrire sous cette forme est une forme bilinéaire.

Théorème 2.1. L’application de L2(K) dans Mn(K) définit par � 7! A où A est la matrice

de � relativement à une base fixée de K, est un isomorphisme. En particulier, L2(K) est de

dimension n2
.

Pour conclure cette section, on étudie la transformation de la matrice A quand on change

la base B. Ainsi, soit B0 = (e01, . . . , e
0
n) une autre base de E. Posons X 0 (resp. Y 0) le vecteur

exprimant x (resp. y) sur B0. On note P la matrice de changement de base de la base B à

la base B0. (Rappel : c’est la matrice dont les colonnes sont les expressions des vecteurs e0i
sur la base B.) On a ainsi :

X = PX 0 et Y = PY 0,

d’où :

�(x, y) = tX AY = tX 0 tPAP Y 0

et la matrice A0 représentant � sur la base B0 est :

A0 = tPAP.
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