13 janvier 2021. Durée: 2 heures

CONTRÔLE TERMINAL

Pas de documents, pas de téléphones, pas de calculettes!

Exercice 1

1) On note M la fonction de \mathbb{R}^2 vers \mathbb{R} définie par $M(x,y) = \min(|x|,|y|)$.

Montrer que M n'est pas une norme sur \mathbb{R}^2 .

2) On note N la fonction de \mathbb{R}^2 vers \mathbb{R} définie par N(x,y) = |x| + 5|y|.

Montrer que N est une norme sur \mathbb{R}^2 .

Exercice 2

On note G la fonction de \mathbb{R}^2 vers \mathbb{R} définie par $G(r,s,t)=r^2+s^2+t^2$

On note f, g et h les fonctions de \mathbb{R}^2 vers \mathbb{R} définies par $f(u,v)=u+e^v$, $g(u,v)=u^3v$ et $h(u,v)=\cos(u+v)$.

On note F la fonction de \mathbb{R}^3 vers \mathbb{R}^3 définie par :

$$F(x, y, z) = (f(y, z), g(z, x), h(x, y))$$

Enfin on note H la fonction de \mathbb{R}^3 vers \mathbb{R} définie par :

$$H(x, y, z) = G(f(y, z), g(z, x), h(x, y))$$

- 1) Pour $(r, s, t) \in \mathbb{R}^3$, calculer la matrice jacobienne $J_G(r, s, t)$.
- 2) Pour $(x, y, z) \in \mathbb{R}^3$, expliciter F(x, y, z) puis calculer la matrice jacobienne $J_F(x, y, z)$.
- 3) Soit $(x, y, z) \in \mathbb{R}^3$. Déduire des deux questions précédentes une expression de $\frac{\partial H}{\partial x}(x, y, z)$.

Exercice 3

On note u la fonction de \mathbb{R}^2 vers \mathbb{R} définie par :

$$u(x,y) = xye^{-x-y}.$$

- 1) Calculer les dérivées partielles premières et secondes de u sur \mathbb{R}^2 .
- 2) Déterminer les points critiques de u.
- 3) a) Ecrire la hessienne de u en chacun de ces points critiques.
- b) Préciser la nature de chacun de ces points critiques (la fonction étudiée y admet-elle ou non un extremum local?)
- c) En quels points la fonction u admet-elle un extremum local?

Exercice 4

- 1) Montrer la convergence de l'intégrale $\int_0^{+\infty} te^{-t} dt$ et calculer sa valeur. 2) Sans chercher à la calculer, discuter de la convergence ou de la divergence de :

$$\int_0^{+\infty} \frac{1}{t^2 + \sqrt{t}} \, dt.$$

Exercice 5

Pour chaque $n \ge 1$ on note f_n la fonction de \mathbb{R} vers \mathbb{R} définie par $f_n(x) = e^{-x^2/n}$.

- 1) La suite de fonctions (f_n) converge-t-elle simplement sur \mathbb{R} ?
- 2) La suite de fonctions (f_n) converge-t-elle uniformément sur \mathbb{R} ? Sur $[1, +\infty[$?

Exercice 6

Pour chaque $n \ge 0$ on note u_n la fonction de \mathbb{R} vers \mathbb{R} définie par $u_n(x) = \frac{\cos(nx)}{3^n}$. On s'intéresse à la série de fonctions $\sum_{n\ge 0} u_n$ dont la somme sera notée S.

- 1) La série $\sum u_n$ converge-t-elle simplement sur \mathbb{R} ? normalement sur \mathbb{R} ? uniformément sur \mathbb{R} ?
- 2) La fonction S est-elle continue sur son ensemble de définition?
- 3) Calculer les réels S(0) et $S\left(\frac{\pi}{2}\right)$.

Exercice 7

1) On considère la série entière d'une variable réelle \boldsymbol{x} :

$$\sum_{n\geq 1} n^n x^n$$

- a) Déterminer son rayon de convergence.
- b) Déterminer l'ensemble des réels x en lesquels cette série entière converge.
- 2) Mêmes questions pour la série entière :

$$\sum_{n>0} \frac{8^{n-5}x^{3n}}{(2n+3)^2}$$