Analyse pour l'économie 2

Durée 2h00.

Exercice 1.

1. En utilisant le changement de variables en coordonnées sphériques,

$$\begin{cases} x = \rho \sin \varphi \cos \theta \\ y = \rho \sin \varphi \sin \theta \\ z = \rho \cos \varphi, \end{cases} \qquad \rho \ge 0, \, \theta \in [0, 2\pi[\text{ et } \varphi \in [0, \pi],$$

calculer l'intégrale

$$\iiint_D z \, dx \, dy \, dz,$$

où
$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le R^2 \text{ et } z \ge 0\} \text{ et } R > 0.$$

2. Donner la valeur des intégrales suivantes, sans faire de calcul

$$\iiint_D x\,dx\,dy\,dz \qquad \text{et} \qquad \iiint_D y\,dx\,dy\,dz.$$

Exercice 2. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 + y^2 - 4xy$.

- 1. Étudier l'existence et éventuellement calculer les extrema de f lorsque x et y sont soumis à la contrainte $x^2 + y^2 = 8$.
- 2. Étudier l'existence et éventuellement calculer les extrema de f lorsque x et y sont soumis à la contrainte $x^2 + y^2 \le 8$.
- 3. Étudier l'existence et éventuellement calculer les extrema de f lorsque x et y sont soumis à la contrainte $x^2 + y^2 \ge 8$.

Exercice 3. On considère les deux surfaces Σ_1 et Σ_2 de \mathbb{R}^3

$$\Sigma_1 = \{(x, y, z) \in \mathbb{R}^3 \colon \ x^2 + y^2 = 1\}$$
 et $\Sigma_1 = \{(x, y, z) \in \mathbb{R}^3 \colon \ x^2 + z^2 = 1\}.$

Soit Γ la courbe de \mathbb{R}^3 donnée par l'interserction $\Sigma_1 \cap \Sigma_2$. Soit d la droite tangente, au point $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, à cette courbe Γ .

- 1. Dessiner ou décrire en quelques mots Σ_1 et Σ_2 . Ces deux surfaces sont-elles compactes ? Et Γ est elle-compacte ?
- 2. Écrire une paramétrisation de la courbe Γ , à l'aide de fonctions trigonométriques.
- 3. Écrire l'équation paramétrique de la droite d, et en déduire un système donnant d comme l'intersection de deux plans de \mathbb{R}^3 .
- 4. Montrer que Γ est de même longueur que l'ellipse d'équation $x^2 + y^2/2 = 1$. (Ne pas calculer cette longueur, on se limitera à observer que dans les deux cas on trouve la même intégrale).

T.S.V.P.

Exercice 4. On considère l'équation différentielle sur $]0, +\infty[$

$$y'(x) - \frac{y(x)}{x} - y^2(x) = -9x^2.$$
 (E)

- 1. Trouver a > 0 tel que la fonction $y_0(x) = ax$ soit une solution de (E).
- 2. Considérer le changement d'inconnue $y(x)=y_0(x)-\frac{1}{z(x)}$, et écrire l'équation différentielle linéaire (E') satisfaite par z(x).
- 3. Trouver la solution générale de l'équation différentielle (E') sur $]0, +\infty[$.
- 4. Trouver toutes les solutions y(x) de l'équation différentielle (E) définies sur tout l'intervalle $]0,+\infty[$.