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Analyse pour l’économie 2. Examen de session 1. Année 2025
Aucun document et aucune calculatrice ne sont autorisés durant l’épreuve. L’usage des téléphones est pro-
hibé. La justification des réponses et un soin particulier de la présentation seront demandés et pris en compte
lors de la notation.

Exercice 1. Soit a > 0 et D le triangle de sommets (0, 0), (1, 0) et (0, a). Calculer∫∫
D

2y dx dy.

(Vérification de la réponse : s’assurer que dans le cas a = 3, l’intégrale est égale à 3).

Exercice 2. Soit Γ la courbe de R3 paramétrée par l’application φ : [0, π] → R3, définie par
φ(t) = (2t, cos t, sin t).

1. Calculer la longueur de Γ.

2. Trouver l’unique point de Γ où la droite tangente est horizontale (parallèle au plan xOy).

Exercice 3. Soit la courbe Γ de R2 définie implicitement par l’équation x3 + y3 − 3xy = 0.

1. Peut-on appliquer le théorème des fonctions implicites en (0, 0)? Expliquer.

2. Trouver un point (a, b) ∈ Γ de cette courbe où l’on peut appliquer le théorème des fonctions
implicites.

3. Écrire l’équation de la droite tangente à la courbe Γ au point (a, b) trouvé à la question
précédente.

Exercice 4. Soit f(x, y, z) = x+ y + z.

1. Démontrer l’existence, sans les calculer, du minimum m et du maximum M de f sous la
contrainte x2

2
+ y2

4
+ z2

6
− 1 = 0.

2. Écrire la Lagrangienne du problème d’optimisation et le système permettant de trouver les
points de minimum et maximum.

3. En utilisant le théorème des multiplicateurs de Lagrange, calculer M et m et préciser les
points où ils sont atteints.
(Vérification de la réponse : m = k

√
3, où k est un entier que l’on trouvera avec les

calculs).

4. Dans cette question on modifie la contrainte, par l’équation −x2

2
+ y2

4
+ z2

6
− 1 = 0.

(a) Expliquer pourquoi le problème d’optimisation de f , sous cette nouvelle contrainte, a
priori pourrait ne pas avoir de solution.

(b) Démontrer que sup{f(x, y, z) : −x2
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6
− 1 = 0} = +∞.
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